УДК 552.33:550.08

СОСТАВ РУДОНОСНЫХ РАСТВОРОВ И ИСТОЧНИКИ БОРА ДАЛЬНЕГОРСКОГО СКАРНОВО-БОРОСИЛИКАТНОГО МЕСТОРОЖДЕНИЯ (ПРИМОРЬЕ, РОССИЯ)

© 2009 г. В. А. Баскина, В. Ю. Прокофьев, В. А. Лебедев, С. Е. Борисовский, М. Г. Добровольская, А. И. Якушев, С. А. Горбачева

Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН 119017, Москва, Ж-17, Старомонетный пер., 35

Поступила в редакцию 21.04.2008 г.

Дальнегорское скарново-боросиликатное месторождение Приморья (44° 34' с.ш. и 135° 37' в.д.), расположенное в центре одноименного рудного поля, относится к месторождениям-гигантам. В литературе господствуют представления о связи оруденения с мантийным очагом, о ювенильной природе источников бора и рудоносных щелочных флюидов. В предлагаемой статье рассмотрена другая модель формирования месторождения, согласно которой непосредственным источником бора служили осадочные толщи вероятно, эвапориты локального бассейна, а агентами рудоотложения – нагретые подземные воды. Выводы авторов базируются: 1) на минералого-геохимических особенностях изменений дорудных даек, свидетельствующих о составе просачивающихся рудоносных флюидов; 2) на данных о составах флюидных включений в минералах месторождения и 3) на изотопных составах бора и кислорода в датолитах. Тела латитов, непосредственно предшествующие отложению промышленных датолитовых руд, не обнаруживают ни минералогических, ни геохимических признаков принадлежности к щелочной серии. По нашим данным, это очаги и тела палеогеновых предрудных базальтов, внедрившиеся в центре боросиликатного месторождения, в зоне воздействия флюидного канала, служившие проводниками рудоносных флюидов и измененные до состава ультракалиевых пород. Предполагается, что на стадии рудоотложения были активны нагретые водные флюиды, обогащенные высокорастворимыми Ва, К, В и крайне обедненные мало растворимыми в таких флюидах Zr, Nb, Ta, La, Ce. Это не противоречит данным о свойствах и составах первичных и первично-вторичных двухфазных флюидных включений (ФВ) в данбурите, датолите, кварце, флюорите из рудных тел. Судя по изотопным составам бора в датолитах $(\delta^{11}$ В от –9 до –31‰), основная масса бора была извлечена из осадочно-метаморфических толщ мезозойского складчатого фундамента. Изотопные составы кислорода в датолитах Дальнегорского месторождения ($\delta^{18}O_{SMOW}$ от –1.64 до –2.97, реже до –5‰) служат признаком значительной роли подземных вод в транспортировке бора. Предложена схема многоступенчатого накопления бора в рудах Дальнегорского скарново-боросиликатного месторождения.

ВВЕДЕНИЕ

Дальнегорское боросиликатное месторождение, открытое в 1946 г., относится к месторождениям-гигантам. На площади менее 3 км² сосредоточено 3/4 российских и более 3% мировых запасов бора. Эксплуатация месторождения ведется с 1959 г. открытым способом. Запасы руд оценены в 300-350 млн. т., при запасах полезного компонента B_2O_3 в 35-40 млн. т. Разведанных запасов по $C_1 =$ = 200 млн. т. и по C₂ = 132 млн.т., как полагают, достаточно более чем на 100 лет. (Король, 2000). В литературе доминируют представления о мантийном источнике бора и рудоносных флюидов, связанных на Дальнегорском месторождении со становлением очага щелочно-базальтовых магм. Обобщение литературных данных о строении месторождения, а так же анализ геологических соотношений магматических, метасоматических и рудных образований имеются в работе (Баскина, 2006). В предлагаемой статье выдвинуты аргументы в пользу осадочного источника бора и накопления его в ходе глубокой циркуляции нагретых метеорных вод.

ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ И СТРОЕНИЕ МЕСТОРОЖДЕНИЯ

Дальнегорское боросиликатное месторождение расположено в центре одноименного рудного поля (44° 34' с.ш и 135° 37' в.д), в окружении скарново-полиметаллических (Pb, Zn, Ag) месторождений, которые разрабатываются и изучаются более 100 лет (фиг. 1). При всех различиях состава и масштабов оруденения, боросиликатное и полиметаллические месторождения характеризуются общими чертами геологического строения. Они приурочены к горстам складчатого фундамента с крупными аллохтонными блоками триасовых известняков, в которых и развиваются скарны с наложенным орудене-

Адрес для переписки: В.А. Баскина. E-mail: baskin@orc.ru

нием. В строении мезозойского складчатого фундамента существенна роль пластин кремнистотерригенных и углисто-терригенных отложений. Месторождения расположены в узлах пересечения региональных систем нарушений, контролирующих размещение мезозойских щелочных базальтов и палеогеновых базальтовых даек. В частности, боросиликатное месторождение расположено на пересечении нарушений северо-северо-восточного простирания (Партизанский разлом), меридиональных (Николаевский разлом) и северо-западных (Правобережный разлом) (фиг. 1). Региональное обогащение бором характерно для мезозойских осадочных толщ всей Сихотэ-Алиньской складчатой области. На большинстве месторождений в составе полиметаллических и оловянных руд и околорудных метасоматитов широко представлены боросодержащие минералы – турмалин, аксинит, датолит. На всех месторождениях распространены близкие по времени и составу пироксен-гранатовые скарны и однотипная наложенная сульфидная Pb-Zn-минерализация. Изотопный состав серы в галенитах боросиликатного и промышленных полиметаллических месторождений рудного поля одинаков: $\delta^{34}S = +0.1\%$ – на Борном; -0.2...+0.5% - на Верхнем; -0.1...+0.1% - на Николаевском; 0.0...+0.3% - на 1-м Советском (Раткин и др, 1997). Это свидетельствует о преобладании мантийных источников серы. Изотопные отношения свинцов в галенитах однотипны не только в месторождениях Дальнегорского поля, но и Дальневосточного региона в целом, обладая свойствами свинца омоложенных кратонов (Ростовский, 2005).

Гранитоиды и андезиты известково-щелочной дальнегорской серии распространены в рудном районе повсеместно. До- и послерудные дайки базальтов, трахибазальтов, андезито-базальтов, наиболее тесно связанные с оруденением, широко представлены как на боросиликатном, так и на других месторождениях рудного района. Отличительная особенность состава жильных базальтов – высокие (100–200 г/т) концентрации лития (Баскина, 1982; Баскина, 1985). Геологическая позиция и изотопногеохимические характеристики палеогеновых базальтов служат основанием для отнесения их к формации континентальных базальтов, к рифтогенным базальтам континентальных окраин (Farmer, 2003).

От других месторождений Дальнегорского рудного поля наиболее крупное по запасам боросиликатное месторождение отличается наличием локального флюидного канала, в пределах которого сформирован специфический комплекс высококалиевых даек, а также изотопным составом бора в датолитах и данбуритах.

Магматические образования Дальнегорского месторождения в целом не отличаются от одновозрастных магматитов регионального распространения. Единственный специфический комплекс – это высококалиевые латиты. Они распространены в центре боросиликатного месторождения и не встречены за его пределами. Составы типовых магматических образований месторождения приведены в табл. 1. К наиболее ранним относятся калиевые щелочные базальты и габброиды, аналоги мезозойских щелочных базальтов самаркинской и других структурных зон Приморья. Для этих пород характерны высокие концентрации Ті, Та, Nb, Zr, Hf и LREE элементов, а также K, Ba, Rb. Изотопные возрасты щелочных габброидов на месторождении лежат в интервале от низов мела до конца палеоцена. На периферии месторождения обнаружены натровые трахиты – породы, несущие явные признаки щелочного метасоматоза (альбитизация, накопление Sr, Zr, Nb, P, REE, Th). На площади месторождения, как и за его пределами, палеогеновые дайки, (главным образом базальты и субщелочные андезито-базальты) образуют поясовые скопления. Вскрытые бурением "долинные" граниты (Носенко, 1989; Валуй, Стрижкова, 1997), в отличие от остальных гранитов рудного района, принадлежат к ильментовой фации. Это предположительно связано с наличием в субстрате графитизированных пелитов, обеспечивающих восстановительную среду при становлении очага гранитных магм. Граниты не сопровождаются турмалинизацией, содержания бора в них низки (13-20 г/т).

В центральной части месторождения имеется скопление жильных и субвулканических тел специфических высококалиевых латитов. Эти образования ранее рассматривались как дифференциаты щелочно-базальтового очага, несущие борное оруденение (Говоров, 1976; Малинко, 1992; Малинко, Носенко, 1990; Носенко и др, 1990; Лисицын, Малинко, 1994). Однако латиты не обнаруживают минералого-геохимических признаков принадлежности к щелочным сериям. В частности, в отличие от щелочных базитов и особенно от их более кремнеземистых дифференциатов, латиты резко обеднены La, Ce, Nd, Nb, Ta, Zr, Hf.

