УДК 552.320.8(571.56+571.65)

ИЗОТОПНЫЙ СОСТАВ ГЕЛИЯ И К-Ar ВОЗРАСТ ОЛИВИНОВЫХ МЕЛАНЕФЕЛИНИТОВ И МАНТИЙНЫХ КСЕНОЛИТОВ ВИЛИГИНСКОГО ВУЛКАНИЧЕСКОГО ПОЛЯ (Северное Приохотье)

В. В. Акинин, В. В. Леонова

Северо-Восточный комплексный научно-исследовательский институт ДВО РАН, г. Магадан E-mail: <u>akinin@neisri.ru</u>, <u>leonova@neisri.ru</u>

Получены новые данные о составе и возрасте новейших вулканических проявлений на северном побережье Охотского моря, в бассейнах pp. Кананыга и Алики. Новые определения возраста лав оливиновых меланефелинитов К-Аг методом составили от 6 до 9±1 млн лет, что несколько моложе более ранних определений. Лавы генерировались в верхней мантии при частичном (6–9%) плавлении фертильного гранатового перидотита. Астеносферный источник содержал примесь плюмового компонента, что следует из измеренных отношений изотопов гелия в ксенолитах и мегакристах оливина, пироксена и ильменита (³He /⁴He×10⁻⁶ от 4 до 35,6).

Ключевые слова: новейший вулканизм, К-Ar изотопный возраст, изотопы гелия, плюм, Северо-Восток Азии.

ВВЕДЕНИЕ

Большая часть Северо-Востока России (Магаданская область, Чукотский автономный округ и Восточная Якутия) характеризуется относительно низкой вулканической активностью от позднего миоцена до голоцена. Семь относительно хорошо изученных проявлений базальтового вулканизма включают: 1) Энмеленские вулканы на Чукотском п-ове (собственно Энмеленские вулканы, Мелитвеемский поток, проявление г. Мыль-Мыль); 2) проявления м. Наварин; 3) Анюйские вулканы; 4) Кедонский вулкан; 5) Вилигинское вулканическое поле; 6) влк. Балаган-Тас; 7) проявление на о-вах Де-Лонга (номера на рис. 1). Кроме этих проявлений молодого вулканизма, известны еще слабо изученные, условно четвертичные, базальтовые вулканы и фрагменты потоков в устьевой части р. Индигирка, на Кондаковских горах (Некрасов, 1998) а также в районе р. Коркодон, в пределах Сугойской складчатой зоны (Кузнецов, 1979). Известны также более древние, олигоцен-эоценовые щелочные базальты на левобережье р. М. Тарын («вулкан» Рудича по: Сурнин и др., 1998). Часть вулканических проявлений локализуется около современных интерпретируемых границ плит с высокой сейсмической активностью (1, 5, 6 на рис. 1), другая (3, 4) определенно занимает внутриплитное положение в практически асейсмичных областях.

Наиболее интересно вилигинское проявление, вулканические лавы представлены в нем крайне недосыщенными оливиновыми меланефелинитами с большим количеством разнообразных глубинных включений, что важно для оценки состава мантии и нижней коры в регионе. Вилигинское вулканическое поле (ВВП) является единственным известным выходом неогеновых внутриплитных щелочнобазальтовых лав на северном побережье Охотского моря. ВВП располагается на правобережье р. Вилига – в верховьях рр. Кананыга и Алики. Район относится к юго-восточной части сейсмического пояса Черского (землетрясения с магнитудой до 6,0 баллов), на современной интерпретируемой границе Северо-Американской и Охотоморской тектонических плит (Mackey et al., 1997). В региональном плане ВВП приурочено к системе молодых разломов северовосточного простирания, следящихся от Магадана вдоль северного побережья Охотского моря. С разломами ассоциируют неотектонические впадины, ближайшая к ВВП – Верхне-Купкинская. Кроме того, ВВП находится на затухающем продолжении крупного левого сдвига Улахан юговосточного простирания, так что в определенной степени ВВП находится на проекции пересечения этих двух региональных систем разломов (см. рис. 1). По сведениям Геофизической службы РАН, за последние 10 лет в данном районе произошло 6 землетрясений с M > 3,5 балла, эпицентры располагаются вдоль линии, проходящей близ Вилигинского вулканического поля в направлении влк. Балаган-Тас, как правило, на глубине 30-35 км.

