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[1] The modeling of the statistical distribution of eruptive frequency and volume provides
basic information to assess volcanic hazard and to constrain the physics of the eruptive
process. We analyze eruption catalogs from volcanoes worldwide in order to find
‘‘universal’’ relationships and peculiarities linked to different eruptive styles. In particular,
we test (1) the Poisson process hypothesis in the time domain, looking for significant
clustering of events or the presence of almost regular recurrence times, (2) the relationship
between the time to the next eruption and the size of the previous event (the ‘‘time
predictable’’ model), and (3) the relationship between the size of an event and the previous
repose time (the ‘‘size predictable’’ model). The results indicate different behavior for
volcanoes with ‘‘open’’ conduit regimes compared to those with ‘‘closed’’ conduit
regimes. Open conduit systems follow a time predictable model, with a marked time
clustering of events; closed conduit systems have no significant tendency toward a size or
a time predictable model, and the eruptions follow mostly a Poisson distribution. These
results are used to build general probabilistic models for volcanic hazard assessment of
open and closed conduit systems.
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1. Introduction

[2] The statistical modeling of the time-size distribution
of volcanic eruptions is a fundamental tool to understand
better the physics of the eruptive process, and to make
reliable forecasts [Newhall and Hoblitt, 2002; Connor et al.,
2003; Marzocchi et al., 2004a; Sparks and Aspinall, 2004].
Eruption forecasting is commonly associated to different
timescales (short-, intermediate-, and long-term; see defini-
tion by Newhall and Hoblitt [2002]). Regardless of the time
frame, the statistical modeling of the past behavior of a
volcano is a key ingredient for quantitative forecasting
(usually, but not necessarily, over long time intervals) when
the volcano has an almost stationary state (for instance, it is
dormant). In this case, monitoring data are not particularly
informative of the future evolution of the system, at least
until the volcano becomes restless and/or changes its
stationary state. Hereinafter, the terms ‘‘eruption forecast-
ing’’ and ‘‘volcanic hazard’’ refer to this stationary case.
[3] The main difficulties in providing a general model of

eruptive activity are linked to the existence of different
types of volcanic activity, to the paucity of eruptive data for
most volcanoes, and to the intrinsic complexity of eruptive
processes. As a consequence, most of the past papers
devoted to this issue are focused on single (or very few)
volcanoes [e.g., Wickman, 1976; Klein, 1982; Burt et al.,
1994; Bebbington and Lai, 1996; Marzocchi, 1996; Connor
et al., 2003; Gusev et al., 2003; Sandri et al., 2005] where

detailed eruptive catalogs exist. This approach limits the
generality of the results. We cannot know if the behavior of
the volcano analyzed represents a generic feature of a
specific type of volcanism, or if it is peculiar of the volcano
itself. Under this perspective, part of the different statistical
distributions found by analyzing single eruptive catalogs
can be explained by the existence of some peculiarities in
volcanic activity.
[4] One way to overcome this drawback, which we use

here, is to perform a common analysis on data from several
volcanoes. In particular, we test the Poisson hypothesis in
the time domain, and the reliability of time-size distribu-
tions such as the time predictable model and size predictable
model. The results obtained are then used to build a
quantitative model of the statistical time-size distribution
for some classes of volcanic activities that can be used for
volcanic hazard assessment.

2. Data Sets

2.1. Eruptive Catalogs and Variables for the
Statistical Analyses

[5] In order to achieve our goal, we analyze different
volcanic data sets that potentially may include different
classes of eruptive activities. In particular, we consider two
data sets extracted from the chronology of worldwide
eruptions reported in Volcanoes of the World [Simkin and
Siebert, 1994], updated until the end of 2003 (L. Siebert,
personal communication, 2004). Then, we consider the
eruptive catalogs of few volcanoes that report well docu-
mented sequences of eruptive activity, Mount Etna, Vesu-
vius, Kilauea, and Piton de la Fournaise.
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[6] The first catalog (N4VEI4; see Table 1) contains the
chronology (volcano, start date, and VEI) of 231 eruptions
with VEI � 4 from the 35 volcanoes that experienced at
least four such events in the time interval 10,000 B.C. to
2003 A.D. The second catalog (N4VEI2; see Table 2)
contains the chronology (volcano, date, and VEI) of 520
eruptions with VEI � 2 from 20 volcanoes that experienced
at least four such events, and for which it is possible to
estimate a feasible time-size window for the completeness
of the sequences. The time-size window of completeness for
each volcano is based on subjective choices (L. Newhall,
personal communication, 2005) taking into account possible
lack of small eruptions and/or the history of European
colonization. Later, we will check quantitatively this hy-
pothesis, as well as the completeness of each data set used.
The Etna catalog (ETNA) is taken from Behncke et al.
[2005]. For all the 40 eruptions in the time interval 1950–
2005, the catalog reports date, duration, eruptive vent (the
spatial point where the magma comes out), type (flank or
summit eruption), and volume of the lava erupted. Actually,
the catalog published by the authors starts before, but before
the fifties the frequency of eruptions is much smaller,
denoting an incompleteness of the catalog or a marked

change in the eruptive style [Behncke et al., 2005]. In order
to avoid possible bias due to these factors (see also
section 2.2), we analyze only the catalog after the fifties,
where the frequency of events is almost constant. The
Vesuvius catalog (VES) is taken from Scandone et al.
[1993], and reports the chronology of eruptions since 1631
with associated VEI. The Kilauea catalog (KIL) has been
taken from the Web page http://hvo.wr.usgs.gov/kilauea/
history/historytable.html (modified from Macdonald et al.
[1986]. It contains dates, durations, and volumes of erup-
tions since 1918. The Piton de la Fournaise catalog (PdlF)
consists of 72 interevent times (defined as the time intervals
between the onset of consecutive eruptions) and the duration
of the relative eruptions given by Sornette et al. [1991].
[7] From each catalog, we extract a data set consisting of

four variables, namely ti, ti
?, vi

(1), and vi
(2), where i = 1, .., M,

M = N � 1, and N is the number of eruptions in the catalog.
The random variable t is the interevent time (IET hereinaf-
ter) between eruptions divided by the average of all IETs
(mIET) for the same volcano. This is a typical normalization
for exponentially distributed families [Cox and Lewis,
1966], that is necessary to merge IETs coming from volca-
noes with different eruptive rates as in N4VEI2 and N4VEI4.
In practice, this transformation leads to an eruptive rate equal
to one for each volcano (mt = 1). For N4VEI2, N4VEI4, and
KIL, each IET is measured between the onset of consecutive
eruptions, because it is usually the most accurately reported
and available estimation of the time of occurrence of a
volcanic eruption given by these catalogs. Despite the Web
page where we take the data for Kilauea lists also the
duration of the eruptions, we do not consider them because
of the lack of their homogeneity; for instance, for the two
longest eruptions before 1980 (occurred in 1972 and 1969),
the catalog reports durations that are associated with a lava
lake activity rather than to represent real duration of erup-
tions like for the other events in the same catalog. The choice
to consider the onset implicitly leads to the assumption that

