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Comparative Evaluation of Neural Network Learning
Algorithms for Ore Grade Estimation1

B. Samanta,2 S. Bandopadhyay,2 and R. Ganguli2

In this paper, comparative evaluation of various local and global learning algorithms in neural network
modeling was performed for ore grade estimation in three deposits: gold, bauxite, and iron ore. Four
local learning algorithms, standard back-propagation, back-propagation with momentum, quickprop
back-propagation, and Levenberg–Marquardt back-propagation, along with two global learning algo-
rithms, NOVEL and simulated annealing, were investigated for this purpose. The study results revealed
that no benefit was achieved using global learning algorithms over local learning algorithms. The
reasons for showing equivalent performance of global and local learning algorithms was the smooth
error surface of neural network training for these specific case studies. However, a separate exercise
involving local and global learning algorithms on a nonlinear multimodal optimization of a Rastrigin
function, containing many local minima, clearly demonstrated the superior performance of global
learning algorithms over local learning algorithms. Although no benefit was found by using global
learning algorithms of neural network training for these specific case studies, as a safeguard against
getting trapped in local minima, it is better to apply global learning algorithms in neural network
training since many real-life applications of neural network modeling show local minima problems in
error surface.

KEY WORDS: neural network optimization; local learning algorithm; global learning algorithm;
multimodal; ward-net network; activation functions.

INTRODUCTION

Ore grade estimation and control remains one of the most difficult problems to
mining engineers and geologists. Capital-intensive mining operations invariably
require an accurate knowledge of tonnage and grade of a deposit for mineral
appraisal and grade control. Complex formation of an ore deposit, in many cases,
makes it more difficult to resolve problems in ore body modeling. Researchers
have made frequent improvements over the years for accurately predicting the
ore grades using various advance grade estimation techniques. Among these
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techniques, geostatistics perhaps remains the most prevalent technique used today.
In recent times, neural network has emerged as an alternative to geostatistics in
grade estimation purpose (Ke, 2002; Yama and Lineberry, 1999). Several studies
reported successful implementations of the neural network technique for the
estimates of spatial attributes. For example, Wu and Zhou (1993) applied neural
network for copper reserve estimation. Rizzo and Dougherty (1994) used this
techniques for characterization of aquifer properties. Koike and others (2002)
investigated neural network for determining the principal metal contents of
Hokuroku district in Northern Japan. Koike and Matsuda (2003) also used this
technique for estimating content impurities of a limestone mine namely, SiO2,
Fe2O3, MnO, and P2O5. The authors have also used neural networks (along
with geostatistics) for grade estimation in a bauxite deposit and a gold deposit
(Samanta, Bandopadhyay, and Ganguli, 2004; Samanta, Ganguli, and Bandopad-
hyay, 2003). In the bauxite deposit, neural networks and geostatistics showed
almost equivalent performance, while for the gold deposit the neural network
performed better than the geostatistics (ordinary kriging). Based on earlier ex-
periences, neural networks are further investigated here for ore grade estimation,
albeit in a different perspective of optimization of neural network learning.

Proper training can be a problem in neural network modeling. A neural
network model working on a grade estimation problem performs mappings from
an input space to an output space. For example, given the spatial coordinates as
input and grade attribute as output, neural network will be able to generate a
mapping function through a set of connection weights between input and output.
Hence, output O of a neural network can be defined as a function of inputs X and
connection weights W, i.e., O = ϕ (X, W), where ϕ is a mapping function. Training
of a neural network, implemented to finding a good mapping function, can be done
by adjusting the connection weights between the neurons of a network using a
suitable learning algorithm while fixing the network architecture and activation
function. In essence, given a set of training patterns consisting of input–output
data pairs of spatial coordinates and grade attribute {(I1, D1), (I2, D2),. . ., (In,
Dn)}, the learning algorithm strives to minimize the training error. One popular
error function is squared error function in which error, e (W, Ii, Di) = (φ (Ii, W)
− Di)2. Using a suitable learning rule, a set of connection weights, W, is found so
that the squared error function gets minimized.

