ГЕОЛОГО-МИНЕРАЛОГИЧЕСКИЕ НАУКИ

УДК 552.321.1:546.65(234.851)

ГРАНИТОИДЫ ТОРГОВСКО-КЕФТАЛЫКСКОГО МАССИВА (ПРИ-ПОЛЯРНЫЙ УРАЛ): ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ДАННЫЕ

О.В. УДОРАТИНА*, Е.П. КАЛИНИН*, В.Л. АНДРЕИЧЕВ*, В.А. КАПИ-ТАНОВА*, Ю.Л. РОНКИН**, В.М. САВАТЕНКОВ***

*Институт геологии Коми НЦ УрО РАН, г. Сыктывкар **ИГГ УрО РАН, г. Екатеринбург ***ИГГД РАН, г. Санкт-Петербург udoratina@geo.komisc.ru, izo@geo.komisc.ru, kapitanova@geo.komisc.ru, y-ronkin@mail.ru, savatenkov@mail.ru

Рассматриваются изотопно-геохимические характеристики гранитоидов Торговско-Кефталыкского массива (Приполярный Урал). Современные U-Pb изотопные данные по цирконам свидетельствуют о формировании гранитоидов массива на уровне границы венда-кембрия. Отрицательные значения $\epsilon_{Nd}(t)$ от -0.3 до -2.7 указывают на зрелость корового субстрата, участвовавшего в плавлении. Породы имеют внутриплитные характеристики, относятся к сини постколлизионным гранитоидам А-типа в составе доуралид.

Ключевые слова: граниты А-типа, изотопно-геохимические характеристики, Приполярный Урал

O.V. UDORATINA, E. P. KALININ, V. L. ANDREICHEV, V. A. KAPI-TANOVA, YU. L. RONKIN, V.M. SAVATENKOV. TORGOVSK - KEFTALYK GRANITOID MASSIF (SUBPOLAR URALS): ISOTOPIC GEOCHEMICAL DATA

Isotopic and geochemical characteristics of Torgovsk-Keftalyk granitoid massif (Subpolar Urals) are considered. Modern U-Pb isotopic data on zircons indicate the formation of granitoids at the Vendian-Cambrian boundary. Negative values $\epsilon_{\rm Nd}(t)$ from -0.3 to -2.7 testify to maturity of crustal substrate participating in melting. A-type granites have intraplate characteristics are syn and postcollisional preuralic formations. Rocks have intraplate characteristics of syn- and postcollisional A-type granitoids in the structure of douralids.

Keywords: A-type granites, isotopic and geochemical characteristics, Subpolar Urals

В центральной части Приполярного Урала на поверхность выведено множество гранитоидных массивов, образующих наряду с вмещающими их метаморфитами доордовикский комплекс Центрально-Уральского поднятия, именуемый доуралидами [1]. В верховьях р. Торговой уже более полувека известно вольфрам-молибден-висмутовое месторождение [2], связанное с гранитоидами Торговско-Кефталыкского массива. Именно благодаря обнаружению руд, породы массива интенсивно изучались. Основной объем структурно-геологических, петрографических, минералогических, химических и геохимических исследований был проведен в 60-70-е гг. прошлого века. В последние годы в связи с проведением ревизионных работ по программе «Урал Промышленный – Урал Полярный» получены новые, преимущественно изотопно-геохимические данные.

Выходы гранитоидов, образующих Торговско-Кефталыкский массив, и расположенные к югу от него малые тела, протягиваются на 45 км при максимальной ширине до 12 км (рис. 1). Гранитоиды залегают согласно и конформны вмещающим породам, отмечается субмеридиональное простирание гнейсоватости. В результате детальных исследований была установлена неоднородность строения массива. Лишь внутри него обнаружены болееменее однородные блоки, сложенные породами различных фаций главной фазы, которые разделяются полосами пород фации эндоконтактов и переработанных ксенолитов кровли.

Граниты Торговско-Кефталыкского массива образуют значительное по площади (15×8 км) единое интрузивное тело. В западной части прослеживается четкий интрузивный контакт тела с породами верхнерифейской маньинской свиты, отмеченный образованием зон интрузивных брекчий и серий гибридных пород, в восточной части установлен тектонический контакт интрузивного тела с ордовикскими конгломератами, содержащими гранит-

Рис. 1. Общая геологическая схема размещения гранитоидных массивов (названия в рамках) на Центрально-Уральском поднятии (А) и схематическая геологическая карта (Б; *по Е.П. Калинину, В.Н. Пучкову, Н.П. Юшкину, 1968 г.).*

1-4 – ордовикские отложения: 1 – щугорская свита (O_{2.3}scg), мраморизованные известняки; 2 – хыдейская свита (O_{1.2}hd), известковистые сланцы; 3, 4 – тельпосская свита (O₁tl): 3 – кварцитопесчаники, метаконгломераты, 4 – аркозовые кварцитопесчаники и метаконгломераты с гранитной галькой; 5–11 – рифейские отложения: 5–9 – маньинская свита (RF₃m): 5 – кварцевые порфиры и их туфы, 6 – вулканокластические образованных известняков и известковистых сланцев; 10 – хобеинская свита (RF₃hb), кварциты, гравелиты, кварц-серицитовые сланцы; 11 – пуйвинская свита (RF₂pv), кристаллические сланцы с гранатом; 12–17 – интрузивные породы: 12 – ультраосновные породы, 13 – габбро, габбро-метадолериты, 14 – долериты апикальной фации (кефталыкский тип), 17 – фация гранито-гнейсов и гнейсов мусковитовых с гранатом (хартесский тип); 18 – гибридные породы (плагиограниты, гранодориты, диориты) фации энфизивации; 20 – включения микропегматитовых гранитов в кислых эффузивах и их туфах; 21 – кварцевые жилы Торговского месторождения; 22, 23 – геологические границы: установленные (22) и предполагаемые (23); 24–25 – линии тектонических нарушений: установленные (24) и предполагаемые (25), например, зоны катаклаза в изверженных породах; 26 – номера проб.