[©] Акинин В. В., Леонова В. В., 2010

Рис.1. Расположение Вилигинского вулканического поля (ВВП) на топографической схеме с элементами современной геодинамики Северо-Востока Азии (границы плит по (Mackey et al., 1997). Звездочкой показан современный полюс вращения Евразийской и Северо-Американской плит (Cook et al., 1986). Цифрами обозначены проявления молодого вулканизма в порядке их перечисления в тексте, кружками – стереопроекции с направлением главных деформаций)

Fig. 1. A schematized Viliga Volcanic Field (BBII) and modern geodynamic elements of the Northeast of Asia (Plate boundaries are given after (Mackey et al., 1997). The modern rotation pole of the Eurasian and North American plates is shown by asterisk (Cook et al., 1986). Young volcanism occurrences are indicated by numbers, according to their order in the text, and stereoscopic projections with main deformation trends are shown by circles)

Данные по последнему землетрясению: дата – 21 янв. 2009, 17:37, с. ш. 61.79, в. д. 156.54, глубина 33 км, магнитуда 4,9/6.

Ранее были получены сведения о возрасте и геохимии главных, примесных элементов и изотопов Sr, Nd, Pb лав и ксенолитов одного из выходов в долине р. Алики (Акинин, Апт, 1997; Апт и др., 1998). В настоящей работе приведены первые данные о составе лав и ксенолитов из четырех неизученных выходов в долине р. Кананыга. Также уточнен возраст извержений К-Аг методом. Для обсуждения природы вулканизма и состава мантийных источников мы впервые выполнили измерение изотопов гелия в лавах и глубинных включениях, это позволило предметно оценить вклад плюмового компонента в петрогенезисе.

МЕТОДЫ ИССЛЕДОВАНИЯ

К-Ar изотопное датирование вулканических пород проведено в лаборатории петрологии и изо-

топной геохронологии СВКНИИ ДВО РАН (г. Магадан) на массспектрометре МИ-1201ИГ (аналитики А. Д. Люскин, К. К. Новик, Н. М. Александрова). Концентрации калия измеряли на атомно-абсорбционном спектрометре AAS-1 с погрешностью менее 1%. При расчетах возраста использовали константы, рекомендуем XXI сессией Комиссии по определению абсолютного возраста: $l_k = 0,581 \times$ $\times 10^{-10}$ год⁻¹; $l_{b} = 4,962 \times 10^{-10}$ год⁻¹; распространенность изотопов: ³⁹K - 93,26; ⁴⁰K - 0,01167; ⁴¹K -6,73 ат.%; изотопное отношение атмосферного аргона ${}^{40}Ar/{}^{36}Ar =$ 295,5 (Steiger, Jager, 1977). Пробоподготовка включала дробление проб и выделение фракции 0,1-0,25 мм. Далее из этой фракции была удалена неэлектромагнитная часть, в которой присутствовали главным образом фенокристы и ксенокристы оливина, клино- и ортопироксенов. Таким образом датировалась электромагнитная основная масса лав.

Анализы изотопов гелия выполнены в лаборатории геохронологии и геохимии изотопов ГИ КНЦ РАН (г. Апатиты) И. Л. Каменским на масс-спектрометре МИ-1201. Газовыделение осуществлено методом полного плавления при температуре

1700°С. Главные и примесные элементы в лавах определены рентгенофлуоресцентным методом в СВКНИИ ДВО РАН (руководитель В. Я. Борходоев).

РЕЗУЛЬТАТЫ

В пределах ВВП изучено шесть небольших изолированных некков, даек и руин вулканических аппаратов, все – на площади около 600 км². Продукты вулканизма – лавы и шлаки ультраосновных фоидитов – оливиновых меланефелинитов, прорывающие и перекрывающие меловые известково-щелочные вулканиты Охотско-Чукотского вулканогенного пояса. Самый крупный выход меланефелинитов представляет собой покров мощностью 70–80 м и площадью около 1,5 км², остальные – дайки и небольшие экструзивные купола площадью 0,1–0,4 км². Возраст слагающих их лейцитсодержащих оливиновых меланефелинитов, по результатам К-Аг датирования,