Table 1. N4VEI4 Cataloga

Volcano Latitude Longitude
Number

of Eruptions
mIET,
years

Campi Flegrei 40.827 N 14.426 E 4 2068
Vesuviob 40.821 N 14.426 E 7 1307
Okataina 38.120 S 176.500 E 6 1694
Taupo 38.820 S 176.000 E 15 716
Raoul Islandb 29.270 S 177.920 W 9 465
Rabaul 4.271 S 152.203 E 4 1181
Kelutb 7.930 S 112.308 E 6 81
Taalb 14.002 N 120.993 E 4 83
Suwanose-Jimab 29.530 N 129.720 E 4 96
Ibusuki volcanic
fieldb

31.220 N 130.570 E 15 255

Sakura-Jimab 31.580 N 130.670 E 7 1511
Fuji 35.350 N 138.730 E 5 690
Asama 36.400 N 138.530 E 4 1445
Towada 40.470 N 140.920 E 6 1694
Oshimab 34.730 N 139.380 E 6 160
Komaga-Takeb 42.070 N 140.680 E 4 96
Usub 42.530 N 140.830 E 4 63
Shikotsu 42.700 N 141.333 E 4 2898
Ksudachb 51.800 N 157.530 E 5 589
Tolbachikb 55.830 N 160.330 E 6 385
Bezymianny 55.978 N 160.587 E 4 802
Shiveluchb 56.653 N 161.360 E 5 375
Augustineb 59.370 N 153.420 W 4 149
St. Helensb 46.200 N 122.180 W 8 617
Colima volcanic
complexb

19.514 N 103.620 W 7 714

Orizaba, pico 19.030 N 97.268 W 5 2006
Fuegob 14.473 N 90.880 W 7 65
Bravo, cerrob 5.092 N 75.300 W 8 858
Ruiz 4.895 N 75.323 W 4 815
Cotopaxib 0.677 S 78.436 W 4 114
Peleeb 14.820 N 61.170 W 18 537
Katlab 63.630 N 19.050 W 11 98
Heklab 63.980 N 19.700 W 13 583
Unnamed 37.870 N 25.780 W 4 1499
Furnas 37.770 N 25.320 W 4 860

aVolcano name, latitude, longitude, number of eruptions with VEI � 4,
and average of IETs.

bVolcanoes belonging also to the data set N4VEI4x.

Table 2. N4VEI2 Cataloga

Volcano Latitude Longitude
Start of
Catalog

Number of
Eruptions

mIET,
years

Rabaul 4.271 S 152.203 E 1875 7 20.8
Kelut 7.930 S 112.308 E 1700 18 16.1
Taal 14.002 N 120.993 E 1600 28 13.7
Suwanose-Jima 29.530 N 129.720 E 1800 20 9.9
Sakura-Jima 31.580 N 130.670 E 1600 24 13.6
Fuji 35.350 N 138.730 E 800 14 69.9
Asama 36.400 N 138.530 E 1500 107 4.4
Oshima 34.730 N 139.380 E 1600 24 17.0
Komaga-Take 42.070 N 140.680 E 1850 10 15.8
Usu 42.530 N 140.830 E 1850 5 36.8
Shikotsu 42.700 N 141.333 E 1850 17 5.2
Tolbachik 55.830 N 160.330 E 1900 20 3.7
Bezymianny 55.978 N 160.587 E 1950 37 1.3
Shiveluch 56.653 N 161.360 E 1950 11 3.5
Colima v.compl. 19.514 N 103.620 W 1700 29 10.2
Fuego 14.473 N 90.880 W 1550 62 7.4
Ruiz 4.895 N 75.323 W 1700 9 22.6
Cotopaxi 0.677 S 78.436 W 1700 54 3.8
Katla 63.630 N 19.050 W 1500 9 42.3
Hekla 63.980 N 19.700 W 1500 15 35.0

aVolcano name, latitude and longitude, start year of complete eruption
catalog, number of eruptions, and average of IETs.
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the erupted volume is associated to the onset of the
eruption, or, in other words, that most of the volume is
expected to be erupted at a time interval from the onset
that is much shorter than the characteristic IET. Note that
this seems reasonable, overall for explosive eruptions. For
ETNA, VES and PdlF, the catalogs reports also the
duration of each eruption, therefore for them we define a
IET as the time from the onset of an eruption and the
midpoint between the start and the end of the previous
eruption.
[8] The random variable t? is the time elapsed since the

present time to the end of each t (t? increases backward in
time), and it is necessary to give a chronological order to the
sequence ti. In other words, ti precedes tj in the sequence if
ti
? is larger than tj

?. The random variables v(1) and v(2)

represent an estimation of the size of the eruptions at the
beginning and at the end of each t, respectively. These
variables will be used in the next sections to check possible
relationship between IETs and size of the previous/
following eruption. In particular, v(1) and v(2) are the
logarithm of the erupted volume where available, otherwise
we consider the Volcanic Explosivity Index (VEI [Newhall
and Self, 1982]) that is a widely used classification scheme
to describe the size of explosive eruptions. VEI uses an
integer scale from 0 to 8 to describe both the volume and
plume height of any given eruption. This index is based on
both the magnitude (erupted volume) and intensity (eruption
column height) information. In practice, for old eruptions
VEI is estimated principally on the erupted mass or volume
of the deposits. Such an index is rather rough, but it is
commonly used as a proxy of the order of magnitude of the
erupted volume of the explosive volcanic event. In the
following, we also use the symbol V to indicate the volume
of erupted material.

