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Undiscovered Petroleum Accumulation Mapping
Using Model-Based Stochastic Simulation1

Zhuoheng Chen2 and Kirk G. Osadetz2

Stochastic simulation has been proven to be a useful tool for revealing uncertainties in petroleum ex-
ploration and exploitation. The application to petroleum resource assessment would result in predicted
potential accumulations with geographic locations, a desirable feature for improving both resource
management and exploration efficiency. The associated uncertainties with the prediction provide infor-
mation useful for exploration risk analysis. This attempt has been encumbered by two typical technical
difficulties: biased observation data and lack of information with respect to the undiscovered accu-
mulation locations. In this paper we propose a model-based simulation approach, in which models
are used to perform unbiased parameter estimation from biased data and to facilitate the location of
undiscovered petroleum accumulations based on reasoning of available geological and geophysical
observations. The Fourier transform algorithm is chosen for the simulation because the spatial correla-
tion and location-specific features can be studied separately from different data sources and integrated
in the simulation in a frequency domain. The proposed approach is illustrated by an example from
the Rainbow petroleum play in the West Canadian Sedimentary Basin. In the application example, a
pre-1994 exploration history data set was used as input, and the predictions are then checked against
the locations of post-1993 exploratory drilling results. The comparison of the predictions from the
proposed approach and the traditional conditional simulation shows that the model-based approach
captures the essentials of geological controls on the spatial distribution of petroleum accumulation,
thus improving the projections of undiscovered petroleum accumulations.

KEY WORDS: Fourier transform approach; resource assessment; spatial distribution.

INTRODUCTION

Petroleum exploration uses modern technologies to reduce risk. However no mat-
ter what effort has been made, the risk cannot be eliminated because uncertainties
remain as a result of limited data coverage and inferences of petroleum occurrence
from subsurface indirect observations. Petroleum accumulations are natural prod-
ucts of geological processes that have occurred over the past millions or hundred
millions of years. The complexity of spatial variation and interactions among
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geological processes, as compared with the spare data coverage and multi-
possibility of data interpretation, makes it difficult for a deterministic calculation
of the undiscovered petroleum accumulations in a petroleum system. Stochastic
simulation has been proven a useful tool for revealing uncertainties in petroleum
exploration and exploitation (Chen and others, 2004; Deutsch and Tran, 2002;
Gao and others, 2000; Georgsen and others, 1994; Hegstad and others, 1994;
Holden and others 1998). The application to petroleum resource assessment could
generate equal-probable realizations of potential petroleum accumulations with
geographic locations and reveal the associated uncertainties with the modeled ac-
cumulations, providing useful information for better natural resource management
and exploration risk visualization.

There are two technical obstacles in the construction of such a stochastic
model. Firstly, the available data, such as the sizes of the discovery obtained from
exploration drilling, are biased because of the biased data generating process.
Typically, exploration programs test prospects inferred to have a greater potential
(commonly the larger features) with higher priority. As a result, the data obtained
through such a data collecting process represent a biased sample of the parent
distribution. The statistical bias of the discovered accumulation sizes in the sample
as compared to its natural population is a well-known phenomenon (e.g., Kaufman,
Balcer and Kruyt, 1975; Lee and Wang, 1985; Scheunemeyer and Drew, 1983).
This sampling bias prohibits a direct estimation of model parameters. Secondly,
no direct information is available with respect to the locations of the undiscovered
oil and gas accumulations. If we have had direct information, no prediction would
be necessary. To tackle the two obstacles, we propose a model-based stochastic
simulation approach, in which established models are used to perform parameter
estimation according to sampling characteristics, and to facilitate the location of
potential petroleum accumulations based on geological reasoning, thus enhancing
the performance of conditional simulation.

Among different stochastic simulation algorithms, Fourier transform ap-
proaches, such as the spectrum simulation algorithm (Pardo-Iguzquiza and Chica-
Olmo, 1993) and phase identification approach (Yao, 1998) appear to be ideal for
predicting the undiscovered petroleum accumulation with geographic locations.
There are two major advantages in using the Fourier transform method when sim-
ulating undiscovered petroleum accumulations. In addition to the computational
advantage, it is possible to study the spatial correlation and location-specific
characteristics separately. Models for spatial correlation and locations can be
conveniently extracted from different geoscience data sources and subsequently
integrated in the simulation in a frequency domain.