Table 1. The K-Ar age determinations of Viliga olivine melanephelinite								
№ паб	№ автор	Координаты, градусы,	(K+σ) %	$^{40}Ar_{rad, \ {\rm Hr/r}}{\pm}\sigma$	Возраст (±σ),			
J12 J140.	M2 ubrop.	С. Ш. – В. Д.	(11-0), 70		млн лет			
4925	VL 1-H1	61,213–155,153	2,23 ±0,01	$0,89\pm0,10$	6 ±1			
4926	VL 1-H2	61,213-155,153	2,26 ±0,01	$1,48\pm0,17$	9 ±1			
4927	VL 1-H3	61,213-155,153	2,69 ±0,01	$1,33\pm0,20$	7 ±1			
4928	VL 2-M1	61,183-155,400	2,50 ±0,01	$1,25\pm0,30$	7 ±2			
4933	VL 2-H1	61,183-155,400	1,96 ±0,01	$1,13\pm0,10$	8 ±1			
4929	VL 3-H1	61,180-155,373	2,67 ±0,02	$1,35\pm0,10$	7 ±1			
4930	VL 4-H1	61,181-155,380	2,28 ±0,02	$1,35\pm0,20$	9 ±1			
4931	VL 6-M1	61,658-155,500	1,99 ±0,01	$1,28\pm0,08$	9 ±1			

Таблица 1. Результаты К-Аг датирования вилигинских оливиновых меланефелинитов

варьирует от 6 до 9±1 млн лет для выходов в долине pp. Кананыга и Краска до 9±1 млн лет для выходов в долине p. Алики (табл. 1).

Эти наши новые K-Ar даты слегка отличаются от ранее опубликованных датировок для выхода в районе р. Алики (10–13 млн лет, по: Акинин, Апт, 1997) и удовлетворительно согласуются с более точными ⁴⁰Ar/³⁹År датировками тех же образцов, выполненными методом ступенчатого нагрева (от 8 до 10 млн лет, по: Akinin et al., 2005). В наших ранних определениях возраста K-Ar методом по валу не уделялось должного внимания специальной пробоподготовке материала, анализу подвергалась вся дробленая фракция пород 0,1-0,25 мм без дополнительной очистки. В настоящее время протокол пробоподготовки для вулканических пород включает стадию удаления фенокристов и ксенокристов оливина, пироксена и плагиоклаза, которые могут быть главными концентраторами избыточного аргона и, таким образом, могут существенно исказить истинный возраст извержений (например, Kelley, 2002). Это особенно актуально, учитывая большое количество в лавах обломочных ксенокристов оливина и пироксена из мантийных ксенолитов. Оптимальным является датирование относительно хорошо раскристаллизованной (не стекловатой!) основной массы вулканических лав. Таким образом, новые датировки показывают, что время вилигинских извержений приближается ко времени начала активности Энмеленских вулканов на Чукотском полуострове (Акинин, Апт, 1997). В отсутствие плейстоценовых дат возобновление вулканической активности в регионе ВВП представляется маловероятным.

Вулканические лавы ВВП обогащены Ті, Fe и некогерентными примесными элементами (рис. 2, табл. 2). Распределение элементов-примесей в лавах такое же, как и в базальтах океанических островов, – с высоким содержанием Nb и Ta, отрицательной калиевой аномалией и пониженным содержанием Rb и Cs (см. рис. 2). Для лав характерен прямолинейный фракционированный график распределения редкоземельных элементов (REE) с $La_N/Yb_N = 3,6-10,2$. Химический состав вилигинских вулканитов отличается от состава других новейших вулканических проявлений Северо-Востока Азии заметным обогащением щелоча-