Появление высококалиевых латитов, повидимому, связано с воздействием обогащенных К, Ва, В гидротерм на расплавы и породы тех до- и внутрирудных палеогеновых базальтовых даек, внедрение которых имело место в зоне воздействия рудоносного флюидного потока. Геология, минералогия и геохимия высококалиевых латитов служат независимыми индикаторами состава бороносных флюидов и времени их активности.

Оруденение – датолитовое, в меньшей степени датолит-данбуритовое и аксинит-датолитовое – формировалось в инфильтрационных известковых скарнах, образованных по триасовым известнякам и брекчиям – породам олистоплак и матрикса валанжинской свиты (Носенко и др., 1990; Раткин, Ватсон, 1993). В осадочных толщах фундамента обильны горизонты углистых алевролитов, эти же породы выведены на поверхность в центре и на флангах место-

Компоненты	1	2	3	4	5	6	7	8	9
				Mac. %					
SiO ₂	52.7	56.6	56.2	53.5	52.1	50.6	43.4	48.3	43.4
TiO ₂	1.2	1.4	1	1.3	1.3	1.3	3.5	2.7	3.2
Al ₂ O ₃	16.5	15.8	14.4	15.7	16.6	16.4	10.1	13.8	11.8
Fe ₂ O ₃	5.6*	3.0*	6.4*	3.4	4.1	9.6*	14.6*	3.8	13.1*
FeO	Не опр.	Не опр.	Не опр.	6.5	4.3	Не опр.	Не опр.	7.9	Не опр.
MgO	4.6	2.0	2.8	4.5	4.2	4.2	11.1	6.8	8.6
CaO	9.6	7.8	9.2	10.7	7.9	10.3	7.3	7.7	8.5
Na ₂ O	2.1	0.4	0.9	2.2	3.2	1.9	1.8	0.6	0.4
K ₂ O	4.9	10.8.	8.2	1.5	1.6	1.3	1.5	6.2	5.2
P_2O_5	0.3	Не опр.	0.2	0.3	0.4	0.3	0.7	0.7	0.6
П.п.п	Не опр.	»	Не опр.	2.1	3.1	Не опр.	5.1	1.6	3.9
Сумма	97.5	97.9	100.1	100.3	99.1	95.9	99.1	100.2	98.7
		I	I	Г/т	I	I	I	I	I
Sr	474	122	221	730	663	757	594	799	627
Ba	790	1028	1926	242	800	366	990	1290	1651
Rb	236	315	296	38	25	26	58	294	241
Y	15	19	16	18	21	20	44	32	35
Zr	65	52	68	112	136	112	345	228	231
Nb	5	9	8	7	5	10	55	111	131
Ni	10	11	-	-	47	12	242	19	42
Cr	38	46	66	39	108	102	272	-	23
Th	3.7	Не опр.	1.9	Не опр.	5.0	Не опр.	9.7	16	14.3
U	1.3	»	4.0	»	0.5	»	1.8	1.1	1.9
Hf	5.0	»	2.1	»	2.9	»	9.5	5.9	Не опр.
Та	0.9	»	0.3	»	0.4	0.4	3.5	5.5	»
La	Не опр.	9.0	9.7	13.9	17.3	17.3	59	99.2	70.3
Ce	»	20.1	21.9	29.8	39.4	39.4	109.7	183	143
Pr	»	2.6	Не опр.	3.8	Не опр.	Не опр.	Не опр.	Не опр.	13.9
Nd	»	14	13.7	16.2	23.1	23.1	69.7	75.8	53.0
Sm	»	2.6	3.4	3.3	5.6	5.6	18.2	12.8	10.1
Eu	»	0.9	0.9	1.1	1.8	»	6	3.5	3.0
Tb	»	0.4	0.3	0.4	0.7	»	2.5	1.4	1.2
Yb	»	0.7	1.0	1.3	2.0	»	2.5	2.4	1.9
Lu	»	0.1	0.2	0.4	0.2	»	0.3	0.3	0.3
Возраст, млн. лет	57 ± 1.4	Не опр.	57 ± 1.4	54 ± 2	57–53	50 ± 3	109 ± 6	72 ± 3	70 ± 2

Таблица 1. Составы типовых изверженных пород Дальнегорского рудного поля

Примечание. "-" – содержания ниже чувствительности метода. Анализы на редкоземельные элементы и Та, Th, U, Cr выполнены в ИГЕМ РАН методом ICP-MS (аналитик – С.А. Горбачева). Петрогенные компоненты в пробах 4, 5, 8 анализировались традиционными методами в ЦХЛ ИГЕМ РАН (аналитик – Ю.В. Долинина); в остальных пробах – рентгенфлюоресцентным методом в ИГЕМ РАН (аналитик – А.И. Якушев). Там же определены акцессорные примеси (помимо указанных выше). В анализах РФА железо определялось в окисной форме (Fe₂O^{*}₂). Изотопный возраст пород определен К-Аг-методом в ИГЕМ РАН (аналитик –

В.А. Лебедев).

Пробы: 1 – матрица латита, образец 110/04; 2 – линзы, богатые ортоклазом, там же; 3 – закалка латита, образец 2122; 4–6 – *андезиты и базальты, палеогеновые дайки*: 4 – долериты, ассоциированные с латитами, среднее из 3 анализов, 5 – внутрирудные дайки 2-го Советского месторождения, среднее из семи анализов, 6 – дайка месторождения Верхнего, образец 1936; 7–9 – *габброиды калиевой щелочной серии* в карьере боросиликатного месторождения: 7 – оливиновое габбро, образец 40/03, 8 – такситовые керсутитовые габбро, среднее из двух анализов; 9 – долерит, образец 38.

рождения по мелким тектоническим зонам (Волохин и др., 2007; Алексеев и др., 2007). Скарновая залежь, длиной 2400 м, приурочена к вертикальным пластинам известняков, имеет трубообразную форму, простирается в северо-восточном направлении (40°–60°), падает к северо-западу под углами 70°–85°, прослежена по падению на 1600 м. Промышленные датолитовые руды в скарнах вскрыты в интервале глубин от +500 м до –560 м. Скарнирование известняков неравномерно: в центральной части прослеживается сплошная колонна скарнов, на флангах месторождения скарнированы лишь тектонические контакты известняковых глыб. Линзы скарнированных пород, мощностью от 15 м до 350 м образованы также по песчаникам, алевролитам и брекчиям.

Установлено несколько этапов скарнирования. К раннему этапу отнесено образование волластонитгроссуляровых скарнов, на тонкослоистых почковидных агрегатах которых отлагались датолит и данбурит. Далее, вслед за внедрением базальтовых и трахиандезитовых даек и подъемом богатых калием флюидов, произошло образование скарнов второго этапа - с геденбергитом, андрадитом, с наложенными промышленными датолит-кварц-кальцитовыми рудами и с незначительными по объему проявлениями сфалерита и галенита. При этом данбурит 1 оказался нацело замещенным гранатом, геденбергитом, ортоклазом, датолитом 2, кварцем и кальцитом. Данбурит, сохранившийся на месторождении, на участке Левобережном, кристаллизовался позже, часто в виде друз водяно-прозрачных кристаллов в скарнах и пустотах. Его следовало бы обозначить как данбурит 2. Далее вновь имели место многократные внедрения основных даек, с которыми ассоциированы поздние андрадит-волластонитовые и кальцит-гранатовые скарны и приуроченная к ним кальцит-сульфидная минерализация.

ФИЗИКО-ХИМИЧЕСКИЕ УСЛОВИЯ РУДООТЛОЖЕНИЯ

Исследование флюидных включений

В минералах месторождения (данбурите, датолите, кварце, флюорите) были обнаружены доступные для исследований первичные, первично-вторичные и вторичные двухфазовые флюидные включения размером 120–4 мкм (фиг. 2).

Микротермометрические исследования флюидных включений проводились в ИГЕМ РАН на термокамере THMSG-600 фирмы "Linkam", позволяющей производить измерения температур фазовых переходов в интервале температур от –196 до 600°С. Состав основных компонентов раствора включений определялся по температуре эвтектики (Борисенко, 1977). Концентрация солей в растворе флюидных включений оценивалась по температуре плавления льда в системе H₂O–NaCl, с использованием данных из работы (Bodnar, Vityk, 1994). Оценка концентраций солей проводилась при помощи программы "FLINCOR" (Brown, 1989). Для некоторых включений приходилось использовать данные по системе H₂O–CaCl₂. Анализ водной вытяжки из флюидных включений комплексом методов (газовая и ионная хроматография, ICP-MS) был выполнен из навески 1.0 г фракции 0.5–0.25 мм в ЦНИГРИ (аналитик – Ю.В. Васюта) по методике, опубликованной в работе (Кряжев и др., 2003).