ную гальку. В зоне контакта граниты осветлены и каолинизированы, что связывается с гидротермальными низкотемпературными процессами воздействия на катаклазированные граниты и общими процессами гипергенеза [3]. В центральной части массива выделяется полоса развития основных пород (габбро и долеритов), по которой на начальном этапе исследований массив был разделен на две части: западную (торговскую) и восточную (кефталыкскую). Однако южнее эта полоса не наблюдается и массив выглядит единым. В южном окончании массива мощность выходов гранитоидов резко сокращается, и они постепенно выклиниваются, превращаясь в многочисленные маломощные пластовые тела, часто интенсивно катаклазированные. В районе руч. Морткулемшор выделяется Кулемшорский участок, альбитизированные и грейзенизированные гранитоиды которого содержат комплексную редкоземельноуран-торий-редкометалльную минерализацию [4, 5].

Гранитоиды торговской части массива представлены крупнозернистыми, биотитовыми и двуслюдяными, часто гнейсовидными и порфировидными гранитами. В зонах эндоконтактов они лейкократовые, мелкозернистые или порфировидные, нередко катаклазированные и рассланцованные. В гранитах наблюдаются редкие дайки метадолеритов и гранит-порфиров, более типично присутствие аплитов, жил пегматоидного строения с турмалином и пиритом.

Кефталыкские мелко- и среднезернистые граниты часто окварцованы, мусковитизированы и интенсивно разгнейсованы, а в зоне юго-восточного контакта наблюдается флюоритизация. По составу гальки гранитов в ордовикских конгломератах, перекрывающих интрузивные породы, соотносились с гранитами кефталыкского типа, которые рассматриваются как граниты апикальной части массива.

Петрографически преобладают породы главной фазы (торговский тип), слагающие торговскую часть массива и отмеченные в виде небольших участков в кефталыкской. Для них характерны гнейсоватость и наличие катаклазированных и рассланцованных разностей. Граниты торговского типа представляют собой крупнозернистые, лейкократовые, двуслюдяные микроклин-пертитовые породы с типичной бластогранитовой, порфировидной структурой. В этих породах сохраняются участки с гранитовой гипидиоморфнозернистой структурой, с элементами монцонитовой и пойкилитовой структур. Типичные микроструктуры пород приведены на рис. 2. Сложены граниты микроклин-пертитом и решетчатым микроклином, альбитом (An₃₋₉) и альбитолигоклазом (An₁₁₋₁₆), а также кварцем, биотитом (редко стильпномеланом), мусковитом, хлоритом. В качестве акцессорных минералов присутствуют алланит, титанит, эпидот, циркон, апатит и гранат.

Граниты кефталыкского типа распространены гораздо меньше, занимают площадь примерно 35 км² и в основном развиты в пределах только кефталыкской части массива. К ним относятся мелко- и среднезернистые породы, интенсивно мусковитизированные породы с широко развитыми микропегматитовой и гранофировой структурами. Наложенный катаклаз и рассланцевание подчеркиваются развитием серицита. Наблюдается карбонатизация. Сложены граниты микроклин-пертитом и решетчатым микроклином, альбитом (An₁₋₆), кварцем, мусковитом. Акцессорными минералами кефталыкских гранитов являются алланит, титанит, эпидот, циркон, апатит, гранат, а также флюорит, турмалин, халькопирит, магнетит, гематит.

По петрохимическим характеристикам породы Торговско-Кефталыкского массива относятся к семейству гранитов умеренно-щелочного ряда (Na₂O+K₂O от 6 до 9.5 мас. %). В гранитах торговской части массива содержание SiO₂ изменяется от 72 до 80 мас. %, в среднем составляя 75 мас. % (табл. 1, рис. 3). Породы имеют калиево-натриевый тип щелочности (Na₂O/K₂O на уровне 0.7). Агпаитовый индекс (a.i.) достаточно высокий (0.8–1). По содержанию глинозема граниты разделяются на две группы: метаалюминиевые и пералюминиевые (ASI 0.85–1.18, al' 3.5–8), и являются крайне низкотитанистыми (TiO₂ 0.1–0.5 мас. %).

Породы имеют низкое содержание РЗЭ (табл. 2). В нормированных на хондрит С1 [6] спектрах наблюдается небольшое преобладание LREE, величина (La/Yb)_N варьируется незначительно – от 2.1 до 6.5 (рис. 4). На спектрах распределения элементов-примесей фиксируются отрицательный наклон и четкий (разнопроявленный) европиевый мини-

Рис. 2. Типичная микроструктура пород (а-в): а, б – катаклазированная с участками сохранившейся гранитной (обр. 2, 11), в – гранобластовая (обр. 126); г – распределение темноцветных минералов в породе (обр. 11).

Таблица 1

Химический состав (мас. %) и петро-геохимические индикаторы гранитоидов Торговско-Кефталыкского массива