ми и фосфором (см. рис. 2). Высокие концентрации К₂О позволяют относить породы к натрийкалиевой, переходной к калиевой серии. Они сильно недосыщены кремнеземом (SiO₂ = 40,7-43,5%), высокомагнезиальные (Mg/Mg + Fe > 0,6), щелочные (Na₂O + K₂O = 6,9-8,4%), еще менее дифференцированные по SiO, и Na₂O+K₂O, чем оливиновые меланефелиниты Энмеленских вулканов на Чукотском п-ове (Акинин, Апт, 1994), при этом отличаются от них более низкой титанистостью (TiO₂ = 2,52–2,97%). Отношения изотопов Sr и Nd, Рь в лавах ВВП соответствуют наиболее деплетированному мантийному резервуару, если сравнивать эти данные с другими известными позднекайнозойскими щелочнобазальтовыми проявлениями на Северо-Востоке Азии (Акинин и др., 2008). Выплавление лав из деплетированного источника, устанавливаемого по изотопным данным, находится в противоречии с высоким содержанием в вулканитах легких редкоземельных элементов. Моделирование парциального плавления показывает, что подобные магмы могут выплавиться только из источника, обогащенного несовместимыми элементами и легкими REE. Такие особенности могут быть объяснены привносом несовместимых элементов в мантийный источник в результате относительно недавних (не более 200 млн лет) метасоматических событий, которые не успели привести к сдвигу в изотопных отношениях. Генеральный тренд щелочных базальтоидов Северо-Востока Азии (включая вилигинские лавы) в целом следует линии, соединяющей составы клинопироксена и флогопита из вилигинских мантийных перидотитов и пироксенитов. Это может указывать на ведущую роль этих минеральных фаз при выплавлении щелочных базальтоидов из мантийного источника (возможно, флогопитсодержащие перидотиты). В целом анализ вариаций примесных элементов лав ВВП показывает, что фракционная кристаллизация и ассимиляция не играли существенной роли в петрогенезисе исследованных вулканических пород.

Моделирование частичного плавления по уравнениям динамического плавления (Zou, Reid, 2001) показало, что поздненеогеновые оливиновые меланефелиниты ВВП могли генерироваться при 4,5–9%-ном частичном плавлении деплетирован-

Состав минералов мантийных ксенолитов (срх – клинопироксен, phl – флогопит)

Рис. 2. Вариации составов поздненеогеновых базальтов и ультраосновных фоидитов Северо-Востока России и Аляски. Состав хондрита и ОІВ (базальты океанических островов) по Р. Томпсону (Thompson, 1982)

Fig. 2. Different compositions of the late Neogenic basalt and ultramafic foidites from northeastern Russia and Alaska. The composition data on chondrite and ocean island basalt (OIB) are given after (Thompson, 1982)

ного гранатового перидотита. Выбранные для моделирования щелочнобазальтовые лавы удовлетворяли главным требованиям расчетного метода: 1) близкий изотопный состав лав; 2) достаточно большая разница в отношениях высоко- и умеренно несовместимых примесных элементов в серии лав, формировавшихся при различающейся степени парциального плавления; 3) отношения концентраций примесных элементов находятся в соответствии с порядком их коэффициентов распределения; 4) вулканические породы имеют достаточно высокую магнезиальность (Mg# > 0,6) и другие признаки отсутствия фракционной кристаллизации.

В вулканитах обнаружены многочисленные глубинные включения – нижнекоровые и мантийные ксенолиты, мегакристы клинопироксена, оливина, ортопироксена, титаномагнетита и флогопита. Около 80-85% в популяции ксенолитов занимают ксенолиты слабодеплетированных шпинелевых лерцолитов (CaO = 1,7-4,5%, Al₂O₂ = 1,7-5,8%, MgO = 35–44,5%). По соотношениям Ål/Si = = 0.04 и Mg/Si = 1.21 состав ксенолитов близок главному тренду верхнемантийных ксенолитов (Jagoutz et al., 1997), отдельные вилигинские лерцолиты близки к примитивной недифференцированной мантии. По среднему содержанию Al₂O₂ вилигинские лерцолиты близки к перидотитовым ксенолитам из двух геодинамических обстановок – континентальных рифтов и континентальных дуг. Некоторые образцы по главным элементам близки к примитивной верхней мантии (Pearson et al., 2005). По геохимии примесных элементов отчетливо устанавливается фертильный характер большинства лерцолитов. Появление фертильных перидотитов в верхней мантии

Таблица 2. Представительный химический состав оливиновых меланефелинитов Вилигинского вулканического поля