2.2. Completeness of the Catalogs

[9] In order to extract unbiased information from a
catalog we need to check its completeness. This issue is
well known in seismology where the completeness of the
catalog is checked mainly by analyzing the Gutenberg-
Richter law, and the time evolution of the rate of occurrence
of events (l hereinafter). As regards the first point, it is
usually assumed that the magnitude of the events follows a
power law distribution (the Gutenberg-Richter law); in this
case, the incompleteness of a seismic catalog produces a
bending on the Gutenberg-Richter law caused by the
omission (a lower number compared to the expected one)
of small magnitude events. For what concerns the second
point, the earthquake generating process is assumed to be
stationary over the time period investigated, therefore l (in
this case, l is the rate of main shocks because aftershocks
are usually removed) has to be almost constant. Here, the
incompleteness of a seismic catalog is revealed by a time
variation of l, with higher rates for more recent time
intervals.
[10] In volcanology, the incompleteness of a catalog may

show similar features, but, conversely, these features cannot
be necessarily associated to an incompleteness of the
catalog, because the two assumptions reported above (i.e.,
a well known power law distribution for the magnitude of
events, and a constant l) are much more questionable than
in seismology. First, a power law distribution for the

magnitude of eruptions of a single volcano is yet to be
proved. Until now, there is only some indication that a
general power law can hold for global catalogs containing
several volcanoes [Simkin and Siebert, 1994]. Second, we
know that many explosive volcanoes have two distinct
regimes, i.e., open and closed conduit regimes, character-
ized by very different l. For instance, Vesuvius in the
closed conduit regime experienced repose times that lasted
centuries, while it was characterized by an average l of 0.3
event per year during an open conduit regime (in the time
period 1631–1944). This behavior is certainly nonstation-
ary (i.e., there is a significant variation of l), but it is not
linked to any incompleteness of the catalog. In other words,
a stationary behavior may be considered a sufficient, but not
a necessary condition for the completeness of an eruptive
catalog.
[11] From a quantitative point of view, for a general

stochastic process we can write [cf. Coles and Sparks,
2006]

lobs t;Dt;Vminð Þ ¼ x t;Vminð Þ � ltrue t;Dt;Vminð Þ; ð1Þ

where lobs is the expected number of eruption per unit time
that we estimate from a catalog, t is the absolute time, Dt is
the elapsed time since the previous event, Vmin is a measure
representing the minimum size of eruption reported in the
catalog, x is a function defined in the interval [0, 1] that
mimics the completeness of the observations, and ltrue is the
real value of the expected eruption rate. The dependency on
D t mimics general renewal processes [Cox and Lewis,
1966]; for the following discussion this dependency is
irrelevant and it will be dropped. In equation (1), if the
catalog is complete we have x(t, Vmin) = 1. If underreporting
(i.e., the omission of events due to underrecording of
historical data) is uniform for t and Vmin, then x(t, Vmin) = k
(0 < k < 1), that means that lobs is a fraction (usually
unknown) of the real value. In reality, historical incomplete-
ness emerges through an increasing underreporting of small
events backward in time. From a statistical point of view,
this means that x(t, Vmin) is usually an increasing function of
t for each fixed value of Vmin [Coles and Sparks, 2006].
[12] The study of incompleteness can be approached in

different ways; since we only estimate directly the variable
lobs(t, Vmin), we can try to make inference on x(t, Vmin) or
ltrue(t, Vmin) by doing some assumptions on the behavior of
ltrue(t, Vmin) or x(t, Vmin), respectively. For instance, Coles
and Sparks [2006] assume a Poisson process for ltrue(t,Vmin),
in order to make inferences on the specific form of x(t, Vmin).
Here, since the estimation of the form of ltrue(t, Vmin) (and of
its related probability function) is the ultimate goal of this
paper, we prefer to follow a different strategy. In particular,
we check the completeness of lobs(t,Vmin), through some
mild assumptions on the behavior of x(t, Vmin) and ltrue(t,
Vmin); as mentioned before and in accordance with Coles and
Sparks [2006], we assume that underreporting is character-
ized by a nonstationary process x(t, Vmin) that increases as a
function of t for a fixed Vmin, and that ltrue(t, Vmin) �
ltrue(Vmin), i.e., the real (unknown) process is stationary
(not necessarily Poisson). These assumptions imply that a
specific nonstationarity of the observed sequence of events
(i.e., an increasing lobs(t, Vmin) with time) is usually indic-
ative of an incomplete catalog. As final consideration, we
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remind once more that the second assumption relative to
stationarity of the real process ltrue(t, Vmin) is maybe more
questionable respect to seismology. This leads to a conser-
vative completeness analysis, where a specific nonstationar-
ity of the observed process (i.e., an increasing trend of lobs) is
always ascribed to underreporting.
[13] A strategy to check the nonstationarity of a time

series has been proposed by Cox and Lewis [1966], by
analyzing lobs through the analysis of variance of standard
regression [e.g., Draper and Smith, 1998]. We proceed as

follows: let y1 be the sum of the first ‘ IETs (i.e., y1 =
P‘
j¼1

tj),

y2 the sum of the second group of ‘ IETs (y2=
P2‘

j¼‘þ1

tj), and

so on. Here ‘ is an integer such that no appreciable change
in lobs arises in any set of ‘ IETs; an optimal choice is ‘ = 4
[cf. Cox and Lewis, 1966]. Note that it is necessary to omit a
few events (preferably from the center of the data set) if the
total numberM of IETs is not a multiple of ‘. We thus obtain
a series of intervals y1, y2, . . ., yL, where L is the integer part
of M/‘. Suppose that the underreporting of the catalog
induces a lobs slowly increasing with time. We make the
approximation that l is effectively a constant li within the
period covered by yi and that an independent variable zi can
be attached to each yi such that

logli ¼ aþ bzi i ¼ 1; . . . ;Lð Þ; ð2Þ

where

zi ¼ i�

XL
j¼1

j

L
: ð3Þ

In other words, zi is the index of the sequence at which we
subtract the average of all values of z. In practice, zi mimics
the time elapsed since the present time and it increases
backward in time [Cox and Stuart, 1955]. We anticipate that
this definition of zi is not particularly critical here. In fact,
all the results reported below are stable if we define zi as the
time from the present to the center of yi.
[14] Now, we have the linear model

log yi ¼ � a0 þ bzið Þ þ ei; ð4Þ

where a0 = a � e‘ and b are unknown parameters, e‘ = 1 +
{1/2} + . . . + 1/(‘ � 1) � C, C is Euler’s constant, and e is a
random variable that follows a Gauss distribution with zero
mean and variance se