Термо- и криометрические исследования индивидуальных флюидных включений показали (фиг. 3; табл. 2), что минералы боросиликатной стадии формировались из растворов, содержащих хлориды Са, Na и Mg ($T_{_{ЭВТ}}$ от -69 до -35°С) при повышенных температурах (данбурит – 337–235°С и 13.3–11.8 мас. %-экв. NaCl; датолит – 350–230°С и 23.3–9.2 мас. %-экв. NaCl; кварц 1 – 405–265°С и 26.7–8.5 мас. %-экв. NaCl). Минералы кварц-кальцитовой стадии формировались из менее концентрированных и нагретых растворов (флюорит – 275– 250°С и 15.4–10.5 мас. %-экв. NaCl, кварц – 235– 135°С и 26.7–8.5 мас. %-экв. NaCl. Явления гетерогенизации раствора не наблюдались. С падением температуры концентрация солей в растворе в целом падала (фиг. 3).

Детальное изучение водных вытяжек из включений в кварце и флюорите позволило получить важную информацию о составе рудообразующего раствора (табл. 3; фиг. 4). Во флюиде среди катионов главную роль играет Ca, а остальные (Na, K и Mg) катионы находятся в подчиненном количестве. Установлены заметные количества таких компонентов, как B, Cl, CO₂ и CH₄. Кроме того, в составе флюида выявлены многие микрокомпоненты: Br, Ås, Li, Rb, Cs, Sr, Mo, Ag, Sb, Cu, Žn, Cd, Pb, Bi, Th, U, Ga, Ge, Sc, Ti, Mn, Fe, Co, Ni, V, Cr, Y, Zr, Nb, In, Sn, Ba, W, Te, Au, Hg, Tl и REE. Высокие концентрации бора установлены в кварц-боросиликатной стадии, а в более низкотемпературном кварце высоки содержания лития и цезия. Для бора получены очень высокие значения концентраций в растворах ранних флюидов, и они согласуются с ранее полученными с помощью других методов данными (Прокофьев и др., 2003). Отметим, что растворы из включений в кварце, наросшем на датолит 2-й стадии (образец Б1), весьма бедны высокозарядными Nb, Tl, Hf $(1 \times 10^{-3} - 1 \times 10^{-4}$ г/кг H₂O) и REE.

Ранее температуры кристаллизации минералов скарнов были определены по результатам гомогенизации газо-жидких включений (Пустов,1990): волластониты 1 (410–390°С); пироксены 2- и 3-й стадий скарнирования (370–380°С и 340°С, соответственно); гранаты 2-й стадии – 380–320°С. Каждый новый этап минерализации характеризовался резким подъемом температуры по сравнению с окончанием предшествовавшего этапа. На втором (продуктивном) скарново-рудном этапе замещение данбурита датолитом и геденбергитом, ортоклазом, кварцем

Фиг. 1. Схема геологического строения и размещения рудных месторождений Дальнегорского района. 1 – аллювий; 2 – свиты базальтовых даек, палеоген; 3 – эоценовые кислые вулканиты; 4 – границы Триключевской структуры; 5 – вулканиты мела–палеогена; 6 – граниты; 7–10 – толщи складчатого фундамента: 7 – песчаники каменской свиты (автохтон), ранний мел, 8 – микститы, олистострома, валанжин, 9 – кремнистые сланцы, алевролиты и песчаники горбушинской серии, юра–ранний мел, 10 – триасовые известняки (блоки, глыбы); 11 – щелочные базальты и габброиды, альб–поздний мел; 12 – месторождения: Н – Николаевское, В – Верхнее; Сд – Садовое, Б – Боросиликатное; 13–15 элементы орогенных структур: 13 – вулканические центры (Слн – Солонцовый) и кальдеры, 14 – границы купольных структур по дистанционным материалам (а), по геофизическим и морфоструктурным данным (б) (Сапожникова, Пустов, 1991), 15 – оси систем нарушений: Восточно-Партизанской (1), Николаевской (2) и Правобережной (3).

и кальцитом происходило при снижении температур растворов от 400 до 150°С (Раткин, Ватсон, 1993; Хетчиков и др., 1990₂).

По данным работ (Хетчиков и др., 1990; Семенов и др., 1986), рудоносные растворы были богаты калием, о чем свидетельствует состав водных вытяжек из датолитов, образованных при температурах $300-220^{\circ}$ С (г/кг H₂O): К 22.2, Na 9.4, Cl 37, HCO₃ 156. Водные вытяжки из ассоциированного с этим датолитом кварца (210–159°С) обеднены примесями (г/кг H₂O): К 3.9, Na 7.3, HCO₃ 4.9, Cl 18.6. В первичных флюидных включениях из данбуритов 2 содержания калия низки. Эти включения сходны с вклю-

чениями в кварце из гранитов. Отношение восстановленных к окисленным газам во включениях датолитов и ассоциированных с ними кварцев на порядок выше, чем в данбуритах. Содержания углекислоты во включениях в данбуритах в шесть раз выше, чем во включениях из датолитов.

Как было отмечено выше, флюидные включения в боросиликатах и кварце весьма бедны редкоземельными примесями. Датолиты месторождения также характеризуются ничтожными содержаниями редких земель. По данным Ю.К. Пустова (1990), из 12 проанализированных образцов лишь в одном (датолит в Центральном участке) содержания LREE

Фиг. 2. Первичные двухфазовые флюидные включения в датолите (а), данбурите (б), кварце (в) и флюорите (г) из руд Дальнегорского боросиликатного месторождения. Масштаб 10 мкм.

достигают первых г/т (La 2.4, Ce 5.1, Eu 0.36, Tb 0.2, Yb 0.1, Lu 0.05, Hf 0.04, Ta 0.08, Th 0.4, Cr 0.45, Cs 0.25). В Западном карьере, в датолитах из кварцкальцитовых ассоциаций REE не обнаружены (анализы ICP-MS, выполненные С.А. Горбачевой в ИГЕМ РАН), а в датолитах аксинитовой залежи, ассоциированных с гранатом, имеется (г/т): La 2.5–2.9, Ce 3.9–6.1, Nd 0.9–1.7, Eu 0.38–0.36, Tb 0.02, Yb 0.3, Lu – ниже чувствительности, U 1.2–1.5, Th 0.02–0.04.

Известно (Бортников и др., 2007), что в минералах гидротермальных месторождений Приморья, формировавшихся при умеренных температурах в обстановке повышенной щелочности, содержания редкоземельных примесей на порядок выше. Отмеченная особенность датолитов Дальнегорского месторождения, по-видимому, служит признаком обеднения рудоносных флюидов редкоземельными примесями. Калиевые латиты также отличаются малыми концентрациями редкоземельных элементов, несопоставимыми с содержаниями в калиевых щелочных базальтах, габброидах или в их дифференциатах. Таким образом, состав первичных флюидных включений в минералах датолит-кварцевой ассоциации свидетельствует об активности водных флюидов с весьма высокими концентрациями бора и повышенными – калия, но обедненных высокозарядными и редкоземельными примесями. Судя по соотношениям калия, натрия и хлора, возможно, флюиды содержали хлор-боратные комплексы [B(OH)₃Cl] (Акинфиев и др., 2006) Концентрации солей отличают флюиды в датолитах и кварце боросиликатного месторождения от флюидов в минералах, связанных со щелочными магматическими очагами (Прокофьев и др., 2005).