Элемент	VL1-H1	VL1-H2	VL2-H1	VL3-H1	VL4-H1	VL6-M1b	VL5-441-24*	VL5-442-1*
SiO ₂	42,97	43,54	41,7	40,52	40,52	40,67	40,96	42,51
TiO ₂	2,65	2,52	2,61	2,95	2,97	2,34	2,23	2,76
Al_2O_3	13,49	13,57	13,37	13,31	13,1	12,19	12,6	11,95
FeO	10,79	10,87	11,11	12,02	12,58	11,42	11,42	11,2
MnO	0,17	0,17	0,18	0,21	0,23	0,23	0,17	0,16
MgO	11,36	11,09	10,64	9,34	9,59	11,23	10,43	13,65
CaO	9,05	9,07	9,11	9,44	9,23	9,65	9,25	7,5
Na ₂ O	4,59	4,29	5,23	5,25	4,65	5,27	5,06	3,62
K ₂ O	2,7	2,61	2,49	3,17	2,66	2,48	2,87	2,86
P_2O_5	0,94	0,93	1,34	1,32	1,12	1,76	0,99	0,7
п. п. п.		0,07	0,93	1,1	1,9	1,39	0,29	0,22
Сумма	98,71	98,73	98,71	98,63	98,55	98,63	96,27	97,13
Cr	435	465	235	146	154	451	425	473
Ni	223	212	196	136	143	304	274	416
Со			39,6	39	39	41	43	54
Sc	15	13,6	15,1	14	14,8	13,9	17	18
V		,	202	211	211	186		
Rb	30,9	30,1	31,32	37,311	53,04	32,85	33	40
Cs	0,5	0,5	0,6	0,6	0,7	0,6	0,7	0,7
Ва	454	1154	641	490	588	412	256	451
Sr	1363	1246	1373	1621	1476	1856	1297	1048
Та	4,0	3,7	7,1	6,6	6,9	5,9	6,7	5,1
Nb	77,4	72,8	104,8	113,6	112,8	125,7	,	,
Hf	4,4	4,3	6,0	6,0	6,1	6,1	6,4	5,2
Zr	304,6	244,1	395.6	410,2	412,1	433,5	310	218
Y	21,0	20,8	25,9	27,2	27,3	31,4		
Th	4,4	4,5	6,4	5,9	5,9	7,3	7,3	5,0
U	1,6	1,6	2,4	2,2	1,9	2,75	1,8	1,6
La	39,8	38	53,6	52,1	52,1	75	77	42
Ce	82,7	77,3	107,4	106,8	106,5	184,4	142	80
Pr	9,4	8,8	12,3	12,4	12,4	16,6		
Nd	39,4	36,8	51,1	52,9	52,7	67,4	62	36
Sm	7,8	7,3	9,7	10,2	10,2	12,1	13	9
Eu	2,5	2,3	3	3,0	3,1	3,6	3,7	2,4
Gd	8,3	7,9	10	10,6	10,5	12,5	,	,
Tb	1.0	0,9	1,2	1,2	1,2	1,4	1,4	0,9
Dy	4,9	4,8	5,9	6,2	6,2	7	,	,
Ho	0.8	0.8	1	1,0	1,0	1,2		
Er	2.1	2.1	2.5	2.6	2.6	3		
Tm	0.2	0.2	0.3	0.3	0.3	0.4		
Yb	1.5	1.6	1.8	1.8	1.8	2.2	1.9	1.4
Lu	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.2
⁸⁷ Sr/ ⁸⁶ Sr	•,-	°, -	•,-	•,-	•,-	-,-	0.703049(7)	0.703079(7)
143 Nd/ 144 Nd							0.513053(4)	0.513053(4)
εNd							+8,1	+8,1

Table 2. Representative geochemistry of olivine melanephelinite from the Viliga Volcanic Field

* Два последних образца – по: Акинин, Апт, 1997; Апт и др., 1998. Концентрации оксидов – в мас.%, примесных элементов – в г/т.

под Вилигинским ареалом, перекрывающим структуры Охотско-Чукотского окраинно-континентального вулканогенного пояса, объясняется отрывом мантийного слэба (slab-window) в процессе позднемеловой субдукции, за чем последовало «вскрытие» астеносферного источника (Ntaflos et al., 2008). Для оценки вклада глубинного плюмового компонента может быть использован изотопный состав гелия (табл. 3).