Компо-	21	1038	1041	3152-7	3836	104к	2	10	11	12	13	14	15	25	31a
ненты	1	2	3	4	5	6	1 op 7	говскии ті 8*	ип 9*	10	11	12	13	14*	15
SiO ₂	79,40	71,89	78,14	73,66	73,18	76,89	75,42	74,72	74,81	75,86	75,74	75,74	75,14	74,1	75,82
TiO ₂	—	0,10	_	0,22	0,22	0,13	0,17	0,15	0,16	0,10	0,15	0,30	0,10	0,14	0,24
AI_2O_3	10,80	14,31	12,10	13,15	13,60	11,89	12,00	13,94	13,93	12,15	11,97	12,02	12,26	14,49	12,18
Fe_2O_3	0,90	0,70	0,60	0,73	1,38	1,08	1,87	0,98	0,90	0,48	0,54	0,48	0,56	0,77	1,76
FeO	0,27	1,82	1,35	1,54	0,70	0,65	0,89	0,80	0,84	1,06	1,06	1,03	0,92	0,9	0,74
MnO	-	сл.	_	0,10	0,09	0,01	0,01	0,02	0,03	0,03	0,03	0,03	0,03	0,03	0,01
MgO	0,18	0,32	0,10	0,60	0,40	0,42	0,20	0,50	0,50	0,45	0,28	1,32	0,45	0,50	0,52
CaO	0,28	0,91	0,42	0,98	0,91	0,55	0,75	0,36	0,64	0,36	0,6	0,54	0,54	0,63	1,62
Na₂O	3,33	3,93	4,40	3,65	3,95	3,31	3,62	3,82	3,42	3,49	3,43	3,22	3,40	3,39	5,50
K ₂ O	3,23	4,96	2,87	4,17	4,30	4,94	5,04	4,69	4,66	4,83	4,89	4,75	5,03	5,09	0,80
H_2O^{-}	0,30	0,33	0,14	—	_	—	0,07	0,08	0,10	0,12	0,10	0,14	0,08	0,10	0,07
H_2O^+	—	—	—	—	—	—	—	—	—	0,63	0,65	0,64	0,93	—	—
П.п.п.	0,90	0,55	0,40	1,76	1,03	—	0,65	0,53	0,61	—	—	—	—	0,48	0,53
P_2O_5	0,018	0,05	_	0,06	0,06	—	0,036	0,10	0,10	0,03	0,05	0,05	0,05	0,10	0,05
CO ₂	—	—	—	—	—	—	<0.1	0,10	0,10	0,02	0,01	0,01	сл.	0,10	<0.1
Сумма	99,61	99,87	100,5	100,6	99,82	99,87	100,73	100	100	99,61	99,5	100,3	99,49	100	99,84
a.i.	0,83	0,83	0,85	0,80	0,82	0,91	0,95	0,81	0,77	0,90	0,91	0,87	0,90	0,76	0,81
Na ₂ O+K ₂ O	6,56	8,89	7,27	7,82	8,25	8,25	8,66	8,51	8,08	8,32	8,32	7,97	8,43	8,48	6,30
Na ₂ O/K ₂ O	1,03	0,79	1,53	0,88	0,92	0,67	0,72	0,81	0,73	0,72	0,70	0,68	0,68	0,67	6,88
												П	родолж	кение т	абл. 1
Компо-	34	68	72	90	96	107	110 Top	112	149	187	225	332a	1028б	1083	1165
ненты	16*	17	18	19	20	21	22	23	24	25	26*	27	28*	29	30
SiO ₂	71,39	74,42	74,76	74,44	75,86	74,90	75,98	77,9	75,92	77,72	68,01	72,28	72,01	75,02	78,38
TiO ₂	0,28	0,20	0,25	0,27	0,22	0,097	0,16	0,092	0,20	0,12	0,15	0,64	0,09	0,13	0,31
AI_2O_3	14,97	12,40	12,37	12,32	11,93	12,60	11,89	11,15	12,03	11,27	16,71	13,91	16,61	12,42	10,77
Fe ₂ O ₃	1,43	1,99	1,09	1,98	0,97	1,70	1,50	1,24	0,45	0,95	2,53	1,45	0,21	0,86	1,27
FeO	1,06	0,97	0,82	1,09	0,82	1,00	0,81	0,55	1,25	0,46	1,04	1,44	0,36	0,51	0,82
MnO	0,04	0,01	0,03	0,021	0,043	0,026	< 0,01	< 0,01	< 0,01	0,01	0,03	0,02	0,02	0,021	0,01
MgO	0,66	0,30	0,40	0,40	0,20	0,20	0,30	0,30	0,23	0,13	0,50	0,22	0,50	0,30	0,34
CaO	1,15	1,08	1,04	0,76	1,10	0,76	0,54	0,40	0,60	0,29	1,90	2,43	0,54	0,73	0,34
Na ₂ O	3,33	3,51	3,48	3,46	3,54	3,89	3,59	3,53	3,82	3,50	6,65	6,33	7,02	4,04	5,08
K ₂ O	4,96	5,17	4,95	5,28	4,78	4,46	5,00	5,01	5,22	4,70	1,42	0,72	2,54	4,84	1,05
H_2O^-	0,06	0,18	0,11	0,17	0,10	0,21	0,13	0,13	0,06	0,08	0,04	0,12	0,10	0,10	0,25
H_2O^+	_	_	_	_	_	_	_	_	0.45	_	_	0.22	_	_	0.85
Ппп	0.72	0.51	0.63	0.63	0.58	0.51	0.57	0.34	_	0.02	1 56	_	0.61	0.50	_
P ₂ O ₇	0.10	0.044	0.039	0.20	0.038	0.034	0.021	0.015	_		0.10	_	0.10	0.014	_
. 205	0.10	<0.1	0.1	<0 1	0 10	<0.1	<0 1	<0 1	_	_	0.61	0 በ3	0 10	0 10	0 03
	100	00.62	0, 1	00.70	100 17	0, 10	-0, I 00 FE	00.00	100.2	00.25	100	0,00	100	0,10	0,00
сумма	0.72	0.02	0.00	0.02	0.02	0 00	0.05	1 01	0.00	99,20 0.06	0.75	0 00	0.00	0.06	0 00
	0,72	0,92	0,90	0,93	0,92	0,09	0,90	1,UI	0,99	0,90	0,70	0,00	0,00	0,90	0,00
Na_2U+K_2U	0,29	80,0	0,43	d,74	0,32	0,35	8,59 0, 7 0	0,54	9,04	o,∠U	0,07	1,05	9,56	0,00	0,13
Na_2O/K_2O	0,67	0,68	0,70	0,66	0,74	0,87	0,72	0,70	0,73	0,74	4,68	8,79	2,76	0,83	4,84