2. Note that the application of the log
transformation to the intervals (see equation (4)) serves two

purposes: first, it ensures a constant variance, and, second, it
introduces an exponential relation which is the most
‘‘natural’’ simple relationship for rates of occurrence. In
the presence of a more complex trend there would be a
correlation between different log (yi) values, but as long as
these are not too large, we should get reasonable answers
from the regression analysis. Therefore we have a
dependent variable with independently distributed succes-
sive values, constant variance and a moderately nonnormal
probability distribution. Consequently, the properties asso-
ciated with the first and the second moment of the
regression analysis hold exactly and the usual t and F tests
are valid to a good approximation.
[15] From this model we can (1) obtain the standard least

squares estimates of a0 and b; (2) test approximately the null
hypothesis H0: b � 0 (the underreporting is characterized by
b < 0) by standard regression methods; (3) test the validity
of the model by analyzing the statistical distribution of the
residuals. As regards the last point, a reliable application of
the model of equation (4) demands, as basic requirements,
that the residuals of the model are independently distributed
with a constant variance [Draper and Smith, 1998]. In this
context, we check if the residuals are autocorrelated, i.e., if
they tend to occur as ‘‘clumps’’ of adjacent deviations on
the same side of the regression line or to have some
significant trend through a nonparametric runs test [Gibbons,
1971]. The hypothesis of constant variance is checked by
examining if the residuals form an approximately uniform
band around the regression line; we use a sign test [Cox and
Stuart, 1955] to ascertain whether the scatter about the
regression curve changes as the independent variable
increases. To summarize, a reliable model requires that the
two null hypotheses (no residuals correlation, and constant
variance) are not rejected.
[16] In Table 3 and in Figure 1, we report the results of

the regression analysis. As a general result, we can see from
Table 3 that only N4VEI4 and PdlF catalogs show a
significant nonstationarity with b < 0 (at a significance
level < 0.01). The trend could be due to an incompleteness
of the catalogs. Another possible explanation for N4VEI4 is
that the trend may be due to the presence of a larger number
of volcanoes in a closed conduit regimes in the past (see, for
instance, Usu, Tarumai-Skikotsu and Komaga-Take volca-
noes). For PdlF, instead, the trend found could be also due
to some real change in the eruptive activity. In order to
check the stability of the results obtained by the following
analyses, we also use subset of these catalogs. For N4VEI4
we consider a subset composed by volcanoes that have at
least 4 eruptions with VEI � 4 in the last 2,000 years. This
catalog, called N4VEI4x, contains 123 eruptions from 22
volcanoes. For PdlF we consider a subset (PdlFx) composed
by the last 31 IETs of the catalog. For both subsets, the
regression analysis (see Table 3 and Figure 1) does not
show any significant trend (i.e., lobs is constant). In Table 3,
we also report the results of the residuals analysis for all
data sets that confirms the validity of the model described
by equation (4).

3. Data Analysis and Results

[17] The analyses carried out on the data sets consist of
three steps: (1) test of the Poisson process in the time

Table 3. Regression Analysis for the Completeness of the

Catalogs

Data Set b t Test a
Runs
Test a

Sign
Test a

ETNA �0.20 ± 0.09 0.03 0.79 >0.10
VES �0.02 ± 0.02 0.21 0.43 0.62
KIL �0.06 ± 0.06 0.16 0.24 >0.10
PdlF �0.09 ± 0.03 <0.01 0.02 0.13
PdlFx �0.2 ± 0.2 0.15 0.54 >0.10
N4VEI2 �0.001 ± 0.002 0.32 0.49 0.15
N4VEI4 �0.013 ± 0.005 <0.01 0.72 0.73
N4VEI4x 0.01 ± 0.01 0.75 0.58 0.06

B04204 MARZOCCHI AND ZACCARELLI: TIME-SIZE DISTRIBUTION OF ERUPTIONS

4 of 13

B04204



domain; (2) test of the time predictable model (TPM); and
(3) test of the size predictable model (SPM). The rationale
and the physical/volcanologic meaning of these choices are
discussed in depth in sections 3.1, –3.4 together with the
results of the analyses.

3.1. Test of the Poisson Process in the Time Domain

[18] The analysis in the time domain gives information on
the characteristics of the marginal distribution f(t) =

R
f(t,

V) dV. In particular, in order to verify the nonrandom
distribution of eruptive cycles and better quantify their
recurrence time, we define a coefficient of variation, h,
given by

h ¼ s
mt

; ð5Þ

where mt and s are, respectively, the average and standard
deviation of t. Note that, in our case, mt = 1 because of the
normalization described before, therefore h � s. The
coefficient h indicates if and how the statistical distribution
of t differs from a Poisson process. For a Poisson process
(i.e., exponential distribution) h = 1, while h > 1
characterizes statistical distributions more clustered than
an exponential one, and h < 1 is typical for more ‘‘regular’’
time occurrence [cf. Cox and Lewis, 1966]; for instance,
h = 0 indicates a perfect periodicity of the process, t being a
constant.
[19] The Poisson hypothesis is tested by comparing h of a

real catalog with the ones obtained from 1000 synthetic
catalogs generated by assuming that the eruptive activity is

governed by a Poisson process (i.e., h = 1). In particular, for
each volcano of the N4VEI2, N4VEI4, and N4VEI4x data
sets, we calculate hi from Ni eruptions (i = 1, .., K, where K
is the number of volcanoes in the data set). Then, we
calculate hi

(s) for each synthetic catalog (where s stands
for the sth synthetic catalog) composed by the same number
of volcanoes (K) and the same number of eruptions for each
volcano (Ni; i = 1, . . ., K). For these catalogs, the Poisson
hypothesis is tested by comparing the medians of hi and hi

(s)

(namely, ~hi and ~hi
(s)) by using a Wilcoxon rank sum (two

tails) test [Gibbons, 1971]. In Table 4 we report the results
of the test for N4VEI4, N4VEI4x, and N4VEI2. For these
catalogs we show the observed frequency of rejection of the
1000 tests as a function of different significance levels (a)
adopted. The Poisson hypothesis is rejected if the frequency
of rejection is much larger than a. As regards N4VEI4, for
a = 0.01 and a = 0.05, the expected (a) and observed
frequency are almost coincident; for a = 0.10, the observed
frequency tends to be slightly higher than the corresponding
a, with a tendency of ~hi < ~hi

(s) (i.e., ~h < 1). In practice, this
means that we cannot reject the Poisson hypothesis at a
significance level of 0.05; for larger a, we observe a very
weak departure from the Poisson hypothesis, with a more
regular time occurrence of eruptions. For N4VEI4, the
results do not show any significant departure from a Poisson
process for any a considered. For N4VEI2 the Poisson
hypothesis is clearly rejected at a significance level < 0.01
with ~h > ~h(s) (i.e., ~h > 1).
[20] For ETNA, VES, KIL, and PdlF catalogs, we have a

single estimation of h, therefore the significance level of
the test is given by a = 2 � min(C�, C+), where C� is the

Figure 1. Regression analysis to check the completeness of the data sets. The abscissa reports the
variable zi (see equation (3)) that mimics the time elapsed since the present. The ordinate reports the
variable yi that represents a grouping of IETs. See text for more details.
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percentage of cases in which h < h(s), and C+ is the
percentage of cases in which h � h(s). In Table 5, we report
a for ETNA, VES, KIL, and PdlF. The low values reported
stand for a rejection of the Poisson hypothesis. The rejection
is due to a significant ‘‘clustering’’ of events, i.e., h > h(s)

(i.e., h > 1).