Известно, что базальтовые лавы утрачивают в процессе излияния и дегазации значительную часть гелия, однако полученные нами для вилигинских лав низкие отношения ³He/⁴He = (0,10–

-	-		•		•••
No official	Координаты, градусы		A	⁴ He,	³ He / ⁴ He,
л≌ ооразца	с. ш.	В. Д.	Анализирусмый материал	нсм ³ /г · 10 ⁻⁶	нсм ³ /г · 10 ⁻⁶
VL1-H3	61,213	155,153	Оливиновый меланефелинит	1,30	0,17
VL2-H1	61,183	155,400	То же	1,40	0,19
VL3-H1	61,180	155,373	«	1,30	0,16
VL4-H1	61,181	155,380	«	1,40	0,19
VL5-Lc4bas	61,658	155,500	«	2,60	0,10
VL1-X30	61,213	155,153	Ксенолит лерцолита	0,037	5,6
VL5-X35	61,658	155,500	То же	0,12	7,33
VL5-X39	61,658	155,500	«	0,090	3,40
VL1-M5	61,213	155,153	Мегакрист ильменита	0,025	35,6
VL1-M6	61,213	155,153	Мегакрист оливина	0,010	12,6
VL1-M17a	61,213	155,153	Мегакрист клинопироксена	0,078	4,51

Таблица З. Результаты анализа изотопного состава гелия в оливиновых меланефелинитах, ксенолитах лерцолитов и мегакристах Вилигинского вулканического поля

Table 3. Isotopic composition of helium from Viliga olivine melanephelinite, lherzolite xenoliths and megacrysts

 $0,19) \times 10^{-6}$, не достигающие даже атмосферного показателя, трудно объяснить только ранней дегазацией мантийного источника. Вероятной причиной могло быть привнесение в исходный расплав компонента, обогащенного радиогенным гелием. Для ксенолитов шпинелевых лерцолитов получены более высокие, чем для базальтов, значения ${}^{3}\text{He}/{}^{4}\text{He} = (3,40-7,33) \times 10^{-6}$. Незначительное подплавление ксенолитов, затрагивающее изредка не только краевые части, но и межзерновые пространства внутри ксе-

нолитов, не привело к актив-

ному высвобождению мантий-

ного гелия, что может быть

объяснено быстрой транспор-

тировкой магмы к поверхнос-

ти. Значительно более высо-

кие изотопные отношения ге-

лия получены для образцов

мегакристов, что демонстри-

рует их способность высту-

пать в роли контейнеров для

сохранения первичного захва-

ченного гелия. В мегакристе

клинопироксена отношение

 $^{3}\text{He}/^{4}\text{He} = 4,51 \times 10^{-6} \text{ относи-}$

тельно низкое, активной дега-

зации, вероятно, способство-

вало наличие совершенной

спайности и микродефектов

кристаллической решетки. В

мегакристе оливина получено

достаточно высокое первич-

ное изотопное отношение ³Не/

 ${}^{4}\text{He} = 12,6 \times 10^{-6}$, однако и оно

не превышает обычных для

MORB значений (рис. 3). Под-

тверждается лишь, что моно-

кристаллы оливина – доста-

точно хорошие природные «контейнеры». Уникально высокое изотопное отношение получено для мегакриста ильменита (${}^{3}\text{He}/{}^{4}\text{He} = 35,6 \times 10^{-6}$ или R/R, = 25,4). Значение приближается к современному нижнемантийному отношению (для гавайских базальтов около 30 R₄) и в определенной степени может указывать на плюмовый источник. Учитывая способность ильменита и магнетита абсорбировать и накапливать легкий изотоп ³Не в результате спалогенных реакций с космическим из-

Рис. 3. Изотопный состав гелия вилигинских лав и глубинных включений из них (мантийных ксенолитов лерцолитов, мегакристов ильменита – Ilm meg, оливина – Ol meg) в сравнении с составом мантийных вулканических пород MORB, континентальных горячих точек, океанических островов и источников HIMU (Porcelli, Ballentine, 2002) (R/RA – отношение ³He/⁴He в образце к таковому в воздухе)