In a multilayer feedforward neural network, supervised learning algorithm is
applied to train a network. Supervised learning used in neural network training can
be considered as an unconstrained nonlinear optimization problem in which the
objective function (squared error function) is minimized in the search of weight
space. The error function spanned by weight space in a neural network might have a
single minimum as a global minimum. On the other hand, the error function might
generate a very complicated error surface with many local minima in weight space,
one of which is a global minimum. For example, Gallagher (1999) argued that a



Comparative Evaluation of Neural Network Learning Algorithms 177

local minimum in neural network is not a major problem, whereas, Shang and Wah
(1996) showed that an error surface could be very rugged and might have many
local minima. For the first case, local learning algorithms will be adequate. Obvi-
ously in the presence of many local minima, local learning algorithms will have
difficulty in finding optimal solution and will get trapped in a local minimum point.

It is frequently observed that modelers tend to use local learning algorithms
for neural network training without paying much attention to the problem of local
minima. Also, many geoscience neural network studies (conducted for estima-
tion purposes) have reported using local learning algorithms for neural network
training. For example, quickprop algorithm (Wu and Zhou, 1993), standard back-
propagation algorithm (Yama and Lineberry, 1999), and back-propagation algo-
rithm with momentum (Koike, Matsuda, and Gu, 2001; Koike and others, 2002)
are all local learning algorithms; although Singer and Kouda (1996) used sim-
ulated annealing along with conjugate gradient method for network training to
escape from local minima. However, none of the above studies paid attention to
the problem of local minima in neural network training. Therefore, the present
study was conducted to observe the performance of the local and global learning
algorithms for neural network modeling in ore grade estimation and contribute to
the literature. The relevance of this study is particularly noteworthy to the geo-
statisticians since neural network is emerging as a very promising technique in
research, and the use of a suitable learning algorithm will play a major role in
successful implementation of neural network.

Four local optimization techniques: (i) standard gradient descent back-
propagation with a fixed learning rate, (ii) back-propagation with momentum learn-
ing, (iii) quickprop back-propagation learning, and (iv) Levenberg–Marquardt
back-propagation learning were investigated. Additionally, two global learning
algorithms: (i) a trace-based method called NOVEL and (ii) a simulated annealing
method were also explored. Comparative evaluation of these techniques in neural
network learning optimization has been carried out on three ore grade estimation
problems. Furthermore, for a better understanding of the local and global optimiza-
tion algorithms in neural network modeling, these techniques were first explored
on a two-dimensional nonlinear optimization problem containing many local min-
ima in search trajectory. It can also be noted that although the behavior of various
local learning algorithms and the simulated annealing has been studied in other
neural network applications (particularly in non-mining data), the efficiency of the
NOVEL algorithm has not been tested extensively in neural network training.

LOCAL LEARNING ALGORITHMS

Learning the weights of a neural network can be considered as an un-
constrained continuous nonlinear minimization problem. In the past, many
techniques have been developed for solving nonlinear optimization problems
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in other disciplines; these methods can be classified into local optimization and
global optimization. Methods of local optimization include gradient descent
algorithm, Newton’s method, and conjugate gradient method. These techniques
are also applicable to neural network learning, however, in a different format.

Local optimization techniques use some form of gradient information in
search strategy, and require calculation of gradient of error with respect to weight
vector. Because of hidden layers topology in a neural network, it is not possible
for direct calculation of an error gradient with respect to hidden layers connec-
tion weights. Instead, an algorithm called back-propagation is used to calculate
the gradient. Back-propagation algorithm applies a chain rule for calculating gra-
dient, and which is done by back-propagating the sensitivities (change of error
function with respect to net input to a neuron) from output layers to previous
layers step by step in the backward direction (output-hidden-input); hence the
name “Back-propagation.” The basic mechanisms and mathematical foundation
of the four local optimization techniques studied here can be found in a number of
textbooks (Bishop, 1995; Hagan, Demuth, and Beale, 1996; Haykins, 1999). For
the convenience of readers and for understanding the outcome of this study, only
a comprehensive overview is presented.