Известия Коми научного центра УрО РАН. Выпуск 3(19). Сыктывкар, 2014

	407	474	1500-	1000	0404	0405	2044	4007	44.44	44.45	05]	Тродол	жение	<u>табл. 1</u>
Компо-	437	474 Торговск	1562а ий тип	1630	2464	2405	3844	4087	4144 Кефтал	4145 Іыкский ті	<u>95к</u> 1П	633	43	48	49
ненты	31	32	33	34	35	36	37	38	39	40	41	42	43	44*	45
SiO ₂	72,03	77,50	73,68	80,04	73,48	73,35	73,20	72,15	74,16	73,88	76,67	75,46	76,74	72,65	75,74
TiO ₂	0,33	0,15	0,51	0,50	0,32	0,32	0,28	0,22	0,22	0,22	0,16	0,19	0,09	0,18	0,17
Al ₂ O ₃	13,90	11,98	13,90	10,39	12,45	12,51	13,52	13,17	13,08	13,14	12,40	12,65	11,85	15,56	11,92
Fe ₂ O ₃	2,46	0,75	0,20	0,32	2,00	1,68	0,73	1,55	0,48	0,96	0,90	1,36	1,26	0,91	1,01
FeO	0,73	0,14	2,72	1,43	0,72	1,01	1,40	0,84	2,02	1,30	0,54	0,93	0,43	0,88	0,83
MnO	_	_	0,02	0,04	0,09	0,08	0,05	0,06	0,04	0,04	0,01	0,02	< 0,01	0,02	0,02
MgO	0,29	0,24	0,14	0,10	0,72	0,76	0,30	0,30	0,12	0,10	0,56	0,52	0,09	0,50	0,17
	1,05	0,47	0,00	0,00	0,70	0,70	0,70	0,04	0,50	0,02	0,75	0,34	0,20	1,17	0,00
	4,00	3,30	3,30	2,92	3,00	3,00	4,05	4,00	4,00	4,40	3,30	3,69	3,99	2,30	2,40
K₂O H₂O [™]	4,30	4,44 0.55	3,92	4,00	4,65	4,65	5,00	4,92 0.06	4,95	4,35	4,70	4,44	4,36 0.10	5,45 0 10	4,93 0.10
н 0 ⁺	0.21	-,						-,					0.54	-,	0.55
П ₂ О	0,21	_	0 44	0.36	 1 14	 0.90	0.55	 1.03	 0.46	0.82	_	_	0,54		0,55
P ₂ O ₂	_	_	0,11	0,00	0.03	0,00	0,00	1,00	0,40	0.04	_	_	_	0,00	0.02
F 205 CO2	_	_	_	_		0,02		_			_	_	0,02	0,10	0,02
Сумма	100,2	99,60	99,69	100,7	100,2	99,84	99,85	99,79	100,1	99,92	100,1	99,80	99,74	100,0	99,46
a.i.	0,91	0,87	0,70	0,88	0,91	0,91	0,89	0,98	0,91	0,92	0,86	0,89	0,95	0,62	0,78
Na ₂ O+K ₂ O	9,18	7,82	7,28	6,92	8,51	8,51	9,05	9,57	8,95	8,80	8,06	8,33	8,35	7,75	7,33
Na ₂ O/K ₂ O	1.13	0.76	0.86	0.73	0.83	0.83	0.81	0.95	0.81	1.02	0.71	0.88	0.92	0.42	0.49
-2- 2-1	, -	-, -	-,	-, -	-,	-,	- , -	- ,	- , -	, -	- /	-,	Око	нчание	табл. 1
Компо-	50	129	152	154	159	1011	1012	1017a	1019-a	1019б	1125a	1191	560	1703	1819a
ненты	46	47	48	49*	50	51	52	53	тип 54	55	56	57	58	59	60
SiO ₂	75,00	73,40	74,88	74,82	76,52	75,24	76,14	77,04	76,72	75,44	75,88	72,32	77,40	71,71	78,48
TiO ₂	0,23	0,27	0,40	0,12	0,14	0,20	0,22	0,03	сл.	сл.	0,22	0,28	0,14	0,39	1,33
Al ₂ O ₃	12,19	12,89	11,79	12,99	11,64	12,13	12,16	12,49	12,22	13,59	12,09	13,34	12,71	13,22	8,68
Fe ₂ O ₃	1,29	1,40	0,74	1,22	1,33	1,70	1,88	0,82	0,58	0,80	1,68	2,00	0,61	1,16	2,00
FeO	1,02	0,99	1,81	0,88	0,45	0,97	0,73	0,47	0,60	0,16	0,90	0,69	0,30	1,30	1,21
MnO	0,03	0,03	0,02	0,05	< 0,01	0,01	0,02	0,01	сл.	0,09	0,02	<0.01	_	0,04	0,28
MgO	0,09	0,21	0,24	0,50	0,17	0,20	0,20	0,15	0,18	0,18	0,40	0,44	0,05	0,80	0,02
CaO	0,67	0,46	0,66	0,65	0,06	0,86	0,45	0,24	0,19	0,19	0,56	0,67	0,47	0,73	0,30
Na ₂ O	3,08	3,32	3,50	3,41	3,22	2,98	3,19	3,37	3,32	0,17	3,94	2,96	3,80	4,17	3,72
K ₂ O	4,91	5,66	5,08	5,06	5,88	5,36	5,18	4,82	5,07	5,78	5,04	6,23	4,59	4,72	4,00
H₂O⁻	_	0.03	0.10	0.10	0.05	0.25	0.27	0.06	_	_	0.32	0.45	0.02	0.20	_
H O ⁺	0.50	0.72	0.21	-,	0.44	-,	-,	0.41	0 00	2 97	-,	-,	0.04	-,	
H ₂ U	0,59	0,72	0,31		0,44	_	_	0,41	0,69	2,07			0,04		
П.п.п.	_	_	_	0,79	_	1,42	0,62	_	_	_	1,02	1,05	_	1,87	0,72
P_2O_5	0,05	0,08	0,04	0,10	0,05	0,04	0,02	-	сл.	СЛ.	0,03	0,04	_	0,09	
CO ₂	0,35	0,25	0,06	0,10	-	0,35	<0.1	0,03	_	_	<0.1	<0.1	_	_	_
Сумма	99,50	99,7	99,63	100,0	99,95	100,1	100,1	99,94	99,77	99,36	99,88	99,33	100,1	100,6	100,7
a.i.	0,85	0,90	0,95	0,85	1,00	0,88	0,89	0,86	0,90	0,48	0,99	0,87	0,88	0,91	1,20
Na ₂ O+K ₂ O	7,99	8,98	8,58	8,47	9,10	8,34	8,37	8,19	8,39	5,95	8,98	9,19	8,39	8,89	7,72
Na-0/K-0	0.63	0.50	0.60	0.67	0.55	0.56	0.62	0 70	0.65	0.03	0.78	0 4 9	0 83	0.88	0.03

<u>Na₂O/K₂O</u> 0.63 0.59 0.69 0.67 0.55 0.56 0.62 0.70 0.65 0.03 0.78 0.48 0.83 0.88 0.93 Примечание. Цифры первого ряда в головке таблицы – номера образцов, второго ряда – номера по порядку. Архивные данные (Коми НЦ УрО РАН): 1–3, 35, 36 – М. С. Бельского и др.; 4, 5, 37–40 – Л. Т. Беляковой и др.; 59 – И.Ф. Фомишина и др. (Воркутинская комплексная геологоразведочная экспедиция); 6, 41, 42 – К.А. Высоцкого и др. (Главное Тюменское территориальное геологическое управление); 31, 32, 58 – Т.К. Кожиной (Институт геологических наук АН СССР); 33, 34, 60 – М.В. Фишмана и др. (Коми филиал АН СССР). Авторские данные: 7–30, 43–57. Состав пород определен методами рентгенофлюоресцентного* и классического химического анализов. а.i. – агпаитовый индекс (Na+K/Al).