ВЫСОКОКАЛИЕВЫЕ ЛАТИТЫ

Высококалиевые латиты (именуемые в литературе эпилейцитовыми трахитами, ультракалиевыми трахитами), традиционно описываются как поздние дифференциаты очага калиевых щелочных базитов (Говоров, 1976; Носенко и др., 1990; Малинко и др., 1994). Как показано ниже, это, по-видимому, тела палеогеновых жильных базитов, внедрившиеся в зо-

№ образца	Минерал (тип включения*)	п	$T_{\rm гом}$, °С	$T_{_{\rm ЭВТ}},^{\rm o}{ m C}$	<i>Т</i> _{пл. льда} , °С	С _{солей} , мас. %-экв. NaCl (CaCl ₂)	<i>d</i> , г/см ³
П2	Датолит, П	6	348	-69	-27.2	(23.5)	0.90
	», П	2	344	-61	-17.9	(20.9)	0.89
	», П	11	332	-58	-6.3	9.6	0.77
	», П-В	4	306	-49	-7.3	10.9	0.83
	», B	3	243	-59	-15.1	18.7	0.97
	», B	2	202	-41	-2.7	4.5	0.90
	», B	8	150-135	-30	-0.5	0.9	0.93-0.94
1-1	Датолит, П	3	336	-51	-7.0	10.3	0.78
	», П	2	319	-50	-7.8	11.3	0.82
	», П	2	310	-53	-6.9	10.1	0.82
	», B	3	230	-46	-6.3	9.2	0.91
П13	Флюорит, П	2	277	-56	-11.5	15.4	0.91
	», П	3	277	-56	-11.3	15.2	0.91
	», П	4	271	-53	-7.2	10.5	0.87
	», П	5	261	-36	-9.4	13.3	0.91
	», П	3	257	-35	-10.7	14.7	0.93
	», П-В	2	255	-46	-7.5	11.1	0.90
	», П-В	5	255	-46	-8.4	12.2	0.91
	», П	3	255	-36	-8.5	12.3	0.91
	», П	4	252	-46	-7.9	11.6	0.91
	», B	2	170	-32	-2.1	3.6	0.93
	», B	13	148	-36	-1.2	2.1	0.94
П6	Кварц, П	2	236	-33	-0.7	1.2	0.83
	», П	13	199	-34	-0.7	1.2	0.88
П6	», П	2	188	-36	-1.3	2.2	0.90
	», П-В	2	173	-30	-0.5	0.9	0.91
	», B	5	134	-29	-0.4	0.7	0.94
П3	Кварц, П	2	367	-52	-7.4	10.8	0.73
	», П	2	345	64	-28.4	(26.7)	0.93
	», П	3	345	-63	-28.2	(26.6)	0.93
	», П	7	335	-64	-16.7	19.0	0.88
	», П-В	2	324	-29	-0.2	0.4	0.64
	», П-В	2	321	-28	-0.2	0.4	0.64
	», П-В	8	318	-29	-0.2	0.4	0.65
	», П-В	15	303	-56	-12.7	(16.6)	0.90
	», П-В	2	295	-29	-0.2	0.4	0.71
	», П-В	16	295	-28	-0.3	0.5	0.71
	», П-В	9	295	-29	-0.2	0.4	0.71
	», П-В	13	266	-56	-12.3	(16.2)	0.93
	», B	2	259	-37	-3.9	6.3	0.85
	», B	2	249	-31	-2.5	4.2	0.84
Π7	Данбурит, П	5	337	-43	-9.3	13.2	0.82
	», <u>П</u>	3	325	-49	-9.1	13.0	0.83
	», <u>П</u>	2	324	-43	-9.1	13.0	0.83
	», <u>П</u>	5	324	-52	-8.9	12.7	0.83
	», []	2	318	-39	-1.4	2.4	0.69
	», []	6	313	-38	-8.4	12.2	0.84
	», []	3	312	-47	-9.0	12.9	0.85
	», []	2	307	-48	-9.1	13.0	0.86
	», []	4	311	-51	-8.9	12.7	0.85
	», []	5	307	-46	-8.8	12.6	0.85
	», П	3	289	-51	-8.8	12.6	0.87
	», П	3	289	-47	-8.9	12.7	0.87

Таблица 2. Результаты исследования флюидных включений в минералах Дальнегорского боросиликатного месторождения (Приморье)

Таблица 2. Окончание

№ образца	Минерал (тип включения*)	п	$T_{\rm гом}$, °С	$T_{\scriptscriptstyle \operatorname{\mathfrak{SBT}}},^{\mathrm{o}}\mathrm{C}$	<i>Т</i> _{пл. льда} , °С	$C_{\text{солей}}$, мас. %-экв. NaCl (CaCl ₂)	<i>d</i> , г/см ³
П7	Данбурит, П-В	3	284	-43	-8.4	12.2	0.88
	», П-В	3	275	-47	-8.8	12.6	0.89
	», B	2	253	-49	-8.3	12.1	0.91
	», B	4	239	-46	-9.4	13.3	0.93
	», B	2	235	-49	-8.1	11.8	0.93
	», B	8	200	-32	-0.7	1.2	0.88
	», B	2	182	-17	-9.1	13.0	0.98
П20	Кварц, П	9	186	-37	-0.4	0.7	0.89
	», П	6	175	-32	-0.4	0.7	0.90
	», П	7	140	-30	-1.2	2.1	0.95
П31	Кварц, П	6	316	-34	-0.4	0.7	0.66
Б100	Кварц, П	3	316	-44	-8.9	12.7	0.84
	», П	19	304	-54	-8.7	12.5	0.85
2-1	Кварц, П	3	328	-48	-5.8	8.5	0.76
	», П	5	301	-62	-25.7	(23.6)	0.95
	», B	2	164	-54	-23.4	(22.7)	1.08
2119/85	Кварц, П	4	405	-56	-10.0	13.9	0.71
	», П-В	6	296	-41	-5.0	7.9	0.81
	», B	3	264	-44	-4.7	7.5	0.85

Примечание. * – П – первичные, П-В – первично-вторичные, В – вторичные флюидные включения. *n* – количество изученных включений.

не прохождения колонны рудоносных флюидов в центре боросиликатного месторождения и служившие проводниками этих флюидов. Минеральный состав и геохимические особенности латитовых даек позволяют предположить, что роль рудоносных растворов играли нагретые подземные воды, обогащенные высокорастворимыми B, K, и Ba.

Латиты образуют дайки и мелкие неправильные субвулканические тела в зонах отслаивания. Вулканические и эруптивные фации не отмечены. Они распространены среди оруденелых скарнов на площади 1.8×0.9 км и пространственно ассоциированы с залежами продуктивных руд и свитами внутри – и послерудных базальтовых даек. Внешне их отличает от базальтов и долеритов более светлая окраска и обилие пористых и миндалекаменных разностей с текстурами "газовых струй" и вытянутыми по флюидальности порами в эндоконтактах.

Тела латитов, вскрытые карьером и перебуренные скважинами, прослежены на 900 м по падению. Большая часть изотопных датировок латитов отвечает интервалу 58–57 млн. лет. После отложения датолита имело место многократное внедрение даек базальтов с натровым уклоном, а калиевые латиты на этом этапе уже не известны. Дайки долеритов, секущие оруденелые скарны с датолитом вблизи выходов латитов (скважины 767, 202, и на карьере Западном), имеют по K-Ar-определениям возраст 54–55 млн. лет. Более подробно геологические соотношения магматических, метасоматических и рудных образований на месторождении и их изотопные датировки рассмотрены ранее (Баскина, 2006).

Состав пород и минералов. Латиты, подобно палеогеновым андезитам и базальтам, резко отличаются от пород локального калиевого щелочного комплекса концентрациями высокозарядных и редкоземельных акцессорных элементов. Латиты, андезиты и базальты близки между собой по содержаниям главных и акцессорных элементов, однако в латитах на порядок более высоки концентрации бария и рубидия, а содержания К₂О достигают 9-11%. При этом породы с различными содержаниями калия весьма сходны по минеральному составу и микроструктурам, а на ранних стадиях кристаллизации неотличимы. Они представлены по преимуществу неполнокристаллическими, спорадофировыми разностями, содержат редкие вкрапленники плагиоклазов и реже клинопироксенов. Оливины, флогопиты, керсутиты и акцессорные минералы, характерные для пород калиевой щелочной серии, в латитах отсутствуют. Кристаллизация ортоклаза происходила на поздней- и постмагматической стадиях в виде псевдоморфоз по плагиоклазам, минда-

БАСКИНА и др.