Standard Back-Propagation with Gradient Descent (SBP)

The gradient descent algorithm finds a locally optimal solution by iteratively
taking small steps in the gradient descent direction. The search procedure starts
with a random initial guess of parameters in the weight space. Then weight is
updated in each iteration according to following equation:

w(n + 1) = w(n) − η × ∇e(w). (1)

where η is learning rate parameter and ∇e(w) is the gradient of error.
The learning rate parameter η plays a major role in convergence of the

algorithm. For small values, it causes small changes in weight along the gradient
descent direction, which results in very slow progress along search trajectory. On
the other hand, for large values, it may result in faster convergence though in some
cases, it may overshoot the optimal solution.

Back-Propagation with Momentum (MBP)

A large learning rate causes gradient descent algorithms to oscillate along
search trajectory; sometimes it may even cause divergence. However, in order to
get the full benefit of faster convergence with large learning rate, oscillation along
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the search path must be reduced. Use of momentum facilitates to dampen oscilla-
tion and renders fast convergence. Momentum algorithm introduces a momentum
factor and makes the new weight changes as:

�w(n) = γ �w(n − 1) − (1 − γ ) × η × ∇e(w) (2)

where �w (n) = w (n) − w (n − 1), γ = momentum coefficient, 0 ≤ γ < 1, ∇e
(w) = the gradient of error.

Quickprop Back-Propagation Algorithm

Quickprop algorithm is a variation of momentum algorithm, however, in-
stead of using user supplied momentum factor, the algorithm itself determines the
momentum factor. The algorithm estimates the momentum factor by using gradi-
ent information on the current and previous steps with the assumption that error
surface can be approximated by a parabola. According to Wu and Zhou (1993),
the weight update formula of quickprop algorithm is

�w(n) = −η∇(w(n)) + ∇(w(n))

∇(w(n − 1)) − ∇(w(n))
�w(n − 1) (3)

The notations are the same as the MBP algorithm described above.

Levenberg–Marquardt Algorithms (LMBP)

Levenberg–Marquardt algorithm is a modification of Newton’s method for
nonlinear optimization. The Levenberg–Marquardt algorithm does not utilize sec-
ond derivatives unlike Newton’s method (in the Hessian computation, the second
derivative component is ignored assuming it is small). This method is based on the
concept of quadratic approximation of error function in a local region. Note that if
the error function is truly quadratic in nature, Newton’s method finds the minimum
solution in a single iteration. Therefore, the success of this technique depends upon
how the error function resembles a quadratic function. If the quadratic approx-
imation is not appropriate, the algorithm may diverge. Searching of an optimal
solution using this method requires calculation of the inverse of the Hessian matrix,
which should be positive definite. Newton’s method does not always guarantee
the positive definiteness of Hessian matrix. Levenberg–Marquardt introduces a
regularization term into the Hessian matrix so that the positive definiteness of the
Hessian matrix is guaranteed.
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GLOBAL LEARNING ALGORITHMS

Optimization problems in neural network may be unimodal or multimodal
depending upon the number of local minima in the space of error surface. Fig-
ure 1 presents general features of unimodal and multimodal cases. In a mul-
timodal case with a number of local minima, the following observations can
be made: (a) flat regions may mislead gradient-based methods, (b) there may
be many local minima that trap gradient-based methods, and (c) gradients may
differ by many orders of magnitude, making it difficult for gradient-based algo-
rithms to work efficiently. Therefore, a good search strategy should have prop-
erties to escape from local minima once it gets there. The basic mechanisms
of two global learning algorithms studied here are described in the following
sections.
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Figure 1. General profile of error surface A, for unimodal and B, multimodal.
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Trace-Based NOVEL Method

The NOVEL method is a hybrid of global and local search methods. This
method was explored primarily because of its reported success in neural network
training on a two-spiral problem (Shang and Wah, 1996). Trace-based global learn-
ing is a trajectory-based method that relies on an external force to pull out the search
from local minima, and employs local descent algorithms to locate minima. It has
three features: exploring solution space, locating promising regions, and finding
local minima. In exploring solution space, the search is guided by a continuous
terrain-independent trace that does not get trapped into local minima. In locating
promising regions, NOVEL uses local gradient to attract the search to a local mini-
mum but relies on the trace to pull it out of the local region once little improvement
can be found. Finally, NOVEL selects an initial point for each promising region
and uses them as initial points for local algorithm to find local minima.