Рис. 3. Положение точек составов гранитоидов на классификационных диаграммах: $Na_2O+K_2O - SiO_2$; $K_2O - SiO_2$, ASI – SiO_2 . 1, 2 – типы гранитоидов: торговский (1) и кефталыкский (2); серии пород: I – толеитовая, II – известково-щелочная, III – высококалиевая известково-щелочная, IV – щелочная.

мум (Eu/Eu* 0.14–0.53). На спайдер-диаграммах, нормированных на гипотетический гранит COX [7], наблюдается обогащение пород Sr, K, Rb Th, Nb, обеднение P, Ti, Ba. Ta, Zr, Hf, LREE и HREE (рис. 4). На диаграммах измененных пород отмечаются обеднение калием и обогащение ниобием.

В кефталыкских гранитоидах содержание кремнезема составляет 70–78 (в среднем 74) мас. %, величина (Na₂O+K₂O) находится в пределах 6–9.5 (табл. 1). Породы характеризуются калиево-натриевым типом щелочности (Na₂O/K₂O 0.4–1.0). Агпаитовый индекс изменяется от 0.6 до 1.2. По содер-

Рис. 4. Спектры распределения РЗЭ в гранитоидах, нормированные на хондрит С1 [6]. В правом верхнем углу спектры распределения элементов-примесей, нормированные на гранит СОХ [7]. Номера образцов в условных обозначениях соответствуют номерам в табл. 2.

Таблица 2

Содержание редких и редкоземельных элементов в гранитоидах Торговско-Кефталыкского массива, г/т

O ROMOUTU	12	72	96	149	43	49	50	129	152		12	72	96	149	43	49	50	129	152
JIEMEHID		Торго	ВСКИЙ ТИП			Кеф	талыкский	ТИП		Элементы		Торго	ВСКИЙ ТИП			Ke¢	талыкский	і тип	
La	20,87	50,68	38,88	51,03	51,38	67,25	84,26	74,04	56,65	Rh	0,00	0,01	0,00	0,01	0,00	0,01	0,01	0,01	0,01
Ce	46,21	110,09	86,45	106,11	123,81	145,97	176,50	155,15	123,52	Ag	0,05	0,04	0,05	0,03	0,03	0,04	0,03	0,05	0,04
Pr	5,48	12,94	10,93	13,46	16,59	16,35	21,62	17,66	14,87	Pd	0,02	0,02	0,02	0,02	0,02	0,01	0,01	0,02	0,01
Nd	22,02	50,38	41,27	53,27	71,69	68,51	86,09	64,72	53,78	Cd	0,19	0,27	0,16	0,14	0,17	0,13	0,13	0,13	0,10
Sm	5,15	9,74	8,03	10,87	15,87	16,41	17,60	13,05	10,85	In	0,06	0,06	0,07	0,07	0,09	0,12	0,10	0,07	0,06
Eu	0,26	0,54	0,39	0,53	0,36	0,82	1,36	1,67	0,48	Sn	8,77	8,88	8,19	4,89	12,03	6,31	4,79	4,94	7,65
Gd	5,74	9,13	8,54	10,75	16,08	12,07	15,21	12,28	10,91	Te	0,11	0,08	0,08	0,05	0,09	0,07	0,08	0,05	0,06
Tb	1,06	1,56	1,53	1,67	2,47	1,99	2,09	1,97	1,86	I	0,25	0,28	0,27	0,21	0,22	0,20	0,25	0,27	0,23
Dy	7,68	10,13	9,34	10,54	14,89	10,75	12,02	11,93	11,47	Hf	8,24	5,94	6,39	5,42	6,57	5,46	5,22	5,91	4,41
Ho	1,81	2,28	2,17	2,12	2,96	2,68	2,34	2,32	2,47	Та	4,50	3,05	2,23	1,76	2,59	1,87	2,03	2,80	1,98
Er	5,54	6,74	6,46	5,99	7,96	6,33	6,07	6,10	6,76	Nb	50,45	29,99	25,80	29,18	47,23	29,48	36,80	39,23	25,50
Tm	0,94	1,06	1,06	0,87	1,11	0,90	0,90	0,86	1,00	Zr	253,01	169,68	245,80	174,25	165,89	174,81	170,95	166,10	125,90
Yb	6,77	7,52	7,24	5,45	6,77	5,93	5,32	4,83	6,42	Y	57,30	79,22	67,13	73,76	76,26	76,33	65,11	78,59	82,88
Lu	1,14	1,24	1,19	0,81	0,95	0,80	0,73	0,69	0,95	Ga	10,92	12,09	10,85	10,37	15,36	18,49	23,01	28,54	11,57
(La/Yb)n	2,08	4,54	3,62	6,31	5,12	7,65	10,68	10,33	5,95	Rb	270,43	220,14	249,28	187,86	187,51	243,67	204,04	214,29	250,39
Eu/Eu*	0,15	0,18	0,14	0,15	0,07	0,18	0,25	0,40	0,13	Sr	17,50	31,08	25,95	44,61	22,88	26,24	33,68	36,87	22,23
Cs	5,77	3,89	9,78	1,72	3,12	3,65	3,51	3,02	2,68	W	1,56	1,17	1,32	1,45	2,35	1,75	1,55	1,41	0,75
Ва	87,14	147,97	135,39	155,28	173,80	399,47	605,58	644,22	146,89	Re	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02
Sc	3,75	5,45	4,08	5,27	9,40	5,65	6,27	7,70	4,76	Os	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Cr	10,73	3,52	2,56	3,64	1,88	1,14	1,54	3,06	4,24	lr	0,03	0,03	0,03	0,04	0,03	0,02	0,02	0,02	0,02
Co	1,06	2,53	1,91	1,57	0,96	0,47	0,74	1,00	1,96	Pt	0,42	0,22	0,26	0,24	0,29	0,23	0,20	0,20	0,27
Zn	12,97	20,38	26,16	18,57	28,68	24,63	34,09	21,33	20,74	Au	0,22	0,17	0,20	0,13	0,18	0,15	0,15	0,20	0,14
Ni	2,42	3,23	2,51	3,13	2,88	1,08	1,38	2,62	2,45	Hg	0,05	0,03	0,04	0,05	0,06	0,05	0,04	0,06	0,03
As	0,21	0,11	0,10	0,12	0,19	0,09	0,12	0,20	0,12	TI	0,23	0,57	0,50	0,44	0,18	0,22	0,15	0,16	0,44
Sb	0,09	0,06	0,11	0,08	0,07	0,03	0,03	0,09	0,05	Pb	9,76	20,37	19,65	15,09	6,89	8,78	6,11	7,66	22,24
Cu	2,96	1,89	1,42	1,93	2,88	1,57	1,89	3,65	2,42	Bi	0,05	0,12	0,11	0,09	0,04	0,05	0,04	0,05	0,11
۷	5,22	9,14	6,50	6,01	0,67	1,14	2,07	4,28	6,98	Li	4,75	2,63	3,79	1,32	1,28	1,78	1,52	1,63	1,73
Ge	1,49	2,07	1,69	1,97	1,67	1,66	2,07	2,28	1,52	Ве	4,13	4,28	4,86	3,49	4,80	2,45	3,05	3,30	2,89
Мо	1,44	0,78	0,59	1,42	3,28	1,05	1,19	0,84	1,25	Th	14,38	27,14	25,00	29,34	25,51	20,79	24,83	22,19	24,61
Ru	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	U	2,63	4,43	3,98	3,63	4,42	3,32	3,16	2,83	2,88