3.2. Time Predictable Model (TPM)

[21] The term TPM is widely used in the seismological
literature [e.g., Lay and Wallace, 1995]. It refers to the main
practical implication of the model, i.e., the size of the ith
eruption (or earthquake) (V(1)

i) is useful to forecast the time
to the next event (ti). In probabilistic terms, f(tijV(1)

i) is
more appropriate than f(ti) to estimate the probability of the
next eruption.
[22] Usually, TPM implies a linear relationship between

size and time (see the ‘‘pressure-cooker model’’ of Burt et
al. [1994]). Here, we consider a more general definition of
TPM, by using a power law relationship between Vi

(1) and ti

ti / V
1ð Þ

i

h ib
: ð6Þ

Only if b = 1, the relationship between size and time is
linear. In our general case, TPM relies on two main
assumptions: 1) eruptions occur when a threshold of the
magma volume in the storage system is reached, and 2) the
magma input in the storage system is a well defined
function of the reservoir to be filled to reach that threshold
(if b = 1 the input rate is constant).
[23] These two assumptions deserve more explanation. It

could be argued that pressure in a magma reservoir, rather
than volume of magma, is more effective to trigger an
eruption. Under this perspective, the assumptions behind the
conceptual model imply the existence of a direct relation-
ship between the increase of the volume of accumulated
magma and the increase of the pressure inside the reservoir
[e.g., Huppert and Woods, 2002]; in other words, the
threshold in magma volume (see assumption 1) would
imply a threshold in pressure that has to be overcome to
have an eruption. Intuitively, we argue that this model may
hold for volcanoes that are unable to sustain significant
overpressure like the ones with an open conduit system (see
below). Note that an increase of magma volume is not the
only way to increase the pressure in the magma chamber,
and, conversely, an increasing pressure is not the only
triggering of an eruption. The detection of significant
evidence supporting TPM means that the magma accumu-
lated in the reservoir is one of the most important factors to
trigger an eruption and to improve the forecast of the next
eruption. To summarize, the time to the next eruption
depends on the time required for the magma entering
the storage system to reach the eruptive level. In this
model, the size of an eruption, V(1), is a random variable

that binds the distribution of t through equation (6), and
f(t) =

R
f(t/V)f(V) dV.

[24] A reliable application of a TPM requires that v(1) (as
previously defined) has to be significantly correlated to the
logarithm of the time to the next eruption; we check this
hypothesis through the regression analysis of the model

log tið Þ ¼ aþ b v
1ð Þ
i þ ei; ð7Þ

where e is a random variable normally distributed with zero
mean and variance se

2, i.e., N(0, se
2). Such a variance can be

due to different factors, such as the grouping of the volumes
in a discrete set of values (i.e., the VEIs), any departure
from a pure TPM, and the effect of a size threshold (see
below). Note that b is not usually an unbiased estimator of b
for many reasons: (1) the use of normalized IETs instead of
real values; (2) the use of completeness threshold that as we
show in the following, introduces a bias in the b estimation;
and (3) the presence of a large uncertainty in the volume
estimation that is not considered in the model described by
equation (7). The generalization of the model of equation
(7) to account for these factors is beyond the scope of the
present paper; such a generalization does not pose any
conceptual difficulty, but the solution may be not trivial
from a technical point of view.
[25] Despite the factors described before prevents the

possibility to test the hypothesis b = 1, from the regression
analysis of the model (7) we can test the existence of a
significant correlation between the size of an eruption and
the following repose time (the null hypothesis to be tested is
H0: b � 0), and verify the validity of the model. As regards
the last aspect, in the cases where v(1) is VEI, we have
repeated measures of log(ti) relative to each VEI. In this
case, the validity of the model is checked by comparing the
pure error and the lack of fit through a F test [Draper and
Smith, 1998]. In the other cases where we do not have
repeated measures, the validity of the model is checked by
analyzing the distribution of the residuals as described
before.
[26] In Figure 2 we plot the regression for the different

data sets. We have also checked the stability of the results
removing the data with the lowest and highest values of the
independent variable. In Table 6 we report the slope with
the relative statistical significance level (a), the dispersion
around the regression line for the different data sets, and the
results of the check of the model. The results show that:
(1) a statistically significant relationship exists for all data
sets, except N4VEI4x; (2) the slope appears significantly
lower than 1 in all the significant cases; (3) the analysis of the
residuals confirms the validity of the model; and (4) there is a

Table 4. Test Results for the Poisson Hypothesis Applied to the

Data Sets N4VEI2, N4VEI4, and N4VEI4x

Data Set ~h a = 0.10 a = 0.05 a = 0.01

N4VEI2 1.25 0.99 0.94 0.45
N4VEI4 0.94 0.19 0.08 0.01
N4VEI4x 0.82 0.03 0.01 0.001

Table 5. Test Results for the Poisson Hypothesis Applied to

Individual Volcano Data Set for Etna, Vesuvius, Kilauea, and Piton

de la Fournaise

Data Set h a

ETNA 1.22 0.05
VES 1.27 0.01
KIL 1.87 <0.01
PdlF 1.30 0.01
PdlFx 1.49 <0.01
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large dispersion around the regression lines that limits the
forecasting ability of the model. The volcanological impli-
cation of these results will be discussed in section 4.

3.3. Size Predictable Model (SPM)

[27] In SPM, the length of the repose of the volcano, i.e.,
the time since the last eruption ti, is useful to forecast the
size of eruption Vi

(2). As in section 2, we consider a more
general definition of SPM, by using a power law relation-
ship between Vi

(2) and ti

V
2ð Þ

i / tbi : ð8Þ

Only if b = 1, the relationship between time and size is
linear [see the ‘‘water-butt model’’ by Burt et al., 1994]. In
our general case, SPM relies on two main assumptions:
(1) the output of each eruption is determined only by the
magma accumulated since the last eruption, i.e., each
eruption brings the magma inside the plumbing system to
the same initial level, and (2) magma enters in the plumbing
system at a rate described by a well defined function of the
magma volume in the reservoir (if b = 1 the input rate is
constant).
[28] Also in this case, the assumptions deserve a careful

explanation. Eruption size could be described better by the
amount of pressure accumulated in the reservoir in a
volcanic system able to sustain significant overpressure
(like for ‘‘sealed’’ volcanoes). The assumptions behind the
conceptual model imply that this pressure is directly related
to the magma accumulated. Obviously, many other factors,
such as degassing (many dormant volcanoes are not com-

pletely ‘‘sealed’’), and the kind of mechanical failure during
the reopening of the conduit, may be important to determine
the size of an eruption. The detection of significant evidence
of a SPM in real data means that the magma accumulated
during the repose period may have a prominent importance
in determining the VEI of the eruption. In this model, t is a
random variable that determines the distribution of the size
of eruption through equation (8), and f(V(2)) =