In the global search phase, there are a number of bootstrapping stages.
Figure 2 shows a conceptual diagram of the NOVEL method. The figure shows
three stages but number of stages can be varied. Prior stage is coupled to the next
stage by feeding its output trajectory as the trace function of the next stage, with
a user-defined trace function as the input trace function of the first stage.

Each stage in the global search phase defines a trajectory of weight space,
w(t), which is governed by the following equation.

w1(t + δt) = w1(t) − δt · [µg · ∇e(w1(t)) + µt · (w1(t) − T (t)] (4)

where t is the autonomous variable, T is a trace function, µg and µt are constant
coefficients. ∇e(·) is the gradient of the error function. Note that the error is
function of w1(t).

 1 egatS               
w1 +t( η w =) 1 - )t( η [ µg.∇ w(e 1  +))t(
µ .t w( 1  ])t(T-)t(

 2 egatS                    
w2 +t( η w =) 2 - )t( η [ µg.∇ w(e 2  +))t(
µ .t w( 2 w-)t( 1  ])t(

 3 egatS                     
w3 +t( η w =) 3 - )t( η [ µg.∇ w(e 3  +))t(
µ .t w( 3 w-)t( 3  ])t(

T )t( w1 w )t( 2  )t(

 mhtiroglA gninraeL lacoL                                   
w{ morf stniop gnitrats gnitceleS 1 w ,)t( 2 w ,)t( 3  ylppa } )t(

 stniop eseht morf mhtiroglA gninraeL lacoL

Figure 2. Conceptual diagram of NOVEL method.
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There are two main components in Equation (4), µg·∇e(w1(t)) enables the
gradient to attract the trajectory to a local minimum and µt·(w1(t) − T(t)) allows
the trace function to lead the trajectory out of the local minimum. The coefficients
µg and µt in the equations may be different for each stage. In earlier stages, more
weight can be placed on the trace function, thus allowing the resulting trajectory to
explore more regions. In later stages, more weight can be placed on local descents,
allowing the trajectory to descend deeper into local basins. To find global minima
efficiently, Equation (4) requires a trace function that traverses the search space
uniformly. Based on Shang and Wah (1996), the trace function chosen in this study
is as follows:

Ti(t) = ρ sin

[
2π

(
t

2

)1−(0.05+0.45(i−1)/n)

+ 2π (i − 1)

n

]
(5)

where i is the ith dimension, ρ is a coefficient specifying the range, and n is the
number of dimensions.

After exploring the promising regions in global search phase, local search
phase would be initiated. In the local search phase, a traditional descent method,
such as the gradient descent method or the Levenberg–Marquardt method can be
used.

Simulated Annealing

Simulated annealing (SA) exploits an analogy between the way in which a
metal cools and freezes into a minimum energy crystalline structure (the annealing
process) and the search for a minimum in a more general system. The algorithm
is based on Metropolis and others (1958) who originally proposed it as a means of
finding equilibrium configuration of a collection of atoms at a given temperature.
The connection between this algorithm and mathematical minimization was first
noted by Pincus (1970), but it was Kirkpatrick, Gerlatt, and Vecchi (1983) who
proposed that it forms the basis of an optimization technique for combinatorial
and other problems.

The algorithm employs a random search around the neighborhood of a cur-
rent solution. The change in the solution is not only accepted when the objective
function decreases, but some changes are also accepted when the objective func-
tion increases. This means that the algorithm not only allows downhill movement
but also accepts uphill movements. Uphill movements are accepted with a proba-
bility:

P = exp

(
−∂f

T

)
(6)
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where ∂f is the increase in objective function, T is a control parameter, which by
analogy with the original application is known as the system temperature.

Equation (6) reveals that the probability of acceptance of a new solution
that increases objective function depends upon two parameters: (a) magnitude of
increase in objective function and (b) control parameter/system temperature, T.
The probability of uphill movement increases at high temperature and decreases
at low temperature. Initially, the temperature values are set at high so that solution
space can move freely, thereby, exploring promising local regions. The temperature
goes down step by step so that acceptance of uphill movement cuts down slowly.
This helps locate the minimum point in the solution space.