Примечание. Цифры первого ряда в головке таблицы – номера образцов. Содержания редких и редкоземельных элементов определены методом LA-ICP- MS в ЦКП Уро РАН "Геоаналитик", г. Екатеринбург.

жанию глинозема кефталыкские гранитоиды тоже делятся на две группы: мета- и пералюминиевые (ASI 0.79–1.32, al' 3–13) и также являются низкотитанистыми, но содержание TiO₂ в них варьируется в более широком диапазоне (0.1–1.3).

Гранитоиды характеризуются также низким содержанием РЗЭ. На хондрит-нормализованных спектрах отмечается небольшое преобладание легких РЗЭ, величина (La/Yb)_N составляет 5.1–10.7. На спектрах распределения редкоземельных элементов наблюдается отрицательный наклон и хорошо проявленный европиевый минимум (Eu/Eu* от 0.07 до 0.40), спайдер-диаграммы кефталыкских и торговских гранитов на вид одинаковы (рис. 4).

По субстратной классификации граниты Торговско-Кефталыкского массива относятся к А-гранитам, но имеют ряд особенностей, в частности, геохимических [3, 4, 10]. На диаграммах, применяемых для реконструкции геодинамической обстановки формирования гранитов, фигуративные точки состава торговско-кефталыкских гранитов занимают область внутриплитных образований (рис. 5).

Единственное определение возраста гранитоидов массива, равного 525±26 млн. лет, было получено К–Аг методом по гранодиориту, т.е. по породе в целом. В совокупности с геологическими данными это определение давало основание считать Торговско-Кефталыкский массив доордовикским [11], хотя преобладающая часть датировок находилась в интервале 262–232 млн. лет (табл. 3).

Изотопные данные по цирконам из гранитов торговской части массива, полученные U–Pb (SHRIMP-II) методом, определяют возраст на уровне 540 млн. лет (541.8 ± 3.7, 543.2 ± 29 млн. лет) [12]. Аналогичный возраст (542.1 ± 4.0, 544.4 ± 5.1 млн. лет) имеют цирконы из гранитов Кулемшорского участка, выделенного в южном окончании Торговско-Кефталыкского массива [12]. Возраст цирконов,

Таблица 3

Результаты K-Ar и U-Pb (SHRIMP-II) изотопного датирования гранитоидов

№ п/п	Образец	Порода	Возраст млн. лет ± 2σ	Метод
1	407-г	Гранодиорит	525 ± 26	K–Ar
2	387-6	Гранит флюоритизированный	240 ± 8	—« —
3	A1096	Гранит биотитовый (биотит)	262 ± 8	—« —
4	68	Гранит биотитовый	243 ± 8	—« —
5	12	Гранит двуслюдяной	239 ± 8	—« —
6	129	Гранит-порфир	323 ± 8	—« —
7	12-б	Гранит-аплит	237 ± 8	—« —
8	—	Гранит (циркон)	$541.8 \pm 3.7; 543.2 \pm 2.9$	U–Pb
9	—	Гранит (циркон)	542.1 \pm 4; 544.4 \pm 5.1	—« —
10	Пр.9 т.9	Гранит (циркон)	514 ± 4.6	—« —

Примечание. 1-7 (по [11]), 8-9 (по [12]), 10 – (по [5]), 9-10 – Кулемшорский участок. Изотопное датирование проводилось по породе в целом или по ее компоненту (указан в скобках). После знака ± приводятся погрешности изотопных измерений.

Таблица 4

Концентрации и изотопный состав Rb и Sr в гранитоидах Торговско-Кефталыкского массива

Образец	Rb, мкг/г	Sr, мкг/г	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr								
	Торговский тип											
12/66	309.1	26.2	34.736	0.89523 ± 18								
96/66	247.0	31.8	22.856	0.87191 ± 11								
149/66	199.6	41.6	14.037	0.81082 ± 20								
1083/66	79.7	48.7	4.748	0.74546 ± 20								
	Кефталыкский тип											
49/66	224.3	27.6	23.947	0.87867 ± 23								
50/66	200.00	34.4	16.996	0.82992 ± 20								
152/66	219.3	27.2	23.736	0.87685 ± 15								

Примечание. Анализы проведены в ЦКП «Геонаука» ИГ Коми НЦ УрО РАН А.Ф. Литвиненко и А.Г. Сажиной. Определение содержаний Rb и Sr производилось из одной навески методом изотопного разбавления с использованием раздельных трассеров ⁸⁷Rb и ⁸⁴Sr. После полного разложения проб при температуре ~120°C смесью плавиковой и хлорной кислот в специальных тефлоновых бюксах с отверстием в крышке, выделение концентратов Rb и Sr осуществлялось методом элюентной хроматографии на колонках с внутренним диаметром 7 мм, заполненных 5 см³ смолы DOWEX 50 х 8 крупностью 200–400 меш. В качестве элюента использовалась 2N HCl. Уровень лабораторного фона по Rb и Sr не превышал 2.0 и 0.5 нг соответственно. Измерения изотопного состава Rb и Sr выполнялись на масс-спектрометре MИ–1201T однолучевым методом в двухленточном режиме ионизации с использованием предварительно отожженных от метающих примесей рениевых лент. Измеренные изотопные отношения ⁸⁷Sr/⁸⁶Sr нормировались к величине ⁸⁶Sr/⁸⁸Sr = 0.1194. Коррекция на фракционирование не производилась, на период измерений величина ⁸⁷Sr/⁸⁶Sr в изотопном стандарте стронция SRM-987 составила по 14 анализам 0.71023 ± 6 (2 σ). Погрешности изотопных отношений ⁸⁷Rb/⁸⁶Sr соответствует ±1.5% (2 σ).