Элемент	П3	Б100	П31	П20	П6	П13
	1	1	Г/кг воды	I	1	1
CO_2	0.92	0.30	2.17	2.61	4.67	4.42
CH ₄	0.8	0.2	0.2	0.5	5.0	0.6
Cl	31.3	4.0	1.9	0.8	0.9	Не опр.
Na	9.71	2.53	2.18	1.88	2.94	»
Κ	9.9	1.6	1.8	1.1	1.6	»
Ca	Не опр.	Не опр.	69	16	17	»
Mg	0.92	0.22	0.60	0.20	0.66	»
В	178	141	4.7	1.5	0.1	0.2
	I	1	Мкг/кг воды	I	1	1
Br	57	-	8	-	82	Не опр.
As	5.6	18	12	13	20	54
Li	64	64	484	51	179	248
Rb	55	4	3	2	4	62
Cs	77	10	11	4.7	1.5	30
Sr	336	53	26	15	53	Не опр.
Мо	31	6	4	4	0.4	1
Ag	-	-	0.2	_	0.05	2.9
Sb	183	62	4	4	48	265
Cu	20	21	42	34	88	Не опр.
Zn	30	-	79	55	427	»
Cd	-	-	4.1	0.9	0.2	11.1
Pb	-	-	3	1	14	146
Bi	-	-	-	_	0.37	3.4
Th	-	-	0.07	0.01	0.4	Не опр.
U	0.19	-	-	_	0.06	»
Ga	7.8	0.6	0.2	4.3	2.4	1.5
Ge	6.6	3.8	3.5	0.9	1.4	1.4
Sc	Не опр.	361	280	82	59	68
Ti	Не опр.	424	63	14	16	Не опр.
Mn	-	-	119	18	214	»
Fe	Не опр.	Не опр.	540	142	243	»
Co	30	0.7	0.4	0.2	0.8	»
Ni	-	-	16	15	19	»
V	39	15	10	2.8	-	101
Cr	63	29	17	6	3	Не опр.
Y	-	-	-	—	3.7	»
Zr	0.2	-	0.3	0.1	0.3	0.9
Nb	0.06	0.02	0.08	0.02	0.07	0.31
In	-	-	-	—	-	0.15
Sn	4.3	-	-	—	1.8	13.7
Ba	74	13	4	5	5	Не опр.
W	20	5.0	1.6	1.6	Не опр.	6.0
Te	29	8	12	4	0.2	42
Au	0.5	0.08	-	-	0.15	Не опр.
Hg	3.7	0.3	0.5	0.3	Не опр.	15
Se	Не опр.	17	_	1	4	Не опр.
Tl	3.1	0.1	0.2	0.7	0.1	»
REE	0.2	0.04	0.3	0.1	4.7	»
K/Rb	180	423	459	667	362	466

Таблица 3. Валовый химический состав содержимого флюидных включений в кварце и флюорите руд Дальнегорского боросиликатного месторождения

Примечание. "-" - не обнаружено. П13 - флюорит, остальные пробы - кварц.

лин, прожилков. Ортоклазы, независимо от форм их выделения и от объема в том или ином участке породы, характеризуются примесью $Na_2O = 0.3-0.9\%$ и концентрациями бария 2000–7000 г/т. Предполагается, что при прохождении рудоносных флюидов сквозь богатые основаниями и неостывшие базальты активность калия и бария в них повышалась. В какой-то момент происходила кристаллизация ортоклаза, богатого барием. Рудоносные флюиды, просачиваясь сквозь базальтовые расплавы и породы, обогащали их барием, калием, бором и рубидием, но не привносили высокозарядных и редкоземельных примесей и не сопровождались кристаллизацией цветных и акцессорных минералов щелочного ряда. На стадии рудоотложения, по-видимому, активными были нагретые водные флюиды, обогащенные высокорастворимыми Ва, К, В и крайне обедненные мало растворимыми в таких флюидах Zr, Nb, Ta, La, Ce.

В ультракалиевых разностях не удалось обнаружить фенокристов ортоклаза, лейцита или эпилейцита, упоминавшихся при описании этих пород ранее (Говоров, 1976; Носенко, 1989; Носенко и др., 1990). Кварц в породах отсутствует. Связующая масса варьирует по структуре от пилотакситовой до микрозернистой, состоящей из зерен плагиоклаза и лиловатого зонального титанистого авгита. Вкрапленники, микрофенокристы и лейсты как в базальтах (долеритах), так и в высококалиевых латитах представлены основным плагиоклазом - от An_{80} до An_{75-65} , а также титанистым авгитом и диопсид-авгитом (F₁₈₋₃₂, с примесью 0.8–2.5% TiO₂). Помимо этого, в связующей массе латитов имеются ильменит и ортоклаз. Местами связующая масса латитов сложена темным, слабо индивидуализированным веществом, в котором накапливаются железо и калий, барий и хлор. По составу она соответствует натрово-калиевому трахибазальту. Составы минералов и связующей массы латитов даны в табл. 4. Латиты, сходные со щелочными базитами по содержаниям Ba, K, Rb, резко отличаются по содержаниям и соотношениям других характеристических элементов (фиг. 5).

Накопление калия происходит на поздне- и постмагматической стадии. Участки пород, где богатые калием флюиды перемещались вдоль границ текстурной неоднородности, по ослабленным плоскостям, выглядят, как расслоенные лавы. В таких участках на фоне темного, появляются линзы буроватого и белесого "стекла", напоминающие фьямме (фиг. 6). В темных обособлениях калиевый полевой шпат накапливается в мельчайших порах слабо раскристаллизованной связующей массы, или образует тонкие зоны обрастания по плагиоклазам. При массовой кристаллизации, ортоклаз образует псевдоморфозы по фенокристам и лейстам плагиоклазов, фельзитовые скопления по плоскостям отслаивания в связующей массе, или заполняет поры, миндалины и мелкие прожилки. В приконтактовых зонах латитовых тел, в том числе в закаленных участках, преобладают ультракалиевые разности. Под закаленной коркой обычно обильны миндалины ортоклаза с апатитом и амфиболами, или с геденбергитом, а также миндалины датолита и струи метасоматических миндалин эпидота и ортоклаза. Наблюдаются друзы ортоклаза, растущие от закаленного контакта латита наружу, в сторону скарновой кровли.

Все ортоклазы характеризуются сходными содержаниями Na₂O = 0.4–0.6% и высокими концентрациями бария (до 3000–7000 г/т) (табл. 4). Очевидно, при прохождении рудоносных флюидов сквозь богатые основаниями и неостывшие базальты, активность калия и бария в них резко повышалась и происходила кристаллизация ортоклаза, богатого барием.

Судя по имеющимся изотопным K-Ar- и Ar-Arдатировкам, процесс этот был весьма кратким. Об этом можно судить и по близким составам ортоклазов и по их одинаковому изотопному возрасту (независимо от форм выделения). К-Ar-определения в породах, выполненные В.А. Лебедевым, (57.3 ± ± 1.4 млн. лет) совпадают у разностей, где калиевый полевой шпат сосредоточен в тонких порах связующей массы, и в плотных зонах закалки, и там, где обильны миндалины ортоклаза. Тот же возраст, по ³⁹Ar-⁴⁰Ar-датировкам, (Лейер, Раткин, 1997), имеют ортоклазы, прорастающие из дайки в породу экзоконтакта. Ассоциация титанистых авгитов и поздних ортоклазов, типичная для связующей массы, наблюдается в латитах на всех вертикальных уровнях скарновой залежи. Очевидно, при подъеме рудоносных флюидов, пик высокой К-щелочности в поровых растворах достигался во всем объеме проводящих даек. По данным С.В. Малинко, Н.В. Носенко, Л.В. Куршаковой, факт массового замещения раннего крупнокристаллического данбурита датолитом свидетельствует о резко возросшей щелочности растворов во всем объеме месторождения. Авторы полагают, что залегание даек в массиве скарнов - в среде с высокой проницаемостью - способствовало фильтрации по ним растворов. Фильтрация сквозь богатую основаниями базальтовую среду повышала в растворах активность и калия, и бария, что приводило к массовой кристаллизации барийсодержащих ортоклазов. В результате в растворах возрастала относительная доля бора. Известно (Morgan, London, 1989), что бор в магмах уменьшает их вязкость, понижает температуры солидуса и ликвидуса. Обилие стекловатых текстур в латитах, возможно, указывает на просачивание флюида сквозь не вполне закристаллизованную магму. Интенсивный выход летучих в скарны кровли приводил к появлению закаленной корки, под которой шло более интенсивное накопление калия, его кристаллизация в пустотах и замещение ранее выделившихся плагиоклазов.

Компоненты	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	64.8	64.5	63.9	64.3	64.4	46.4	46.6	47.5	49.8	50.3	50.1
Al_2O_3	18.3	17.7	17.8	18.4	17.7	33.5	32.0	33.1	30.6	31.9	30.8
FeO	0.04	0.03	0.01	0.07	0.03	0.6	0.4	0.08	0.7	0.7	0.7
CaO	0.01	0.07	_	0.01	0.01	16.6	17.4	16.7	14.6	14.5	14.3
Na ₂ O	0.3	0.3	0.5	0.66	0.41	2.0	2.1	2.1	3.4	3.5	3.5
K ₂ O	16.5	16.8	16.4	16	16.7	0.05	0.2	0.04	0.1	0.07	0.1
BaO	0.36	0.2	0.57	0.36	0.39	0	Не опр.	Не опр.	-	0.01	Не опр.
Сумма	100	99.7	99.2	100	99.7	99.2	99.4	99.5	99.2	100.9	99.9
Компоненты	12	13	14	15	16	17	18	19	20	21	
SiO ₂	49.9	50	51.2	52	50.7	51	50.1	48.8	53.8	50.8	
TiO ₂	1	0.9	0.7	0.6	0.8	1.2	0.6	1.4	0.5	0.8	
Al_2O_3	4.6	4.5	3.5	2.8	2.2	3.3	2.3	5.7	0.4	3.3	
FeO	8.4	8.2	8.1	8.0	9.2	10.5	9.3	8.5	8.7	8.8	
MnO	0.2	0.2	0.3	0.2	0.3	0.4	0.2	0.2	0.2	0.2	
MgO	14.6	14.4	15.1	15.4	16.0	12.3	15.8	14.1	15.3	14.8	
CaO	20.6	20.9	20.5	20.6	19.6	19.6	17.6	20.2	21	20.1	
K ₂ O	-	-	-	-	0.1	0.2	0.1	0.1	0.01	0.1	
Na ₂ O	0.4	0.4	0.2	0.2	0.3	0.6	0.2	0.35	0.2	0.3	
Cr	Не опр.	Не опр.	0.09	0.09	0.06	0.3	0.1	0.1	0.04	0.1	
Сумма	99.6	99.7	99.6	99.8	99.5	99.2	96.3	99.5	100	99.3	
F _{oom}	25	26	24	23	24	32	26	26	25		

Таблица 4. Состав минералов высококалиевых латитов, мас.%

Примечание. Анализы выполнены на рентгеновском микроанализаторе "Cameca" MS-46 в ИГЕМ РАН; напряжение 20 кВ, ток зонда – 40 нА.