R
f(V(2)/t)

f(t)dt.
[29] The reliability of SPM is evaluated by the regression

analysis of the model

log tið Þ ¼ aþ b v 2ð Þ þ ei; ð9Þ

where e is a random variable normally distributed with zero
mean and variance s2, i.e., N(0, s). Note that in equation (9)
we still consider the size (v(2)) as ‘‘independent’’ variable;
this choice does not have a physical rationale, but it is
adopted only for technical convenience [see Draper and
Smith, 1998] because v(2) is often grouped as for the VEIs.
In practice, since we are focused on estimating the statistical
significance of the relationship between log(t) and v(2), this
decision is not critical. Finally, we remind that also in this
case, b is not an unbiased estimator of b for the same
reasons described before. The check of the model of
equation (9) is carried out as described before for TPM.
[30] In Figure 3 and Table 7, we report the results relative

to different data sets, showing the slope and its statistical
significance. We have also checked the stability of the
results removing the data with the lowest and highest values
of the independent variable. The results obtained show that

Figure 2. Regression analysis for TPM. The abscissa reports v(1), and the ordinate reports the variable
log(t). The variable v(1) does not have any units if VEI is used.
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(1) a statistically significant relationship exists only for
N4VEI2 and weaker for N4VEI4 (but not for N4VEI4x);
(2) the slope is less than one in all the significant cases;
(3) the analysis of the residuals shows the appropriateness
of the model; and (4) there is a large dispersion around the
regression lines that limits significantly the forecasting
ability of the model. The volcanological implication of
these results will be discussed later.

3.4. Influence of the Completeness (VEI) Threshold on
the Analysis of N4VEI2 and N4VEI4 Catalogs

[31] Catalogs N4VEI2, N4VEI4, and N4VEI4x have been
defined by using a minimum threshold of VEI in order to
guarantee their completeness. Therefore the results obtained
so far for these catalogs can be interpreted only by assuming
that eruptions with VEI smaller than the threshold do not
modify significantly the occurrence of larger events. This is
an important issue that deserves a careful examination.
[32] Specifically, if the size of an eruption is important to

estimate the previous or the following IET, the removal of
small events may potentially have a large impact on the

results of the analysis. In order to explore in detail this issue
we simulate an ideal TPM in the whole VEI range (from 0
to 8), with a theoretical slope of 1 between log(ti) and (vi

(1))
(b = 1 in equation (6), that means a linear relationship), and
the volume with a power law distribution similar to the
Gutenberg-Richter law with slope equal to one. For an ideal
SPM, the discussion follows the same line.
[33] In Table 8 we report the results of the regression

analysis as a function of different VEI thresholds. From the
results we can see that the grouping of volumes (in a
discrete number of VEI) introduces a dispersion (standard
deviation) around the regression line that depends weakly
on the VEI threshold. This dispersion is significantly lower
than that reported in Tables 6 and 7, suggesting the
existence of other sources of variation in real catalogs.
The use of a VEI completeness threshold has an important
effect. The increase of the threshold leads to a significant
reduction of the slope. Remarkably, despite this bias in the
slope estimation, we still obtain a significant TPM also for a
threshold VEI = 4.
[34] These results have important implications. First, the

bias introduced in the slope estimation does not allow the
linear relationship between size and time (b = 1) to be
directly estimated from the slope obtained by the data.
Second, the use of a VEI threshold for completeness of
eruptive catalogs does not necessarily blur the signal of a
TPM; conversely, we also argue that the use of a VEI
threshold on eruptive catalogs generated by a pure random
process with independent statistical distribution for t and V
acts as a random sampling, therefore it cannot induce any
pattern (like TPM and SPM) into the data.

Table 6. Regression Results for TPM

Data Set Slope t Test a SD
Runs
Test a

Sign
Test a

F
Test a

ETNA 0.4 ± 0.2 0.03 1.9 0.74 0.51 –
VES 0.7 ± 0.1 <0.01 0.84 – – 0.06
KIL 0.16 ± 0.07 0.01 1.1 0.89 0.55 –
N4VEI4 0.3 ± 0.2 0.04 1.2 – – 0.42
N4VEI4 0.0 ± 0.2 0.38 1.0 – – 0.61
N4VEI2 0.34 ± 0.08 <0.01 1.2 – – 0.97

Figure 3. Regression analysis for SPM. The abscissa reports the variable v(1), and the ordinate reports
log(t). The variable v(1) does not have any units if VEI is used.
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4. Discussion of the Results

[35] The results reported above show a marked difference
between N4VEI4 and N4VEI4x, and the other catalogs. For
N4VEI4 and N4VEI4x, the volcanic events do not show
statistically significant departures from a Poisson process;
N4VEI4 shows marginally significant support for a SPM.
This result is not confirmed by the analysis of N4VEI4x that
does not show any significant pattern between volumes and
IETs. On the contrary, the eruptions contained in all the
other catalogs are clustered in time, and show a significant
TPM. N4VEI2 is the only catalog that shows significant
support for both TPM and SPM.
[36] The difference between N4VEI4 and N4VEI4x and

all the other catalogs seems to be linked to the distinct
average of the IETs, mIET. In Figure 4, we plot the mIET of
each volcano considered. Note that the catalogs ETNA,
KIL, VES, and PdlF consist only of one point because they
are relative to single volcanoes. The catalogs show marked
differences, with the maximum separation at few decades.
For instance, mIET for ETNA, VES, KIL, PdlF/PdlFx, and
most of volcanoes contained in N4VEI2 are shorter than 30
years, while for N4VEI4 and N4VEI4x the mIET are larger.
In order to understand the twofold behavior of N4VEI2
(both TPM and SPM are supported by the data), we analyze
a subset of N4VEI2 composed by volcanoes with at least
four consecutive eruptions having IETs smaller than 30
years (data set N4VEI2?). The results relative to this data set
are reported in Table 9 and in Figure 5. In this case, as for
the other catalogs characterized by low mIET (ETNA, VES,
KIL and PdlF), the sequence of eruptions statistically
supports a TPM, while evidence in favor of SPM are no
longer statistically significant. Notably, this result also
implies that, for the N4VEI2 catalog, the longest IETs
(larger than 30 years) tend to end with higher VEI eruptions
(characteristic of SPM).
[37] It could be argued that the largest mIET for N4VEI4

and N4VEI4x does not have any real meaning, because it is
due only to the highest VEI threshold adopted; in other
terms, the largest mIET does not imply the largest average of
real repose time. However, the hypothesis that the largest
mIET is due only to the highest VEI threshold does not
explain one important feature found for N4VEI2, specifi-
cally, the relation between the longest IETs and the highest
VEI (i.e., the existence of a statistically significant evidence
supporting SPM). As a consequence, we argue that the
differences in mIET have a physical meaning and they are not
simply due only to the difference in VEI threshold. In other
words, for N4VEI2, N4VEI4, and N4VEI4x the inclusion of
events with VEI smaller than the threshold does not modify
substantially the average of repose time before larger events.