Рис. 5. Положение точек составов пород: а – на диагностической диаграмме для гранитоидов по [7]; б-е – на диаграммах реконструкции геодинамической обстановки: б – по [8], в-е – по [9]. Поля гранитоидов: СК – синколлизионных, ПК – поздне- и постколлизионных, ВП – внутриплитных, ОД – островодужных, СОХ – срединноокеанических хребтов. 1, 2. – типы гранитоидов: торговский (1) и кефталыкский (2); 3 – средний состав главных типов гранитоидов по Б. Чаппелу.

отобранных из кулемшорских гранитов и расположенных вблизи минерализованных зон, составил 514.0 \pm 4.6 млн. лет [5]. А Rb–Sr данные по валовому изотопному составу показали более молодой возраст, равный 358 \pm 7.3 млн. лет (I_{Sr} = 0.71650 \pm 10, CKBO = 0.4) [13]. Полученный нами Rb–Sr изохронный возраст по торговским и кефталыкским гранитоидам (по породе в целом) составил 488 \pm 4.9 млн. лет (табл. 4, рис. 6).

Выводы

Совокупность современных изотопных данных свидетельствует о приуроченности гранитоидов Торговско-Кефталыкского массива к границе венда-кембрия. Более молодые возрастные значения (514–488 млн. лет), по-видимому, маркируют время изменений гранитоидов, обусловленных альбитизацией и грейзенизацией (или внедрением аляскитовых по типу гранитов, которые ранее называли метагранитами), а с возрастом 358 млн. лет связан зеленосланцевый метаморфизм.

Изотопные данные Sm–Nd (табл. 5) характеризуются отрицательными значениями $\epsilon_{Nd}(t)$, рассчитанными на время образования пород 540 млн. лет. Поскольку Sm–Nd изотопная система более устойчива по сравнению с Rb–Sr, а изменения пород соответствуют зеленосланцевой (не выше) фации метаморфизма, мы полагаем, что рассчитанные данные корректны.

У гранитоидов торговской части массива величина $\epsilon_{Nd}(t)$ равна – 0.3, в то время как у кефта-

лыкских гранитоидов достигает –2.7. При расчете на Rb–Sr возраст 488 млн. лет величины изменяются незначительно (–0.6 и –3.2 соответственно). Отрицательные значения $\varepsilon_{Nd}(t)$ указывают на зрелость корового субстрата, участвовавшего в плавлении. Отличие более глубинных торговских гранитов от менее глубинных кефталыкских пока не находит объяснения, так как апикальные части более дифференцированы. Отношение Zr/Hf меняется незначительно и составляет у торговских гранитоидов 33.6, а у кефталыкских – 29.3. Уменьшение отрицательных значений $\varepsilon_{Nd}(t)$ могло произойти при проявлении процессов контаминации в верхней части магматической камеры.

Граниты формировались в условиях низкотемпературной эвтектики (t 640–650°C) при давлении 1000 атм. Тесная связь с эффузивами, наличие микропегматитовых структур, повышенная степень окисления железа и общая железистость свидетельствуют о гипабиссальных условиях формирования пород. Совокупность всех данных позволяет рассматривать торговско-кефталыкские гранитоиды как продукт эволюции единой кислой магмы. Вовлекавшиеся в плавление породы по изотопногеохимическим данным были коровыми, что подтверждается значением коэффициента глиноземистости, превышающим единицу.

На всех диаграммах, использованных для реконструкции геодинамической обстановки формирования гранитоидов Торговско-Кефталыкского массива, фигуративные точки их составов занимают

Рис. 6. Rb–Sr изохронная диаграмма для гранитов Торговско-Кефталыкского массива: t = 488 \pm 4.9 млн лет, $(^{87}Sr)^{86}Sr)_0=0.71250\pm75,$ СКВО = 0.6

Таблица 5

Концентрации и изотопный состав Sm и Nd в гранитоидах Торговско-Кефталыкского массива

Образец	Sm, мкг/г	Nd, мкг/г	¹⁴⁷ Sm/ ¹⁴⁴ Nd	143 Nd/ 144 Nd \pm 2 σ	ε _{Nd} (t)	T(DM)	T(DM2)					
Торговский тип												
12/66	8.36	32.08	0.1575	0.512482 ± 3	-0.3	1812	1304					
Кефталыкский тип												
50/66	15.44	80.12	0.1165	0.512215 ± 2	-2.7	1467	1501					

Примечание. Изотопные анализы Sm и Nd (ID TIMS) проведены в ИГГД РАН В. М. Саватенковым. При расчете величин $\varepsilon_{Nd}(t)$ использованы параметры CHUR (однородного хондритового резервуара): $^{147}Sm/^{144}Nd = 0.1967$, $^{143}Nd/^{144}Nd = 0.512638$, а при расчете модельных возрастов T(DM) приняты современные значения деплетированной мантии: $^{147}Sm/^{144}Nd = 0.2136$, $^{143}Nd/^{144}Nd = 0.513151$ [14]. Расчет двухстадийных модельных возрастов T(DM2) производился с использованием среднекоровой величины $^{147}Sm/^{144}Nd = 0.12$ [15]. Величины $\varepsilon_{Nd}(t)$, T(DM), T(DM2) рассчитаны на время образования пород 540 млн. лет.

область внутриплитных образований. С учетом данных по другим гранитным массивам севера Урала они относятся к син- и постколлизионным образованиям, завершавшим магматизм доуралид. После этого начался новый геодинамический цикл развития Урала, в результате которого сформировались уралиды [5, 16].