Fig. 3. The isotopic composition of helium from Viliga lavas and deep-seated xenoliths (spinel lherzolite xenoliths, ilmenite megacrysts - Ilm meg, olivine megacrysts – Ol meg) compared with mantle volcanic rocks MORB, continental hotspots, oceanic island basalt and HIMU sources (Porcelli, Ballentine, 2002) $(R/RA \text{ is }^{3}\text{He})^{4}$ He ratio in sample vs. that in the air)

лучением, можно было бы предположить и иную природу хотя бы части высокого отношения изотопов гелия. Однако большая часть мегакристов скрыта внутри лав и не была экспонирована на поверхности. Для уверенного заключения требуются дальнейшие методические исследования с отбором проб разной степени эскпонированности. Целесообразно провести исследования изотопного состава гелия методами локального микроанализа. Многочисленные цепочки газово-жидких включений в мегакристах клинопироксена – один из таких потенциальных объектов, методика их локального анализа позволяет избежать смешения при высвобождении гелия из пузырьков и кристаллической решетки (Толстихин, 1975).

ЗАКЛЮЧЕНИЕ

Лавы Вилигинского вулканического поля представлены недосыщенными оливиновыми меланефелинитами натрий-калиевой, переходной к калиевой серии. Их возраст, по результатам дополнительного К-Аг датирования, варьирует от 6 до 9±1 млн лет. Изотопные отношения Sr и Nd, Pb в лавах соответствуют деплетированному мантийному резервуару, в то время как высокое содержание редкоземельных элементов показывает, что источник лав был обогащен несовместимыми элементами и легкими REE. Мы интерпретируем привнос несовместимых элементов в мантийный источник в результате относительно недавних (менее 200 млн лет) метасоматических событий.

Среди глубинных включений в лавах преобладают слабодеплетированные шпинелевые лерцолиты. По среднему содержанию Al₂O₃ они близки к перидотитовым ксенолитам из двух геодинамических обстановок – континентальных рифтов и континентальных дуг. Некоторые образцы лерцолитов близки по составу к фертильной примитивной верхней мантии. Это свидетельствует о «вскрытии» астеносферного источника под Вилигинским ареалом. На привнос плюмового компонента указывает также уникально высокое изотопное отношение гелия, полученное для мегакриста ильменита (³He/⁴He = 35,6 × 10⁻⁶), близкое к таковому в гавайских базальтах.

Особенности состава продуктов вулканизма Вилигинского вулканического поля (недосыщенность SiO₂ и деплетированность радиогенными изотопами лав, фертильная геохимия мантийных ксенолитов, высокие отношения изотопов гелия в мегакристах) могут быть связаны с расположением ареала на границе Северо-Американской и Охотоморской тектонических плит. Именно для легкопроницаемой и активной области сочленения плит может быть характерно проявление вулканизма такого необычного состава и вскрытие особо глубинных мантийных источников. Работа выполнена в рамках Программы Президиума РАН № 16, при поддержке гранта РФФИ-АНФ № 09-05-91005-АНФа и гранта ДВО РАН № 09-1-П16-11.

ЛИТЕРАТУРА

Акинин В. В., Апт Ю. Е. Энмеленские вулканы (Чукотский полуостров): петрология щелочных лав и глубинных включений. – Магадан : СВКНИИ ДВО РАН, 1994. – 97 с.

Акинин В. В., Anm Ю. Е. Позднекайнозойский щелочно-базитовый вулканизм на Северо-Востоке России // Магматизм и оруденение на Северо-Востоке России. – Магадан : СВКНИИ ДВО РАН, 1997. – С. 155–174.

Акинин В. В., Евдокимов А. Н., Кораго Е. А., Ступак Ф. М. Новейший вулканизм арктической окраины Северной Евразии // Изменение окружающей среды и климата; природные и связанные с ними техногенные катастрофы. Т. 2. Новейший вулканизм северной Евразии: закономерности развития, вулканическая опасность, связь с глубинными процессами и изменениями природной среды и климата. – М. : ИГЕМ РАН, 2008. – С. 41–80.

Апт Ю. Е., Акинин В. В., Райт Дж. Е. Изотопы Sr, Nd, и Pb в неогеновых меланефелинитах и глубинных ксенолитах на Северо-Востоке России // Геохимия. – 1998. – № 1. – С. 28–37.