[38] The interpretation of the results in terms of the
physics of the eruptive process requires the definition of a
conceptual scheme. For this purpose, we suggest that the
marked difference of mIET is associated to a bimodal
behavior of a volcanic system. Small mIET (characteristic
of catalogs N4VEI2/N4VEI2?, ETNA, VES, KIL, and PdlF/
PdlFx) are typical of an ‘‘open conduit system’’ (OCS),
where the high frequency of eruptions is mainly due to the
intrinsic incapacity to bear strong overpressures. A large
IET (characteristic of N4VEI4 and N4VEI4x catalogs)
favors the closure of the conduit due to viscous relaxation
and the cooling of rocks within the conduit [Quareni and
Mulargia, 1993], that may lead to a transition from OCS to
a ‘‘closed conduit system’’ (CCS). Such a transition may be
also induced by other factors such as the emptying of the
feeding system.
[39] Under this perspective, we find that an OCS is

modeled by a TPM and it is characterized by clusters of
eruptions that may be described by an upper bounded
distribution in the time domain (note that the clusters of
eruptions is compatible with an upper bounded power law
distribution, but clustering does not imply necessarily a
power law distribution). The upper bound of the distribution
is due to the fact that after a large eruption, the TPM calls
for a long IET that can lead to a transition from OCS to CCS
(see above).
[40] The closure of the conduit tends to facilitate the

recharging of the system, by increasing the resistance of the
volcano to overpressure in the magma chamber, leading to
higher (on average) VEI. The range of the size of eruptions
in the two regimes probably overlaps. VEI = 3 eruptions are
common in both regimes, and such a size could represent
the overlapping boundary region of energy between the two
regimes. Note that, in this scheme, the twofold behavior of
N4VEI2 is explained by the fact that this catalog contains
eruptions that occurred in both regimes of activity. The
support to TPM is due to the volcanoes in a OCS state,
while SPM is supported by the presence of the longest IETs
that lead to a transition from OCS to CCS that, in turn,
produces an increase of the VEIs. In other words, SPM is
supported by the data of N4VEI2 relative to the transition
between OCS and CCS.
[41] As regards CCS, our analyses show that the time of

eruption is almost random in time (Poisson), probably being
due to many independent factors, such as the mechanical
failure of the edifice or to the triggering of external events
[Marzocchi, 2002; Marzocchi et al., 2004b]. The very weak
evidence of a SPM only for N4VEI4, and not confirmed by
the analysis of N4VEI4x, seems to indicate that the repose
time during a CCS does not play a major role in forecasting
the size and explosivity of the next eruption.
[42] Other factors, like degassing during repose may play

a comparable role. Although degassing is intimately related
to closed/open conduit distinction, we can conceive the

Table 7. Regression Results for SPM

Data Set Slope t Test a SD
Runs
Test a

Sign
Test a

F
Test a

ETNA �0.1 ± 0.2 0.87 2.0 0.99 0.67 –
VES 0.1 ± 0.1 0.25 1.0 – – 0.21
KIL �0.1 ± 0.7 0.55 1.2 0.45 0.03 –
N4VEI4 0.31 ± 0.16 0.03 1.2 – – 0.49
N4VEI4x �0.2 ± 0.3 0.77 0.98 – – –
N4VEI2 0.25 ± 0.08 <0.01 0.98 – – 0.13

Table 8. Regression Results of the Influence of VEI Thresholds

on the Eruptive Catalogs

VEI Threshold Number of Data Slope SD

0 300 0.98 ± 0.04 0.28
2 300 0.75 ± 0.05 0.30
4 300 0.63 ± 0.05 0.33
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presence of different levels of degassing in CCS. In this
case, since a strongly degassed magma is apparently less
capable of large VEIs [Newhall et al., 1994; Newhall,
2003], a significant degassing may allow very long repose
times and yet still produce small eruptions. Another relevant
aspect in forecasting the size of the next eruption may be the
complex geophysical, geochemical and geomechanical fac-
tors in the reopening of the conduit, that would lead to a
power law distribution of the erupted volumes as for any
complex system [see Bak et al., 1988].
[43] As final consideration, we discuss some practical

aspects of our analyses. First, we use the terms TPM and
SPM because they are commonly used in geophysics, but
we emphasize that the word ‘‘predictability’’ may be mis-
leading (see, for instance, discussion by Marzocchi et al.
[2003]). Eruption forecasting can be only done from a
probabilistic point of view. In this respect, the statistically
significant evidence supporting a TPM for OCS only
indicates that, in this case, conditional probability allows a
better eruption forecasting compared to the one obtained by
using a probabilistic model only in the time domain.
Second, our results have a general validity, because they
come from simultaneous analyses of different volcanic
systems. The inclusion of detailed studies and quantitative
modeling of the peculiar behavior of each single volcano
can potentially reduce the variance about the model (i.e., the
variance of the residuals) and further improve the forecast-
ing for a specific volcano.

5. Models of Open and Closed Conduit Systems

[44] We now present quantitative general models for the
time-size character of Open Conduit (OCS) and Closed
Conduit Systems (CCS).

5.1. Model for an OCS

[45] From the regression of equation (7), we can build a
general model for an OCS. This relationship allows the
conditional probability density function of the times to the

next eruption t given the size of the previous volcanic event
to be derived. From equation (7) we have

f log tð Þjv 1ð Þ
� �

¼ N aþ bv 1ð Þ; s
� �

; ð10Þ

where a and b are the unknown of the model. Note that here
t represents the real IET (not normalized as before). The
conditional probability density function of t given v(1) is
therefore a lognormal distribution

f tjv 1ð Þ
� �

¼ 1

ts
ffiffiffiffiffiffi
2p

p exp
�1

2

log tð Þ � aþ bv 1ð Þ	 

s

 !2
2
4

3
5: ð11Þ

The probability of eruption in a given forecasting time
window Dt is estimated by

P ¼

Zt0þDt

t0

f tjv 1ð Þ
� �

dt

Z1
t0

f tjv 1ð Þ
� �

dt

; ð12Þ

where t0 is the time elapsed since the last eruption. As
regards the volume of the next eruption, the model of
equation (10) does not give any clue that may help to
forecast it. From the discussion made before, it may be

Figure 4. Plot of mIET for volcanoes contained in the different data sets. The horizontal dotted line
represents a time (30 years) that may characterize the differences between OCS and CCS (see text for
more details).