UNDERSTANDING OPTIMIZATION ALGORITHMS
FOR A NON-LINEAR MINIMIZATION PROBLEM

Prior to the application of optimization techniques in a neural network, the
properties of global and local optimization algorithms were studied in a simple two-
dimensional nonlinear optimization problem. The optimization problem involves
finding the minimum of a function consisting of two variables. This function,
called a Rastrigin function, is used in optimal control application. The basic form of
Rastrigin function is f (x1, x2) = x2

1 + x2
2 − cos 18x1 − cos 18x2. The properties

of this function are demonstrated by a three-dimensional surface plot in Figure
3A and its corresponding contour plot in Figure 3B. Figure 3 reveals that there are
many local minima of this function in the range of −1 ≤ xi ≤ 1; however, there is
one global minimum point. The global minima point occurs at x1 = 0 and x2 = 0,
and the functional value at this point is −2.0.

The superiority of the two global learning algorithms over a local gradient
descent algorithm was verified in this nonlinear minimization of a multimodal
problem. For this part of the study, the same initial random starting point was
chosen for all the algorithms. The behavior of the algorithms in finding the global
minima is presented in 4–6 for the random starting point x1 = 0.95 and x2 =
0.23. Figure 4 shows the trajectory of the local gradient descent algorithm, which
reveals that this local algorithm moves only a little from the starting point before
getting trapped in a local minimum (x1 = 1, x2 = 0.35, and f(x1, x2) = −0.54).

Trace-based NOVEL algorithm starting from same initial point, however,
finds the global minimum point efficiently at x1 = 0, x2 = 0 with the global
minimum value of −2.0. In order to demonstrate the behavior of the NOVEL
algorithm, the trajectories of 10 initial steps of global search phase of the three
stages of NOVEL are presented in Figure 5. The first stage in Figure 5A shows
that many of the local basins is touched by the 10 initial steps of the global search
phase. Note that though all local basins are touched in the global search phase,
only 10 steps are shown in the figure for easy visualization. In the first boosting
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Figure 3. Rastrigin function, A, for surface plot and B, contour plot.

stage (Figure 5B), the points are more attracted toward local basins as it uses the
trajectory of the previous stage as the input function, which supplies some gradient
information of the trajectory to the boosting stage. In the second boosting stage
(Fig. 5C), the gradient information is further enhanced and the trajectory is more
attracted toward local gradient direction.

Simulated annealing also finds the global minima efficiently though it sticks
to a minimum point of −1.996 at x1 = 0.002 and x2 = −0.004. The behavior of
simulated annealing algorithm is presented in Figure 6. Initially, a large number of
uphill movements of the solutions are accepted as the control parameter, tempera-
ture, is at a high number (T = 100). However, it cool downs exponentially at a rate
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Figure 4. Trajectory of local optimization algorithm (gradient descent) for Rastrigin function.

of Ti = 0.9 Ti − 1, while allowing a certain number of iterations (either 100 or less
than 35 number of accepted transition points whichever it reaches first) at each
particular temperature setup. At high temperature, where a lot of uphill movements
are accepted, the solution escapes from local minima. When system cools down
sufficiently and virtually no uphill movement is accepted, search focuses on the
local region, and the system converges to the minimum solution.

The above experiment was repeated for many starting values. The results of
which were generally similar to what is described. Therefore, in multimodal cases
the gradient-based local learning algorithm is inappropriate.

CASE STUDY APPLICATIONS

Neural network was applied to three case studies of ore grade estimation
in a gold deposit, a bauxite deposit, and an iron ore deposit. The performance
of the neural network learning algorithms was extensively studied. The goal of
this study was to learn the role of various learning algorithms in neural network
training optimization. Therefore, generalization properties of these networks were
not taken into consideration.

The gold deposit studied here is an offshore placer deposit at Nome district
in Alaska. The Nome district is located on the south shore of Seward Peninsula at
about latitude 64◦30′ N and longitude 165◦30′ W. It is 840 km west of Fairbanks and
860 km northwest of Anchorage. For grade evaluation purpose, the lease boundary
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Figure 5. Global search phases of NOVEL (first 10 steps) for Rastrigin
function minimization, A for stage 1, B, stage 2, and C, stage 3.
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Figure 6. Simulated annealing algorithm for Rastrigin function minimization.

is divided into nine blocks—Coho, Halibut, Herring, Humpy, King, Pink, Red,
Silver, and Tomcod. The present study was focused on the Coho block using gold
assay values (mg/m3) derived from 134 exploratory borehole samples located in
an irregular grid. Figure 7 presents the spatial plot as well as omnidirectional
variogram of the gold concentration.