In a direct application of the Fourier transform approach, a discovered hy-
drocarbon accumulation map is transformed into the frequency domain using a
fast Fourier transform (FFT), which results in amplitude and phase maps. The
amplitude map contains information associated with spatial correlation structure,



Model-Based Simulation 3

whereas the phase map contains location-specific information. Only when both the
phase and the amplitude maps are completely specified, the complete petroleum
accumulation set can be mapped. Unfortunately, neither the amplitude map nor the
phase can be completely specified using the discovered petroleum accumulations
alone due to a biased data sampling and lack of location-specific information for
the undiscovered accumulations. Thus, the inference of an unbiased covariance
function and implementation of additional constraints from observations and ge-
ological model are necessary for a successful application of stochastic simulation
to project the undiscovered petroleum resources.

Different geoscience data contain unique information with respect to the
properties of petroleum accumulations. At least four types of data carry informa-
tion regarding the spatial characteristics of hydrocarbon occurrence in a mature
play, which include: (1) geological data; (2) exploration drilling results; (3) geo-
physical data; and (4) location and data quality information regarding geoscience
surveys (Chen and others, 2000). Geological information is genetic in character.
Available geological information indicates the necessary conditions for hydrocar-
bon occurrence and it allows, in principle, the inference of petroleum occurrence
spatial characteristics. Spatial variation in geology reflects a variation in geolog-
ical favorability condition on petroleum accumulation in space. Methods have
been proposed to integrate geological information for inference of possible undis-
covered petroleum accumulation locations (e.g., Chen and others, 2000, 2002;
Rostirolla, Mattana, and Bartoszeck, 2003). Other types of geoscience informa-
tion are also useful. For example, discovery records contain information desirable
for estimating accumulation size distribution and aggregated resource potential
(Baker and others, 1986; Lee and Wang, 1983, 1985). A seismic grid map con-
tains information permitting the calculation of probability that a sizeable prospect
could be missing at a specific location (Chen and others, 2000; Kaufman, 1994).
Such information can be conditioned in a simulated outcome.

In this paper, we discuss the model-based conditional simulation and illus-
trate how the proposed approach can be used to project the spatial occurrences
of petroleum resources using an example from the Rainbow petroleum play in
Western Canada Sedimentary Basin (WCSB). In the application example, the pre-
1994 exploration data set was used as input. The post-1993 petroleum exploration
results in the same play were employed to check the predicted results.

METHOD DESCRIPTIONS

Fractal Model of Petroleum Accumulations

Barton and others (1991), Barton and Scholz (1995), and La Pointe (1995)
studied the data from well-explored petroleum basins in the United States and
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Figure 1. Fractal images present conceptual models of petroleum accumulations. The spatial dis-
tribution characteristics of petroleum accumulations are assumed to be fractal and are a function of
accumulation sizes.

concluded that the hydrocarbon accumulation spatial distribution is fractal. Our
studies in WCSB also indicate self-affine characteristics of petroleum accumula-
tions on resource maps. This characteristic motivates the examination of a fractal
model for a quantitative description of hydrocarbon resource spatial distribution.
The scaling property of a fractal model implies that the spatial characteristics of
large petroleum accumulations could be used to infer the spatial characteristics
of the smaller accumulations, which are typically underrepresented in an explo-
ration data set. Thus, the spatial characteristics of petroleum accumulations can
be inferred from the biased observations resulting from exploration.

In our model, petroleum resource is described by a fractal image map, on
which the value of each pixel represents the average magnitude of petroleum
accumulation within that pixel. Figure 1 (top-left image) illustrates a conceptual
model of the spatial distribution of petroleum accumulations. Since the location
where petroleum is generated is not necessarily the location where petroleum is
trapped, the value at each pixel represents the net effect of petroleum accumula-
tion. Negative values signify petroleum migrating away from the pixel, whereas
positive values represent a net accumulation. Because the primary objective of
petroleum exploration is to find economically recoverable accumulations, only
those accumulations exceeding a certain size are significant. The economic size
of the petroleum accumulation could be a variable in time and space, depending
on economic and infrastructure conditions. It is obvious that spatial distribution
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pattern of hydrocarbon accumulations may vary with economic accumulation size,
while the spatial correlation structure remains. The remaining images in Figure 1
show various versions of the same image with different accumulation size thresh-
old values. The top right image depicts only those pixels with net accumulations.
The lower left image has an arbitrary threshold value, >0.2, whereas the lower
right one has a threshold value, >0.5. From this series of images, it is clear that
even though spatial pattern of petroleum accumulation looks different, the spatial
correlation structure for any one of the images in Figure 1 can be inferred from
the original one.