Table 9. Regression Results for TPM and SPM Relative to the

Data Set N4VEI2
?

Model Slope t Test a SD Runs Test a Sign Test a F Test a

TPM 0.26 ± 0.11 0.01 0.98 – – 0.72
SPM 0.0 ± 0.1 0.60 0.99 – – 0.90
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reasonable to assume that the distribution of such a volume
is a generic upper bounded power law.
[46] The model given by equation (11) has three param-

eters to be estimated from the data, a, b and s. These
parameters can be estimated through the Maximum Likeli-
hood Estimation. The Likelihood function is

L ¼
YM
i¼1

f tijv 1ð Þ
i

� �

¼
YM
i¼1

1

tis
ffiffiffiffiffiffi
2p

p exp
�1

2

log tið Þ � aþ bv
1ð Þ
i

� �
s

0
@

1
A

2
2
64

3
75; ð13Þ

and the log likelihood is

‘ ¼ log Lð Þ ¼
XM
i¼1

"
� log tið Þ � log sð Þ � 1

2
log 2pð Þ

� 1

2

 
log tið Þ � aþ b v

1ð Þ
i

� �
s

!2#
: ð14Þ

The parameters can be derived by equalizing the first
derivative to zero [Kalbfleisch, 1985]. The parameters are

b ¼
M
X

v
1ð Þ
i log tið Þ

h i
�
X

log tið Þ
X

v
1ð Þ
i

M
X

v
1ð Þ
i

� �2
�
X

v
1ð Þ
i

� �2 ; ð15Þ

a ¼
X

log tið Þ � b
X

v
1ð Þ
i

M
; ð16Þ

s ¼
�2a

X
log tið Þ þ

X
log2 tið Þ þMa2 þ b2

X
v

1ð Þ
i

� �2
þ2ab

X
v

1ð Þ
i � 2b

X
v

1ð Þ
i log tið Þ

h i
M

2
64

3
75

1
2

:

[47] The normal approximation allows the standard devi-
ation s of the parameters to be estimated by means of the
second derivatives of the likelihood. In particular,

I qð Þ� ¼ d2‘

dq2
ð18Þ

and

sq ¼
1ffiffiffiffiffiffiffiffi
I qð Þ

p ; ð19Þ

where q is a generic parameter. In our case we obtain

sa ¼
sffiffiffiffiffi
M

p ; ð20Þ

sb ¼
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
v

1ð Þ
i

� �2r ; ð21Þ

ss ¼ sffiffiffiffiffiffiffi
2M

p : ð22Þ

[48] Here, the parameter estimation of the model of
equation (10) is useful mainly for forecasting purposes.
The interpretation of the parameters in terms of the physics
of the process is not trivial because of the issues mentioned
before related to the test of b = 1 in equation (6). We also
suggest not using regression analysis to estimate the param-
eters of the model, because regression analysis can intro-
duce a further significant bias. This issue is discussed in
depth by Bender [1983] for the parameters of the Guten-
berg-Richter law.
[49] For the sake of example, we test the eruption catalog

of Mauna Loa, that has not been used in the previous

ð17Þ

Figure 5. Plot of the regression analysis for TPM and SPM relative to the data set N4VEI2?. The axes
report the same variables as in Figures 2 and 3.
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analyses. The catalog is taken from the Web page http://
hvo.wr.usgs.gov/maunaloa/history/historytable.html (modi-
fied from Lockwood and Lipman [1987]) and contains 29
eruptions. The parameters and uncertainties are a = 8.1 ±
0.1, b = 0.31 ± 0.04, s = 0.65 ± 0.09. We evaluate the
goodness of the fit of the model by testing if the residuals,
i.e., the difference between the observed IETs and the values
estimated by the model of equation (10), have a normal
distribution. This hypothesis is not rejected at a significance
level of 0.05 by using a chi square test [Gibbons, 1971]. In
Figure 6 we show the empirical cumulative function and the
theoretical Gauss cumulative function.

5.2. Model for a CCS

[50] The results reported above do not show strongly
significant evidence in favor of an SPM or a TPM for CCS.
As regards the time distribution of eruptions, we find no
significant difference from a Poisson distribution. Therefore
the time-size distribution can be described by

f t; v 2ð Þ
� �

¼ f1 tð Þf2 v 2ð Þ
� �

; ð23Þ

where f1(t) is the distribution of IETs and f2(v
(2)) represents

the distribution of the erupted volumes. Our analyses have
shown that f1(t) is reasonably an exponential distribution
(the distribution of IETs generated by a Poisson process)

f1 tð Þ ¼ l exp �ltð Þ; ð24Þ

where l is the rate of occurrence of events. Therefore the
probability of eruption in a given forecasting time window
Dt is given by

P ¼

Zt0þDt

t0

f1 tð Þdt

Z1
t0

f1 tð Þdt

¼ 1� exp �lDtð Þ; ð25Þ

where t0 is the time elapsed since the last eruption. The
parameter l and its uncertainty can be estimated as [Cox
and Lewis, 1966]

l ¼ MXM
i¼1

ti

ð26Þ

and

sl ¼ lffiffiffiffiffi
M

p : ð27Þ

[51] As regards f2(v
(2)), this distribution is still mostly

unknown, and the analysis carried out above does not
provide any constraint on it. At the present state of knowl-

Figure 6. Plot of the empirical cumulative function (solid line) of residuals of the model, i.e., the
difference of the observed IETs and the predicted IETs by using the model of equation (10), for the
Mauna Loa eruptive catalog. The dotted line represents the theoretical cumulative function for a Gaussian
distribution.

B04204 MARZOCCHI AND ZACCARELLI: TIME-SIZE DISTRIBUTION OF ERUPTIONS

12 of 13

B04204



edge we can only speculate that (1) the distribution may be
truncated, because it may need a minimum level of energy
to reopen a closed system; and (2) above the minimum
threshold, the size of eruption may follow a power law
distribution, being due to many factors in a complex system
[e.g., Bak et al., 1988].

6. Conclusions

[52] The main goal of the paper was to provide a generic
quantitative model of the time-size distribution of eruptions.
The results of the analysis show different behaviors as a
function of the length of the interevent times. Volcanoes
with short interevent times show a time clustering of events
and follow a time predictable model [cf. Klein, 1982; Burt et
al., 1994; Sandri et al., 2005]. On the other hand, volcanoes
with long interevent times show a complete randomness of
the occurrence of events (Poisson process) and no signifi-
cant evidence supporting time or size predictable models.
We interpret these two classes of volcano behaviors as open
and closed conduit systems, respectively. Our general prob-
abilistic models of the time-size distribution can potentially
be used to improve volcanic hazard assessment for each
volcanic system belonging to these two regimes.
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