Пробы: *калиевые полевые шпаты* (1–5): 1 – лейсты, образец 110/7, 2 – друза в экзоконтакте, образец 621/3, 3 – миндалина, образец 2124, 4 – жилка, секущая плагиоклаз, образец 110/3, 5 – среднее из семнадцати анализов; *плагиоклазы* (6–11): 6, 7 – идиоморфные зерна в образцах 110 и 2428, 8 – среднее из пяти анализов вкрапленников, 9, 10 – лейсты в образцах 110 и 2428, 11 – лейсты, среднее из шести анализов; *пироксены*: 12–20 – вкрапленники и мелкие зерна в связующей массе; 21 – пироксен, среднее из тринадцати анализов.

Тела латитов несут признаки скарнирования, а также датолитовой и сульфидной минерализации. В гнездах скарнов, образовавшихся по латитам, трахитам ключа Хрустального, пироксены представлены мангангеденбергитами (F_{65-70} ; MnO 5–6% и более). В эпидоте миндалин в калиевом латите центрального участка обнаружено до 400 г/т As, а содержания хрома в породах достигают 200–1000 г/т при концентрациях Zn и Pb до 300– 400 г/т. Концентрации хлора в калиевых латитах до 300–400 г/т, что втрое выше, чем в остальных магматических породах на месторождении.

ИЗОТОПНЫЙ СОСТАВ БОРА В МИНЕРАЛАХ

Изотопный состав бора в датолитах и данбуритах месторождения был определен по заказу комбината "Бор" в лаборатории фирмы "BORAX" в Калифорнии (США) в 1994 г. Д. Вудом и С. Карпентером методом ICP-MS. Данные были любезно переданы нам

главным геологом Дальнегорского месторождения А.В. Чернышевым и публикуются с его разрешения. Полученные результаты близки к имевшимся (Раткин, Ватсон, 1993), выполненным в 1991 г. в "West Coast Analytical Survey" (WCAS) в США. Результаты находятся в интервале δ^{11} В от –11 до –28% (табл. 5). Ранее изотопные составы бора были получены в ВИМС Л.В. Суминым, непосредственно из минералов, без предварительного извлечения бора. Результаты находятся примерно в том же интервале значений δ^{11} В от –9 до –31% (Малинко и др., 1982).

В настоящее время есть возможность сравнить эти данные с изотопными составами бора в магматических и осадочных образованиях различных тектонических обстановок (фиг. 7).

Сопоставление с данными (Bassett, 1990; Tanaka, Nakamura, 2005) показывает, что изотопный состав бора датолитов и других минералов Дальнегорского месторождения отличается от такового в возможных магматических источниках – в гранитах

Фиг. 5. Соотношения Ba/Nb и Zr/Nb в породах Дальнегорского месторождения. 1 – щелочные габброиды; 2 – палеогеновые базальты (дайки); 3 – калиевые латиты; 4 – натровые трахиты – дифференциаты щелочной серии.

Фиг. 6. Калиевый латит. Базальтовая матрица и линзы, обогащенные калием. Образец 110/04 (Центральный карьер).

и риолитах; в островодужных лавах; в базальтах океанического дна и океанических островов; в мантийных лавах в целом; а также в органогенных известняках. Полученные величины отвечают изотопным составам бора из осадочных (типа неморских эвапоритов) или осадочно-метаморфических пород. В процессе формирования Дальнегорского месторождения основная масса бора, по-видимому, была извлечена из осадочно-метаморфических толщ мезозойского складчатого фундамента. Накопление бора в океанических осадках связывают с осадочноэксгаляционными процессами, в ходе которых бор адсорбируется в глинистых минералах, а при диагенезе осадков высвобождается, кристаллизуясь в виде турмалина (Palmer, Swihart, 1996). Исключительно устойчивый к химическим или механическим агентам турмалин разлагается лишь в щелочных флюидах. Наличие канала – проводника щелочных расплавов и флюидов могло стать решающим фактором разложения метаморфических турмалинитов и отложения боратов в локальном осадочном бассейне. Далее перенос и накопление бора в рудах, как показано выше, были связаны с активностью не щелочных флюидов, обогащенных высокорастворимыми соединениями В, К, Ва и практически лишенных высокозарядных примесей и REE. Предполага-

Минерал	Место взятия	$\delta^{11}B,\%$	Источник
Датолит	Из кварц-датолитовой жилы, карьер, Дальнегорское месторождение.	-14.7	1
»	Псевдоморфоза по раннему данбуриту	-15.5	1
»	Кварц-датолитовое скопление в гранатовом скарне 2-го этапа	-11.6	1
»	Крупные кристаллы из полости в скарнах 2-го этапа	-28.7	1
»	Карьер, горизонт + 156 м	-15.1	3
»	»	-14.9	3
»	Карьер, Дальнегорское месторождение (6 анализов)	От –9 до –31	4
Данбурит	Низы скарновой залежи, карьер	-13.4	3
»	Карьер, горизонт + 158 м	-17.25	3
Аксинит	Участок Западный, Дальнегорское месторождение	-18.05	3
Датолит	Месторождение Верхнее, в Pb-Zn-рудах	-17.4	3
Аксинит	2-е Советское месторождение, в Рb-Zn-рудах	-16.75	3
Турмалин	Мыс Бриннера, в гранитах	-8.35	3
»	Дальнегорский район	+26.98	2

Таблица 5. Изотопный состав бора в минералах Дальнегорского месторождения

Примечание. 1 – Раткин, Ватсон, 1993; 2, 3 – сообщение А.В. Чернышева; 4 – Малинко и др., 1982.

ется, что значительный рост концентраций бора в рудообразующем флюиде имел место при фракционировании К и Ва в богатой основаниями среде базитовых даек, по которым поднимались растворы.

Эволюция бора на разных глубинных ярусах коры, его перераспределение между метаседиментами, турмалинитами и эвапоритами описана в протерозойских разрезах северо-восточного Китая в работе (Хи *et al.*, 2004). По этим данным, изотопные составы $\delta^{11}B = -12\%$ отвечают континентальной коре.

Имеются единичные изотопные составы кислорода в датолитах, они свидетельствуют о вовлечении метеорных вод в транспортировку и отложение бора на Дальнегорском месторождении. По данным Вуда и его коллег, эти составы $\delta^{18}O_{SMOW}$ колеблются от -1.64 до -2.97%.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Крупные месторождения, как правило, формируются длительно, с вовлечением нескольких источников полезных компонентов. Большинство исследователей Дальнегорского месторождения (В.М. Щербинин, Р.В. Король, Н.А. Носенко, С.В. Малинко) полагали, вслед за И.Н. Говоровым, что источником бора служил мантийный щелочнобазальтовый очаг и/или породившие его ювенильные флюиды, а предрудные калиевые ("эпилейцитовые") породы являлись дифференциатами этого очага. По нашим данным, дайки и субвулканические тела высококалиевых латитов, маркирующие центр боросиликатного месторождения, не принадлежат к породам щелочной серии. В типовых щелочных калиевых сериях основные вулканические породы содержат лейцит, оливин и флогопит, а их более кислые дифференциаты характеризуются (в отличие от латитов), заметным накоплением Zr, Nb, REE по сравнению с исходными базальтами. Кроме того, породы и минералы щелочных калиевых пород от-

Измененная океаническая кора (2)

Вулканиты островных дуг (2)

Мантийные породы (2)

$$-40$$
 -20 0 $+20$ $+40$ δ^{11} B, %

Фиг. 7. Значения δ¹¹В в минералах Дальнегорского боросиликатного месторождения, а также в магматических и осадочных образованиях других регионов. 1 – Bassett, 1990; Leeman, Sisson, 1996; 2 – Palmer, Swihart, 1996.