Power Spectrum Representation of the Fractal Model

The principle and procedure of Fourier integral method and phase identifica-
tion algorithm for stochastic simulations have been described by Pardo-Iguzquiza
and Chica-Olmo (1993) and Yao (1998) in a great detail. Any second stationary
discrete stochastic process, y(k), can be expressed as a series of Fourier coefficients
aj and bj. In the one-dimensional case, the series is written either as:

y(k) =
N−1∑

j=0

[
aj cos

(
2πjk

N

)
+ bj sin

(
2πjk

N

)]
, for j = 0, 1, 2, . . . N − 1

(1)
or using a complex exponential Fourier series:

y(k) =
N−1∑

j=0

A(j )ei2πkj/N (2)

where A(j ) = aj − ibj = |A(j )| exp {−iϕ(j )} is the jth complex Fourier coeffi-
cient, |A(j )| = (a2

j + b2
j )1/2 is the amplitude spectrum, ϕ(j ) = tan−1(−bj/aj ) is

the phase, and S(j ) = |A(j )|2, j = 0, 1, . . . , N − 1, is the power spectrum.
A covariance function is related to a power spectrum S(ω) by the Wiener–

Khintchine theorem (Pardo-Iguzquiza and Chica-Olmo, 1993) stating that any
stationary process has a covariance function C(h) of the form:

C(h) =
∫ π

−π

S(ω)eiωhdω (3)

where ω is the angular frequency. In fact, the power spectrum function is the
Fourier transform of the covariance function.

Self-affine series defined by a power spectrum can be logarithmically trans-
formed into a self-similar fractal time series. For a self-similar fractal time series,
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the power spectrum density has a power law dependency on frequency (Turcotte,
1997, p. 148):

S(k) ∝ f −β (4)

where f is frequency, and β is an exponential coefficient. In the fractal model, the
spatial correlation of objects is fully specified by the logarithmically transformed
spectrum density function.

Simulation Procedure

The procedure for the proposed approach is similar to that in the phase
identification approach proposed by Yao (1998) with two additional procedures
in the simulation: (a) using a fractal model to infer the unbiased spatial structure
from the biased data set; and (b) employing a geological model, in the form
of conditional probability or geological favorability that describes the necessary
conditions for petroleum accumulation, to facilitate the location of undiscovered
petroleum accumulations. The proposed approach has the following steps:

1. Prepare a petroleum accumulation image map from exploration results;
2. Estimate fractal parameters from the image map according to sampling

characteristics;
3. FFT the image map to obtain amplitude and phase maps;
4. Calibrate the amplitude map using the estimated fractal parameters by

adjusting the high frequency portion of the original amplitude map to
obtain a Modified Fractal Amplitude Map (MFAM);

5. Generate a random phase map in incorporation with the geological con-
straints from geological favorablity map or probability map of petroleum
occurrence, so that the location-specific information is included in the
phase map;

6. Generate a fractal image (accumulation map) using the calibrated ampli-
tude and the obtained phase by inverse FFT;

7. Check the fractal image against observations and geological constraints.
Calculate the difference between simulated values with those at condi-
tioning pixels [Eq. (5)]. If the difference is below the pre-set tolerance
value, accept the results.

obj =
n∑

α=1

∣∣∣∣
Zm(iα, jα) − Zo(iα, jα)

Zm(iα, jα)

∣∣∣∣ (5)

where Zm(iα , jα) is the modeled value at grid node (i, j) corresponding to
the closest node at the αth observation, α=1, . . ., n, and Zo(iα , jα) is the
value of αth observation at grid node (i, j);
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8. If the difference is greater than the tolerance, modify the accumulation
map by replacing the simulated values with the observed values at the
conditioning pixels.

9. FFT the modified accumulation map, and get new amplitude and phase
maps;

10. Replacing the new amplitude map with the MFAM and keeping the new
phase map in step 9, inverse FFT using the MFAM and the new phase.
Repeating steps 7–9, this procedure is performed iteratively until a desired
tolerance in Eq. (5) is reached.