The bauxite deposit studied here is situated at the Koraput district of Orissa
in India. The deposit extends over an area of about 16 km2 and is the single
largest bauxite deposit in India, and one of the largest in the world. For operational
convenience, the deposit has been divided into north, central, and south blocks. The
central block of the deposit is an integrated part of the lateritic profile, and is derived
by the in situ chemical weathering of khondalite in tropical surroundings. The
central block has been divided into two sectors namely, sector I and sector II. Data
used in this study included 126 exploratory boreholes in sector II. The boreholes
were drilled mostly in a square grid pattern with 25 m spacing. The critical variable
of the bauxite ore is Al2O3% and was considered for grade estimation. Figure 8
shows the spatial plot along with the omnidirectional variogram of Al2O3%.

The iron ore deposit studied here is situated at the Keonjhar district of Orissa
in India. Ore bearing area covers about 5 km on the eastern slope of the famous
iron ore (BONAI) range. Iron ore occurs on the hill slopes in association with its
parent rock. The hill in this part rises to about 900 m above the mean sea level
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Figure 7. Spatial variability of gold concentration A, for spatial plot and B,
omnidirectional variogram.
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Figure 8. Spatial variability of Al2O3% A, for spatial plot and B,
omnidirectional variogram.

and about 400 m above the local valley. The ore was formed about 3100 million
years ago through metasomatism of marine volcanic sediments. The parent rock
consists of banded hematite quartzite (BHQ), banded hematite jasper (BHJ), and
laterite. There are 39 exploratory borehole information used for this study. The
average spacing of the boreholes is 100 m along the strike direction. The spacing
is somewhat lesser in the dip direction. The Fe% is the main constituent for the



190 Samanta, Bandopadhyay, and Ganguli

Figure 9. Spatial variability of Fe% A, for spatial plot and B, omnidirectional
variogram.

iron ore deposit and was considered in this study. Figure 9 presents the spatial plot
and omnidirectional variogram of Fe%.

Table 1 presents the summary statistics of the three data sets. The gold and
iron data sets reveal high variance, whereas the bauxite data set shows low variance
compared to other two data sets.
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Table 1. Summary Statistics of the Data Sets

Data Mean Variance Maximum Minimum

Gold 507.26 1,067,400 5120 0.60
Bauxite 42.58 6.89 48.9 33.50
Iron 61.46 40.39 66.82 37.52

NEURAL NETWORK FOR GRADE ESTIMATION

For grade estimation using neural network, northing and easting coordinates
were used as input variables, and grade attribute was used as an output variable for
the respective data sets. For example, output variables for gold, bauxite, and iron
data were gold (mg/m3), Al2O3%, and Fe%, respectively. The complex spatial
structure between input and output patterns is captured through a network via a set
of connection weights, which are adjusted during training of the networks. The net-
work captures an input–output relationship through training and acquires certain
prediction capability so that for a given input (northing and easting coordinates)
the network produces an output (grade).

Separate neural networks were used for each of the data sets. The network
architecture used for the neural network application was a Ward-net network.
Ward-nets are predefined architectures in the neural network software Neuroshell2.
The advantage of using the Ward-net architecture is that this type of network is
able to employ different activation functions in hidden layers. As a result, complex
nonlinear input–output pattern is captured by a combination of multiple hidden
units with different activation functions. Although the same network architecture

Easting 

Northing 
Grade
attribute

Input 
Layer

Output
Layer

         Hidden Layer 

Slab1
(Logistic function) 

Slab 2 
(Tanh function)

Slab 3 
(Gaussian function)

Figure 10. Ward-net architecture of neural network for grade estimation.
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was used for all the data sets; the number of hidden units was varied for the different
data sets. A combination of Logistic, Tanh and Gaussian activation functions were
used in the hidden layers of the network. The Ward-net architecture used in this
study has three layers: the input layer, the hidden layer, and the output layer
(Fig. 10). The hidden layer consists of three hidden slabs of Logistic, Tanh, and
Gaussian activation functions. Number of nodes in the hidden slabs varied for
different data sets. For the gold data set, nine hidden neurons were used with three
neurons in each slab. For the bauxite data set, 15 hidden neurons were used with
5 neurons in each slab. For the iron ore data set, nine hidden neurons were used
with three neurons in each slab.