личаются значительно более высокой общей железистостью, чем латиты и пироксены в них.

Геологические, минералогические и изотопногеохимические характеристики высококалиевых латитов дают основания считать их представителями регионального комплекса жильных палеогеновых базальтов. Тела, внедрившиеся на путях узкой колонны рудоносных флюидов, служили проводниками этих флюидов и были изменены под их воздействием. Латиты составляют специфический комплекс пород боросиликатного месторождения. Их становление непосредственно предшествовало отложению промышленных датолитовых руд. Они не известны вне месторождения ни в осадочных породах его рамы, ни в палеогеновых магматических ареалах в регионе.

Просачивавшиеся по дайкам рудоносные флюиды нельзя отнести к дериватам щелочно-21базальтового очага. В растворах – дериватах щелочных расплавов - накапливаются редкоземельные и высокозарядные элементы (Neng et al., 2003). В растворах, за счет которых происходили метамагматические изменения и/или метасоматоз базальтов с превращением их в латиты, были высокими лишь концентрации калия, рубидия, бария и бора. Известно, что эти элементы хорошо растворяются в водных флюидах при температурах выше 100°С, в то время как La, Ce, Nd, Nb, Ta, Zr, Hf, Ті в таких условиях почти нерастворимы (Leeman, Sisson, 1996). На Дальнегорском месторождении рудоносные флюиды не привносили в породы Zr, Nb, Ta, La, Ce. Напротив, латиты, даже по сравнению с "исходными" палеогеновыми андезитами и базальтами, несколько обеднены этими элементами. Авторы полагают, что рудоносные флюиды были нагретыми водными флюидами, обогащенными Ва, К, В, и крайне обедненными Zr, Nb, Ta, La, и Ce. Рост щелочности флюидов имел место в среде, богатой основаниями, что вызвало увеличение активности калия и бария.

О том, что отложение руд шло из флюидов, обогащенных К, Ва и В, свидетельствуют состав и свойства флюидных включений в датолитах и в кварце, ассоциированном с датолитом. При этом ничтожно малые содержания высокозарядных и редкоземельных элементов свойственны как флюидам во включениях, так и датолитам месторождения. Высокие концентрации бора, лития и цезия могли бы указывать на гранитоидный источник гидротермальных флюидов. Однако в позднемагматических кварцполевошпатовых минеральных парагенезисах гранитов, вскрытых под месторождением, флюидные включения на 1-2 порядка беднее CO₂ и CH₄ (CO₂ 0.08–0.8 и CH₄ 0.004–0.008 г/кг H₂O) (Валуй, Стрижкова, 1997), чем флюидные включения в кварце, флюорите, и датолите боросиликатного месторождения (CO₂ 0.9–2.4, а CH₄ 0.2–0.75 г/кг H_2O). Кроме того, все известные граниты района имеют значительно более низкие концентрации лития по сравнению с палеогеновыми жильными базальтами и высококалиевыми латитами. Характерные для латитов положительные аномалии европия свидетельствуют о восстановительной обстановке минерализации (Sverjensky, 1984).

Существующие представления о связи боросиликатных руд с мантийными магмами и флюидами основывались на наличии локального щелочно-базальтового очага. Помимо этого, в сообществе магматических пород именно щелочные базальты, и особенно их дифференциаты наиболее богаты примесью бора. В дальнегорском районе в щелочных габбро и долеритах, в том числе и в телах, весьма удаленных от месторождения, бор содержится в количествах от 50-60 до 200 г/т. Однако в регионе бором обогащены также песчаники, алевролиты и аргиллиты триасово-юрских толщ (соответственно, от 20-50 до 70-90 и до 90-200 г/т) (Волохин и др., 2007). Среди терригенно-осадочных пород наибольшие содержания бора установлены в углеродсодержащих фациях. Уровень концентраций бора в черных сланцах мира достигает 165-220 г/т (Юдович, Кетрис, 1994). В дальневосточном регионе средние содержания бора в мезозойских углистых аргиллитах равны 90–200 г/т, причем в южной части региона (где и расположено Дальнегорское месторождение), они существенно выше, чем в одноименных и одновозрастных осадочных образованиях северной части (соответственно 155-237 и 21-68 г/т). При этом в непосредственной близости (1–2 км) от боросиликатного месторождения, в бортах р. Рудной, содержания бора в углистых силицитах падают до 41-49 г/т, что может служить косвенным указанием на процессы ремобилизации бора из осадочнометаморфических отложений. Присутствие углистых осадков в фундаменте месторождения подчеркивается выходами углистых аргиллитов и их брекчий по тектоническим зонам в центре и на флангах месторождения.

Изотопные составы бора в датолитах позволяют предполагать, что в процессе формирования Дальнегорского месторождения основная масса бора была извлечена из осадочно-метаморфических толщ мезозойского складчатого фундамента. Перенос и накопление бора на стадии рудоотложения, по нашим представлениям, осуществлялись в потоке нагретых подземных вод. Предположения о том, что промышленные концентрации эндогенных боросиликатов во многих случаях формировались при участии подземных вод, циркулирующих в регионально обогащенных осадочно-метаморфических толщах, высказывались ранее (Александров и др., 1968).

ЗАКЛЮЧЕНИЕ

На Дальнегорском месторождении существование флюидного канала отмечено скоплением даек и субвулканических тел высококалиевых латитов. Аналоги высококалиевых латитов не встречены ни

Фиг. 8. Модель накопления бора на Дальнегорском месторождении.

1 – послерудные дайки базальтов; 2 – боросиликатные руды в скарнах; 3 – калиевые латиты; 4 – потоки нагретых вод, обогащенных К, В, Ва; 5 – накопление бора в линзе осадочных пород; 6 – осадочно-метаморфические толщи с турмалинитами; 7 – зоны разложения турмалина и выноса бора; 8 – щелочные базальты и габброиды, щелочные растворы.

на других месторождениях рудного узла, ни в региональных поясах жильных палеогеновых базальтов, ни в иных ареалах палеогенового магматизма юга Приморья. По-видимому, структурная локализация и активность этих флюидов, были отличительной чертой боросиликатного месторождения. Геологичесие, минералогические и изотопно-геохимические характеристики высококалиевых латитов позволяют относить их к региональному комплексу жильных палеогеновых базальтов. Тела базальтов, внедрившиеся на путях узкой колонны рудоносных флюидов, служили проводниками этих флюидов и были изменены под их воздействием.

Флюидные включения в датолитах, кварце, флюорите руд характеризуются высокими концентрациями бора, калия (в меньшей степени Na и Cl), и примесью халькофильных элементов. Концентрации редкоземельных и высокозарядных элементов в них ничтожны.

Состав латитов, а также состав и свойства флюидных включений в минералах руд указывают, что рудоносные флюиды были обеднены Zr, Nb, La, Ce, и не обнаруживают геохимического родства с щелочнобазальтовым очагом. Флюиды имели высокие концентрации элементов, растворимых в нагретых водах – калия, рубидия, бария и бора. Судя по изотопным составам кислорода в датолитах, это были преимущественно подземные воды.

Изотопные составы бора в датолитах позволяют предполагать, что в процессе формирования Дальнегорского месторождения основная масса бора была извлечена из осадочно-метаморфических толщ мезозойского складчатого фундамента.

Предполагаются следующие этапы накопления бора (фиг. 8):

1. Обогащение ювенильным бором мезозойских морских отложений (особенно их углеродистых фаций) в связи с региональной щелочно-базальтовой активностью.

2. Диагенез и метаморфизм осадков с появлением горизонтов турмалинитов в складчатых толщах.

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 51 № 3

219

3. Разложение турмалина и переход бора в растворимые формы под влиянием щелочных флюидов, связанных с щелочно-базальтовым дальнегорским очагом. Осаждение бора в рифтогенном бассейне и образование локального осадочного источника оруденения.

4. Формирование системы глубокой циркуляции и нагрева поверхностных вод, локализация их в узком структурном канале. Перенос бора (вместе с растворенными K, Ba, Rb) и осаждение боросиликатов в скарнах.

СПИСОК ЛИТЕРАТУРЫ

Акинфиев Н.Н., Воронин М.В., Зотов А.В., Прокофьев В.Ю. Экспериментальные исследования устойчивости хлорборатного комплекса и термодинамическое описание водных компонентов системы В–Na–Cl–O–H до 350°C // Геохимия. 2006. № 9. С. 937–949.

Александров С.М., Барсуков В.Л., Щербина В.В. Геохимия эндогенного бора. М: Наука, 1968.

Алексеев В.Ю., Баскина В.А., Томсон И.Н., Якушев А.И. О природе углеродистых пород в зонах дробления в Дальнегорском районе Приморья (черные сланцы или мантийные ильменит-графитовые метасоматиты?) // Докл. РАН. 2007. Т. 415. № 3. С. 364–369.