Баркар А. В. Минеральные ассоциации сапфироносных россыпей Приморья в связи с проблемой коренного источника сапфиров : автореф. дис. ... канд. геол.-минер. наук. – Владивосток, 2004. – 21 с.

Кузнецов В. М. Геологическая карта СССР. Среднеколымская серия. Лист Q-56-XXXV,- XXXVI. – Магадан : Мингео СССР, 1979.

Некрасов И. Я. Трансиндигирская вулканогенная зона и ее тектоническая природа // ДАН. – 1998. – Т. 362, № 5. – С. 653–656.

Сурнин А. А., Округин А. В., Зайцев А. И. Глубинные ксенолиты в базальтах Восточной Якутии // Отеч. геология. – 1998. – № 6. – С. 44–48.

Толстихин И. Н. Изотопы гелия в природе : автореф. дис. ... д-ра хим. наук. – Л., 1975. – 53 с.

Akinin V. V., Miller E. L., Layer P. Late Cretaceous modification of deep continental crust in the NE Paleo Pacific: additional evidence from Viliga lower crust xenoliths // EOS Trans. AGU. – 2005. – Vol. 86 (52). – Fall Meet. Suppl. – V51D–1516.

Cook D. B., Fujita K., McMullen C. A. Present day plate interactions in Northeast Asia: North American, Eurasian and Okhotsk plates // Journal of Geodynamics. – 1986. – Vol. 6. – P. 33–51.

Jagoutz E. et al. The abundances of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules / 10th Lunar and Planet. Sc. Conf., Perg. Houston. – 1997. – P. 2031–2050.

Kelley S. Excess argon in K-Ar and Ar-Ar geochronology // Chemical Geology. – 2002. – Vol. 188. – P. 1–22.

Mackey K. G., Fujita K., Gunbina L. V. et al. Seismicity of the Bering Strait region: evidence for a Bering block // Geology. – 1997. – Vol. 25, No. 11. – P. 979–982.

Ntaflos Th., Tschegg C., Coltorti M. et al. Asthenospheric signature in fertile spinel lherzolites from the Villiga Volcanic Field in NE Russian // Metasomatism in Oceanic and Continental Lithospheric Mantle Geological Society of London. – Special Publications 293. – 2008. – P. 57–81. *Pearson D. G., Canil D., Shirey S. B.* Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds // Treatise on geochemistry. – 2005. – Vol. 2. – P. 171–275.

Porcelli D., Ballentine C. J. Models for the distribution of terrestrial noble gases and the evolution of the atmosphere // Rev. Mineral. Geochem. – 2002. – Vol. 47. – P. 412–480.

Steiger R. H., Jager E. Subcommision on geochronology: Convention on the use of decay constants in geo-

Поступила в редакцию 18.09.2009 г.

and cosmochronology // Earth Planet. Sci. Lett. - 1997. - Vol. 36. - P. 359-361.

Thompson R. N. Magmatism of the British Tertiary Volcanic Province // Scott. J. Geol. – 1982. – Vol. 18. – P. 49–107.

Zou H., Reid M. R. Quantitative modeling of trace element fractionation during incongruent dynamic melting // Geochimica et Cosmochimica Acta. – 2001. – Vol. 65, No. 1. – P. 153–162.

HELIUM ISOTOPIC COMPOSITION AND K-Ar DATA OF OLIVINE MELANEPHELINITE AND MANTLE XENOLITHS FROM THE VILIGA VOLCANIC FIELD, THE NORTHERN PRIOKHOTJE TERRITORY

V. V. Akinin, V. V. Leonova

New data are obtained about the age and composition of young volcanics from the Kananyga R. and Aliki R. areas over the northern coasts of the Sea of Okhotsk. New K-Ar whole rock ages of olivine melanephelinite lavas range from 6 to 9 ± 1 Ma, which is somewhat younger than the earlier age determinations. The upper mantle was the generating source of magma with a partial melting of fertile garnet peridotite (6–9%). According to measured helium isotopic ratios in xenoliths and olivine, pyroxene and ilmenite megacrysts (${}^{3}\text{He}/{}^{4}\text{He}\times10^{-6}$ ranges from 4 to 35.6), the asthenospheric source could contain a plume component.

Key words: young volcanism, K-Ar isotope age, helium isotope, plume, the North-East of Asia.