RESULTS

Prior to applying the neural network model, the input and output data values
were normalized in the [0,1] scale. Therefore, the error presented is based on the
normalized transformed data. The neural network model was trained using the four
local and two global learning algorithms mentioned earlier. The starting point for
all the learning algorithms, local and global, was same. The behavior of the local
and global learning algorithms is extensively studied. However, since the properties
of local learning algorithms are discussed at length in neural network literature,
only their performance is reported in this present study to provide a comparitive
evaluation of various algorithms. Table 2 presents the best solutions found for
the four local algorithms. These solutions were obtained after running each of
the learning algorithms for 50,000 epochs. From the table, it can be observed
that the LMBP algorithm provided superior performance for all the data sets.
The minimum mean squared errors as well as number of iterations to reach them
were minimum for the LMBP algorithm. Quickprop learning algorithm shows an
improved performance for the bauxite and iron ore data sets when compared to
SBP and MBP algorithm, however, for the gold data set its performance is slightly
inferior.

In applying the NOVEL algorithm to this study, three stages in the global
search phase were used. The algorithm starts with the autonomous variable, t = 0,
and at each iteration, t is changed to t + δt, where δt is chosen as 0.8. After trial and
error with various combinations of µg, and µt (Eq. 4), the values for µg = 0.01 and
µt = 1, were selected for all the data sets. These coefficients were kept constant
for all the three stages in this analysis. The gradient of error for each hidden unit
was calculated using chain rule, as it is a common practice in standard back-
propagation algorithm. All the three stages in global search phase were executed
for each time unit. The algorithm was run for 100 iterations in global search phase.
Initial points for the local search phases were selected from the trajectory of the
three stages, because each trajectory identifies new starting points, which may
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Table 2. Performance of Local Learning Algorithms

Data set Learning algorithm Minimum MSE
Epoch number at
minimum MSE

Gold SBP 0.0041 11,408
MBP 0.0041 11,637
Quickprop 0.0061 6275
LMBP 0.00017 2198

Bauxite SBP 0.0265 15,370
MBP 0.0265 15,236
Quickprop 0.0251 58
LMBP 0.020 156

Iron SBP 0.026 19,004
MBP 0.027 19,253
Quickprop 0.0132 357
LMBP 0.012 4034

lead to better local minima. Further, instead of using a single minimum point from
each trajectory, the best solutions for periodic time intervals were chosen as initial
points. This strategy generated many initial points from which local searches
were initiated. In this study, 5 best initial points at the intervals of 20 iterations
were selected from each trajectory, which altogether generated 15 initial points.
An attempt was also made to capture initial points at intervals of 10 iterations;
however, results did not improve. After selecting the initial points using global
phase, the local search strategy was started for each of the initial points. LMBP
algorithm was used for the local search phase, since earlier results on the data sets
revealed improved performance of LMBP algorithm.

In experimenting with simulated annealing algorithm, a cooling scheduling
was first verified. After trying with different schedule parameters, the following
parameters were selected for the three data sets. The initial temperature T0 was
chosen as 20. This temperature decreased exponentially at the rate of Ti = 0.9Ti − 1.
For each temperature setting, the algorithm performed a number of iterations.
Changing of one temperature to another temperature value was executed based on
two conditions: (i) number of iterations reached 200 or (ii) number of transitions
of the solutions exceeded 60. The first condition was imposed since at lower
temperature acceptance of new solutions is very low. The algorithm was stopped
when the number of temperature changes reached 250.