APPLICATION EXAMPLE

The Rainbow petroleum play, located in northwestern Alberta, WCSB, is a
mature exploration play with an areal extent of about 5000 km2. Major geological
controls on this play and its petroleum system have been well described (Barss,
Copland, and Ritchie, 1970, Fowler and others, 2002; Li and others, 1999; Podruski
and others, 1988; Reinson and others, 1993;). Exploration for oil and gas in this
play began in the early 1950s. By 1994, 22 gas pools, 87 oil pools, and 77 oil and
gas pools were found with a total oil and gas reserve of 269.1 × 106 m3 (in place)
oil equivalent (o.e.). In that period, 409 wild cats (new field wildcat and new pool
wildcat in Lahee class) were drilled, amongst which, 186 intersected hydrocarbon
and 223 were dry (EUB, 2001). In the subsequent period from 1994 to 2000, 52
additional exploratory wells were drilled, in which 32 are oil/gas pools or wells
with oil/gas flows. Figure 2 shows the location of Rainbow Sub-basin and the
locations of the exploratory wells (discovery and dry holes).

In the application example, the pre-94 date set was used to estimate model
parameters and conditioning the simulation, and the post-93 data set was served as
a test data set to check whether or not the output from the simulation can predict
the locations of undiscovered petroleum accumulations. A discovered petroleum
pool map (Fig. 3) was prepared from EUB’s annual reserve report (EUB, 2001),
on which the location of a pool is represented by the location of its discovery
well at the center and areal extent of a pool is approximated by the estimated pool
area, and size of the pool is indicated by the magnitude of the pixel value. In the
simulation, the dry wells were used as areal constraints excluding any occurrence
of petroleum accumulation. A rectangular area of 0.36 km2 is assumed to be
exhausted of petroleum potential by an exploratory well in this study.

An original amplitude map (OAM) and phase map are derived by a Fourier
transform of the discovered petroleum accumulation map. Figure 4 shows am-
plitude profiles of the OAM in easting and northing directions. The deviations
from a linear relationship in high frequency parts of both directions on the profiles
are interpreted as the sampling bias due to selective drilling, suggesting small
pools are under-represented on the discovered petroleum pool map. A modified
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Figure 2. The study area and the locations of discovery and dry wells in the Rainbow petroleum play,
WCSB.

amplitude map (MFAM), derived by calibrating the original amplitude map using
estimated fractal parameters, represents the spatial correlation for all petroleum
accumulations in the size range indicated by the data. The phase map derived from
the discovered gas accumulations contains no information regarding the locations
of the undiscovered petroleum accumulations. The use of the phase identifica-
tion approach with the MFAM results in a random realization of a stochastic
simulation conditioned on discovered petroleum accumulations and dry wells. In
such a realization, the spatial correlation in the amplitude map is well retained,
but the locations of the undiscovered petroleum pools could be anywhere except
from the conditioned pixels. Figure 5 shows a probability map calculated based
on 3000 realizations of the conditional simulations with MFAM using the phase
identification approach.

A previous study of the spatial distribution characteristics of petroleum accu-
mulations in the same area resulted in a conditional probability map (Fig. 6) of hy-
drocarbon occurrence (see Chen and others, 2001 for details in data and method).
This map integrated information from geological factors describing petroleum
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Figure 3. A discovered petroleum pool map prepared using the pre-94 oil and gas discoveries in the
Rainbow petroleum play. Square indicates the discovery well location and cross indicates the dry well
location.

accumulations in the region. With this independently determined conditional
probability map, the simulated petroleum occurrence realizations are validated
not only considering discovered petroleum accumulations, dry well locations, the
exhaustion of potential by previous activity, but also geological conditions for
petroleum accumulations. Figure 7 is a probability map of petroleum occurrence
based on 3000 conditional realizations, representing the uncertainty associated
with the predicted locations of undiscovered accumulations in the play. The likely
sizes of accumulations (discovered and undiscovered petroleum) with geographic
locations, predicted by the model-based simulation, are presented in Figure 8.

DISCUSSION AND CONCLUSIONS

In the subsequent period from 1994 to 2000, 52 wells were drilled, among
which 32 wells indicate new oil/gas discoveries in the Rainbow Sub-basin. The
52 wells are superimposed on the calculated probability and accumulation size
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Figure 4. Amplitude profiles in x and y directions. The deviations of the amplitude from the linear
relationships in higher frequency parts are interpreted as sampling bias (i.e., under-presented in
smaller pool accumulations due to the selective drilling in petroleum exploration). (Horizontal axis:
frequency and Vertical axis: amplitude).