Литература

- 1. *Херасков Н.П.* Тектоника и формации. М.: Наука, 1967. 404 с.
- Металлогенический очерк вольфрамовой минерализации севера Урала / Н.П. Юшкин, М.В. Фишман, Б.А. Голдин и др. Л.: Наука, 1972. 195 с.
- Калинин Е.П., Беляев В.В., Пучков В.Н. Геохимические особенности гипергенного изменения гранитов в зоне Кефталыкского разлома (Приполярный Урал). Сыктывкар, 1969. С. 101–112. (Тр. Ин-та геологии Коми ФАН СССР; Вып. 13).
- 4. Калинин Е.П. Гранитоиды Приполярного Урала, их минералогия и геохимия (на примере гранитов бассейна р. Торговой): Автореф. дис. ... канд. геол.-минер. наук. М., 1971. 21 с.
- Удоратина О.В., Капитанова В.А., Варламов Д.А. Гранитоиды Кулемшорского массива (Приполярный Урал) // Известия Коми НЦ УрО РАН. 2014, Вып. 1(17). С. 57-70.
- 6. Boynton W.V. Geochemistry of Rare Elements Meteorites Studies // Rare Earth Element Geochemistry. Amsterdam, 1984. P. 63-114.
- Whalen J.B., Currie K. L., Chappell B.W. A-type granites: geochemical characteristics, discrimination and petrogenesis // Contrib. Miner. and Petrol. 1987. Vol. 95. P. 407-419.
- Harris N.B.W., Pearce J.A., Tindle A.G. Geochemical characteristics of collision-zone magmatism //Collision tectonics / M.P. Coward, A.C. Ries (eds.). Geol. Soc. London Spec. Publ. 1987. № 19. P. 67-81.
- 9. Pearse J.A., Harris N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // J. Petrol. 1984. Vol. 25. P. 956-983.
- Калинин Е.П. Геохимическая специализация гранитоидов севера Урала // Геология севера Урала. Сыктывкар, 1992. С. 61–69. (Тр. Инта геологии Коми НЦ УрО РАН. Вып. 94).
- Андреичев В.Л. Изотопная геохронология доуралид Приполярного Урала. Сыктывкар, 1999. 48 с.
- 12. Основные черты геологического строения и минерально-сырьевой потенциал Северного, Приполярного и Полярного Урала / Ред. А.Ф. Морозов, О.В. Петров, А.Н. Мельгунов. СПб.: Изд-во ВСЕГЕИ, 2010. 274 с.
- 13. Удоратина О.В. Rb-Sr возраст гранитоидов Кулемпюрского массива (Приполярный Урал)// Изотопное датирование процессов рудообразования, магматизма, осадконакопления и метаморфизма: Материалы III Российской конференции по изотопной геохронологии. T.2. M.: ГЕОС, 2006. С. 365–368.

- 14. Jacobsen S.B., Wasserburg G.J. Sm-Nd evolution of chondrites and achondrites // Earth and Planet. Sci. Lett. 1984. Vol. 67. P. 137–150.
- 15. Taylor S.R., McLennan S.M. The continental crust: Its evolution and composition. London: Blackwell, 1985. 312 p.
- 16. Пучков В.Н. Эволюция литосферы: от Печорского океана к Тиманскому орогену, от Палеоуральского океана к Уральскому орогену//Проблемы тектоники Центральной Азии. М.: ГЕОС, 2005. С. 309–342.

References

- 1. N.P.Kheraskov. Tectonics and formations. M.: Nauka, 1967. 404 p. (in Russian)
- A metallogenic sketch of tungsten mineralization of the north of the Urals/ N.P.Yushkin, M.V.Fishman, B.A.Goldin et al. L.: Nauka, 1972. 195 p. (in Russian)
- E.P.Kalinin, V.V.Belyaev, V.N.Puchkov. Geochemical charactaristics of hypergene change of granitoids in the zone of the Keftalyk fracture (Subpolar Urals). Syktyvkar, 1969. P. 101-112. (Tr. In-ta geologii Komi FAN SSSR; Issue 13). (in Russian)
- 4. *E.P.Kalinin.* Granitoids of Subpolar Urals, their mineralogy and geochemistry (on the example of granites of Torgovaya river basin): Avtoref. dis....kand. geol. nauk. M., 1971. 21 p. (in Russian)
- 5. O.V.Udoratina, V.A.Kapitonova, D.A.Varlamov. Granitoids of Kulemshor massif (Subpolar Urals)// Izvestia Komi NTs UrO RAN. 2014. Issue 1(17). P. 57-70. (in Russian)
- 6. Boynton W.V. Geochemistry of Rare Elements Meteorites Studies // Rare Earth Element Geochemistry. Amsterdam, 1984. P. 63-114.
- Whalen J.B., Currie K.L., Chappell B.W. A-type granites: geochemical characteristics, discrimination and petrogenesis // Contrib. Miner. and Petrol. 1987. Vol. 95. P. 407-419.
- Harris N.B.W., Pearce J.A., Tindle A.G. Geochemical characteristics of coliision-zone magmatism// Collision tectonics/ M.P.Coward, A.C.Ries (eds.). Geol. Soc. London Spec. Publ. 1987. No. 19. P. 67-81.
- 9. Pearce J.A., Harris N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks// J. Petrol. 1984. Vol. 25. P. 956-983.
- E.P.Kalinin. Geochemical specialisation of granitoids of the north of the Urals// Geologia severa Urala. Syktyvkar, 1992. P. 61-69. (Tr. In-ta geologii Komi NTs UrO RAN. Issue 94). (in Russian)
- V.L.Andreichev. Isotope geochronology of douralids of Subpolar Urals. Syktyvkar, 1999. 48 p. (in Russian)
- 12. The basic features of geological structure and mineral-raw potential of North, Subpolar and Polar Urals/Ed. A.F.Morozov, O.V.Petrov, A.N.Melgunov. SPb.: Izd-vo VSEGEI, 2010. 274 p. (in Russian)
- 13. O.V.Udoratina. Rb-Sr age of granitoids of the Kulemshor massif (Subpolar Urals)// Izotop-

noe datirovanie protsessov rudoobrazovania, magmatizma, osadkonakoplenia I metamorfizma: Materialy III Rossiiskoi konferentsii po izotopnoi geohronologii. Vol. 2. M.: GEOS, 2006. P.365-368. (in Russian)

- 14. Jacobsen S.B., Wasserburg G.J. Sm-Nd evolution of chondrites and achondrites// Earth and Planet. Sci. Lett. 1984. Vol. 67. P. 137-150.
- 15. Taylor S.R., McLennan S.M. The continental crust: Its evolution and composition. London: Blackwell, 1985. 312 p.
- 16. V.N.Puchkov. Evolution of lithosphere: from the Pechora ocean to Timan orogen, from the PaleoUral ocean to Urals orogen// Problemy tektoniki Tsentralnoi Azii. M.: GEOS, 2005. P. 309-342. (in Russian)

Статья поступила в редакцию 27.03.2014.