Table 3 presents the performance of the two global learning algorithms along
with the LMBP algorithm (best local learning algorithm) for the three data sets. The
results indicate that both global and local learning algorithms performed almost
equally well for all the data sets. Therefore, the benefit of using global learning
algorithm was not quite evident from the neural network modeling of the three data
sets. One of the possible reasons might be that the smooth error surface trajectory
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Table 3. Performance of NOVEL, SA, and LMBP Algorithms

Data set Learning algorithm Minimum MSE

Gold LMBP 0.00017
NOVEL 0.00017
SA 0.00021

Bauxite LMBP 0.020
NOVEL 0.018
SA 0.020

Iron LMBP 0.011
NOVEL 0.011
SA 0.010

spanned by neural network modeling in the weight space. The error surface might
not be as rugged as revealed in many applications of neural network modeling
cited in the literatures. To delve further into this issue, a study on error surface
was conducted. Because of high dimensionality of neural network modeling, it
was not possible to display the error surfaces along all the dimensions. Instead,
error surface along different pairs of dimensions was studied. An error surface
was generated along selected pair of dimensions by clamping other dimensions
at some fixed values. For example, Figure 11 presents an error surface along two
arbitrary dimensions for the three data sets. The surface is around a solution found
by the LMBP algorithm. From the figure, it can be seen that error surface around
the solutions for all the cases have very smooth error surface, therefore, local
learning algorithm efficiently reaches the bottom of the error surface.

Further an analysis of neural network model fitting is presented in the Table
4. This analysis was performed by back-transforming the normalized output of
the data to the original scale. The results show that the mean squared error for the
gold data set is relatively high. This is expected because of the high variance of
the gold data. In fact, mean squared error for the gold data set is 0.4% of the total
variance. The R2 value for the gold data set is also very high, which shows the
ability of neural network model to capture spatial relation between input and output
variables. For the bauxite data set, the neural network model shows relatively low
mean squared error, probably because of low variance of the bauxite data; however,
the R2 value is poor. This is because of poor spatial correlation of the bauxite data
set within the study area. The variogram model presented in Figure 8 shows a
high nugget component when compared with the regional component. Our earlier
investigation (Samanta, Ganguli, and Bandopadhyay, 2005) on this data set using
kriging technique also resulted in poor R2 value. For the iron ore data set, neural
network model was a better fit.

In this study no attempt was made to ensure generalization of the neural
network. Therefore, the results shown in Tables 2–4 need not reflect the absolute
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Figure 11. Projected two-dimensional error surface of
neural network model around a solution found by LMBP
algorithm, for A, gold data, B, Bauxite data, and C, Iron
data.
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Table 4. Summary Statistics of Neural Network Model Performance Using Three Algorithms

Gold Bauxite Iron

Statistics LMBP NOVEL SA LMBP NOVEL SA LMBP NOVEL SA

Bias 0.13 0.13 1.83 0.12 0.09 0.06 −0.62 −0.62 0.05
Mean absolute

error
43.20 43.20 53.69 1.76 1.58 1.66 2.42 2.42 2.19

Mean squared
error

4368 4368 5586 4.86 4.40 4.89 11.35 11.35 9.14

R2 0.9959 0.9959 0.9948 0.29 0.36 0.28 0.72 0.72 0.76

performance of the neural networks. The tables should be used only as a means
of comparison across algorithms with the added restriction that the algorithm
convergence was not uniform, i.e., convergence was governed by criteria pertinent
to the individual methods.

CONCLUSION

In this study, the behavior of various optimization learning algorithms in
neural network modeling for ore grade estimation was studied. The local and
global learning algorithms performed equally for all the three data sets. Therefore,
no significant benefit could be attributed to global learning algorithms in these
specific data sets. A reason as to why the local and global learning algorithms
perform equally well is that the error surface found in neural network modeling
of these data sets was very smooth and possibly unimodal in nature. However, the
superiority of global learning algorithm was clearly demonstrated on a multimodal
nonlinear minimization problem. Although, neural network modeling of these
data sets did not provide any basis for selecting global learning algorithms, it is
suggested that one should apply global learning algorithms as a safeguard in order
to avoid trapping in local region for neural network modeling. This will at least
boost the confidence of a modeler that the network is not trapped in local minima,
since many real-life applications of neural network modeling had problems of local
minima. On the other hand, use of global learning will require more computational
time.
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