Баскина В.А. Магматизм рудоконцентрирующих структур Приморья. М.: Наука, 1982.

Баскина В.А. Петролого-геохимические признаки длительной активизации рудоносных структур Приморья // Тектоника, магматизм и оруденение сквозных систем нарушений. М.: Наука, 1985. С. 95–129.

Баскина. В.А. Дальнегорское боросиликатное месторождение // Крупные и суперкрупные месторождения рудных полезных ископаемых. М.: ИГЕМ РАН, 2006. Т. 3. Кн. 2. С. 737–765.

Борисенко А.С. Изучение солевого состава газово-жидких включений в минералах методом криометрии // Геология и геофизика. 1977. № 8. С. 16–27.

Бортников Н.С., Гореликова Н.В, Коростылев П.Г. Поведение редкоземельных элементов в оловоносных гидротермально-магматических системах на примере месторождений Дальнего Востока // Докл. РАН. 2007. Т. 415. № 6. С. 788–792.

Валуй Г.А., Стрижкова А.А. Петрология малоглубинных гранитоидов на примере Дальнегорского района Приморья. Владивосток: Дальнаука, 1997.

Волохин Ю.Г, Иванов В.В. Геохимия и металлоносность углеродистых силицитов триаса Сихотэ-Алиня // Литология и полез. ископаемые. 2007. № 4. С. 406–425.

Говоров И.Н. Малые интрузии щелочных пород и боросиликатные скарны Дальнегорского района Приморья // Докл. АН СССР. 1976. Т. 230. № 1. С. 186–189.

Кряжев С.Г., Васюта Ю.В., Харрасов М.К. Методика валового анализа флюидных включений в кварце // Материалы XI междунар. конф. по термобарогеохимии. Александров: ВНИИСИМС, 2003. С. 6–10.

Король Р.В. Дальнегорская Экспедиция. http://www. fegi.ru 2000.

Лейер П., Раткин В.В. Первое прямое Ar-Ar-определение возраста скарнов дальнегорского рудного района на юге

дальнего востока России // Докл. РАН. 1997. Т. 352. № 2. С. 222–225.

Лисицын А.Е., Малинко С.В. Дальнегорское борное месторождение – уникальный минералогический объект. М.: Мир камня, 1994. № 4. С. 13–17.

Малинко С.В. Происхождение уникальных скоплений боросиликатных руд Дальнегорского месторождения в Приморье // Минералогический журн.1992. Т. 14. № 5. С. 3–12.

Малинко С.В., Носенко Н.А. Генетические связи датолита Дальнегорского месторождения и проблема формирования боросиликатных руд // Проблемы генетической и прикладной минералогии. М.: Наука, 1990. С. 54–72.

Малинко С.В., Лисицын А.Е., Сумин Л.В. Изотопный состав бора в природных боратах и боросиликатах как индикатор условий их образования // Докл. АН СССР. 1982. Т. 267. № 2. С. 453–456.

Малинко С.В, Лисицын А.Е., Шергина Ю.П. Изотопногеохимические параметры формирования скарново-борного оруденения в активных континентальных окраинах // Зап. ВМО. 1994. Ч. 123. № 4. С. 10–21.

Носенко Н.А. Взаимоотношения различных типов скарновой минерализации и глубинные ярусы оруденения Дальнегорского рудного узла // Этапы образования рудных формаций. М.: Наука, 1989. С. 139–159.

Носенко Н.А., Раткин В.В., Лонгвенчев П.И. и др. Дальнегорское боросиликатное месторождение – продукт полихронного проявления процессов скарнирования // Докл. АН СССР. 1990. Т. 312. № 1. С. 178–182

Прокофьев В.Ю., Добровольская М.Г., Рейф Ф.Г. и др. Новые данные о составе рудообразующих флюидов Дальнегорского боросиликатного месторождения (Россия) // Докл. РАН. 2003. Т. 390. № 5. С. 676–680.

Прокофьев В.Ю., Середкин М.В., Зотов И.А., Аношечкина В.А. Новые данные по расплавным и флюидным включениям в некоторых минералах магнетит-апатитового и флогопитового месторождений Ковдорского массива (Кольский п-в) в связи с их генезисом // Докл. РАН. 2005. Т. 402. № 5. С. 665–666.

Прокофьев В.Ю., Перетяжко И.С., Смирнов С.З. и др. Бор и борные кислоты в эндогенных рудообразующих флюидах М.: Изд-во "Пасьва". 2003.

Пустов Ю.К. Скарново-рудные минеральные ассоциации, условия их образования и особенности распределения в пределах Партизанской структуры (Дальнегорский рудный район): Автореф. дис....канд. геол.-мин. наук. М.: ИГЕМ РАН, 1990.

Раткин В.В., Ватсон Б.Н. Дальнегорское скарново-боросиликатное месторождение: геология и источники по данным изотопии // Тихоокеанская геология. 1993. № 6. С. 91–102.

Раткин В.В., Томсон И.Н., Рязанцева М.Д. и др. Соотношения рудной изотопно-геохимической и петрографической зональности Восточно-Сихотэ-Алиньского вулканно-плутонического пояса // Докл. РАН. 1997. Т. 356. № 3. С. 367–370.

Ростовский Ф.И. Об изотопных отношениях Рb в галенитах рудных месторождений Востока Азии // Тихоокеанская геология. 2005. Т. 24. № 2. С. 433–455.

Сапожникова Е.Н., Пустов Ю.К. Структура Дальнегорского рудного узла – основа для восстановления его модели строения в период рудообразования // Геология руд. месторождений. 1991. № 5. С. 69–78.

Семенов Ю.В., Малинко С.В., Киселева И.А., Ходаковский И.Л. Термодинамический анализ условий образования эндогенных боросиликатов и боратов кальция // Геохимия. 1986. № 8. С. 1183–1190.

Хетчиков Л.Н., Гнидаш Н.В., Раткин В.В. Эволюция среды минералообразования по данным изучения псевдоморфоз по кристаллам данбурита в пустотах Дальнегорского боросиликатного месторождения // Докл. АН СССР. 1990. Т. 315. № 6. С. 1466–1469.

Хетчиков Л.Н., Гнидаш Н.В., Пахомова В.А., Малахов В.В. Условия образования кристаллов датолита, кварца и данбурита Дальнегорского боросиликатного месторождения (по данным термобарометрии) // Минералогический журн. 1990. Т. 12. № 2. С. 78–84.

Юдович Я.Э., Кетрис М.П. Элементы-примеси в черных сланцах. Екатеринбург: Наука, 1994.

Bassett R L. A critical evaluation of the available measurements for the stable isotopes of boron // Applied Geochemistry. 1990. V. 5. N_{0} 5/6. P. 541–554.

Bodnar R. J., Vityk M. O. Interpretation of microthermometric data for H₂O–NaCl fluid inclusions // Fluid inclusions in minerals: methods and applications. Pontignano: Siena, 1994. P. 117–130.

Brown P. FLINCOR: a computer program for the reduction and investigation of fluid inclusion data // Amer. Mineralogist. 1989. V. 74. P. 1390–1393.

Farmer G.L. Continental basaltic rocks. Treatise in Geochemistry. Amsterdam: Elsevir, 2003. V. 3. P. 85–156.

Leeman W.P., Sisson V.B. Boron geochemistry: implications for crystal and mantle Earth processes // Reviews in Mineralogy. 1996. V. 33. P. 644–707.

Morgan G., London D. Experimental reaction of amphibolite with boron aqueous fluids at 200 Mpa // Contr. Mineral. Petrol. 1989. V. 102. № 3. P. 281–297.

Neng Jiang, Shihua Sun Chu, Toshio Mizuta, Daizo Ishiyama. Mobilization and enrichment of high field strength elements during late and post magmatic processes in the Shuiquangou syenitic complex Northern China // Chem. Geol. V. 189. 2003. P. 117–128.

Palmer M. R., Swihart G. H. Boron isotope geochemistry – an overview // Reviews in Mineralogy. 1996. V. 33. P. 708–742.

Sverjensky F. Eu redox equilibria in aqueous solutions // Earth Planet. Sci. Lett. 1984. V. 67. № 1. P. 70–78.

Tanaka Rya, Nakamura Erza. Boron isotope constrains on the source of Hawaiian shield lavas // Geochim. et Cosmochim. Acta. 2005. V. 69. № 13. P. 3385–3399.

Xu Hong, Peng Qi-ming, Palmer M.R. Origin of tourmaline-rich rocks in a Paleoproterozoic terrane (NE China). Evidence from evaporite-derived boron // Geol. in China. 2004. V. 31. № 3. P. 240–252.