maps, respectively (Figs. 7 and 8). In a comparison of the post-93 discoveries
with the predicted probability of petroleum occurrence, it shows that 22 of the 32
new discovery wells are located in areas with probability values higher than 0.5,
which gives an average success rate of 68% (Fig. 9). Whereas, for the wells drilled
in the areas with probability value less than or equal to 0.5, the success rate is
50%. It is interesting to see that the model-based simulation produces relatively
high probabilities in a less explored area in the northeast of the Rainbow play,
where only one unsuccessful well was drilled prior to 1994. Seven post-1993
exploratory wells were completed in that part of the play and six are discoveries.
The proposed method produces maps (probability and resource maps, Figs. 7
and 8) showing a profound influence of the geological characteristics of the play
and the conditioning process did not destroy the high probability outlined on the
conditional probability map. In contrast, the traditional conditional simulation
did not predict those six post-93 discoveries. Its probability map shows a more
random pattern due to lack of information of the undiscovered accumulations.
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Figure 5. A probability map calculated from 3000 realizations of conditional simulation with
MFAM from the phase identification approach.

Figure 6. A conditional probability map of petroleum occurrence of the Rainbow petroleum
Play, derived from a multivariate statistical method.
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Figure 7. A probability map of petroleum accumulations of the Rainbow petroleum play based
on 3000 realizations from the model enhanced simulation. Solid circles indicate the locations of
success exploratory wells and the triangles represent the dry well locations drilled in 1994–2000.

All these suggest that the proposed approach captures the essentials of the spatial
features as well as the geological characteristics of the petroleum accumulations
in the simulation and provides important information for petroleum exploration
decision.

In summary, the proposed approach employs a fractal model to infer a rep-
resenting spatial correlation structure from the biased observation data set. The
modified amplitude map is hypothesized to represent the true spatial correlation
structure of petroleum accumulations in the size range indicated by the explo-
ration data. To improve the prediction of undiscovered accumulation locations,
we employ a geological model, in the form of conditional probability map derived
from an integration of geological information and exploration results, to constrain
the unknown locations of undiscovered accumulations in a frequency domain.
The results shows that if location is the most important feature in the simulation,
the Fourier transform approach is a good choice because the spatial correlation
structure and location-specific information can be studied separately using dif-
ferent data sources and subsequently integrated in the simulation in a frequency
domain. We have demonstrated through an application example that the proposed
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Figure 8. A petroleum resource map represents predicted sizes (logarithmic value) of petroleum
accumulations with geographic locations from the model-based simulation. The sizes at each pixel
are average value of 3000 realizations. Solid circles are the locations of success exploratory wells
and the triangles represent the dry well locations drilled in 1994–2000.

simulation procedure can handle sampling bias in data and integrates different
types of information (including soft-information) in a consistent and efficient
manner.

We are able to use the model-based approach to produce a petroleum accu-
mulation map, on which both the size and location for the undiscovered petroleum
accumulations are predicted. No other method has the capability of simultane-
ously predicting both. A probability map from multi-realizations of the simulation
highlights the areas with low and high probability values, providing a general view
of the exploration risk in the play.

We demonstrated that the use of additional geological and geophysical
prospecting data could enhance spatial modeling by adding location-specific in-
formation in the phase map. In cases, additional information such as a geological
favorability map or a conditional probability map of petroleum occurrence may
not be available. The use of the calibrated amplitude map improves the condi-
tional simulation by providing a more complete and appropriate representation
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Figure 9. Comparison of the predicted probability values at discovery well locations with
the values at the dry exploratory well locations drilled between 1994 and 2000. The average
success rate for the post-93 wells located in areas with probability value greater than 0.5 is
68% and the success rate is about 50% in the areas where probability value is less than or
equal to 0.5. The overall average of post-93 well success is 61%.

of the spatial correlation structure. The use of a random phase map, followed by
iterative variations of the phase map through conditioning against observations
(e.g., discovered accumulations, dry well locations, and exploratory exhaustion of
potential), leads to a viable conditional simulation. Additional constraints, such
as geographic information from geophysical prospecting as illustrated by Chen
and others (2000) can also be used to conditional locations without prospectivity,
resulting in more geologically sound simulation results.

We have learned through experiments that information concerning both spa-
tial correlation in an amplitude map and locations in a phase map are equally
important to the simulation. An appropriate phase map is the key in correctly
locating the modeled objects in space given complete information in magnitude
map. For many years, the spatial correlation structure has been the main focus of
the geostatistic study. More effort may be necessary to better understand the im-
pact of phase and how to use the information associated with phase in a stochastic
simulation.
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