ГЕОТЕХНОЛОГИЯ

УДК 622.28, 622.831

А.А. Неверов, С.А. Неверов, А.М. Никольский, Ж.К. Алимсеитова

ГЕОМЕХАНИЧЕСКАЯ ОЦЕНКА ГОРНОТЕХНИЧЕСКОЙ СИТУАЦИИ ПРИ ПЕРЕХОДЕ ОТ КОМБИНИРОВАННОЙ ВЫЕМКИ С ЗАКЛАДКОЙ И ОБРУШЕНИЕМ К ТЕХНОЛОГИИ ЭТАЖНОГО ОБРУШЕНИЯ

Сокращение добычи богатых высокоценных руд и вовлечение в отработку залежей минерального сырья средней и ниже средней ценности на сегодняшний день приобретают все большую актуальность. Особенно остро эта проблема начинает проявляться на рудниках Норильской группы полиметаллических месторождений [1, 2].

В настоящее время широко применяемые технологии с закладкой, с одной стороны, создают эффективные условия управления напряженнодеформированным состоянием массива пород, с другой – неспособны обеспечить разработку залежей руд средней ценности на конкурентоспособном уровне. Несомненно, в этих случаях распространения будут получать более дешевые системы с обрушением [1, 2]. При этом огромный научный интерес представляют вопросы плавного перехода от одной технологии к другой.

В настоящей статье предлагается в условиях

применения комбинированной системы разработки с твердеющей закладкой и обрушением рассмотреть влияние зоны принудительного обрушения налегающей толщи над закладочными массивами на область стыковки технологии с системой этажного обрушения в зависимости от тектонотипа массива горных пород [3]. В связи с этим была решена упругая трехмерная задача о напряженнодеформированном состоянии (НДС) массива горных пород с оценкой их устойчивости в области перехода комбинированной технологии в этажную выемку с обрушением (рис. 1) [4].

Краевые условия задачи были приняты в соответствии с моделями геосреды, приведенными в табл. 1 [5-8]. Обоснование горнотехнической ситуации осуществлялось применительно к глубокозалегающей (1000 м) пологой рудной залежи мощностью 20 м. Анализировались два варианта перехода комбинированной технологии в систему

Связь напряженного состояния с глуби-Геомеханическая модель Тип тектонической структуры ной $\sigma_{H\max} = \alpha \lambda^{\kappa} \ln(\gamma H) - \delta \approx \sigma_1;$ Устойчивые фундаменты и ста-Геодинамическая бильные щиты платформ. Мо- $\sigma_{h\min} = \frac{(\sigma_{H\max} + \sigma_{v})}{2} \approx \sigma_{2};$ $300 \le H \le 1300;$ бильные сейсмоактивные склад- $2.0 \le \lambda \le 5.0$ чатые системы. Сложный текто- $\sigma_{\nu} \approx \gamma H \approx \sigma_{3}$ $\sigma_{H \max} = 2.8 e^{\kappa \lambda} \gamma H^{0.7} \approx \sigma_{1}$ или нический режим. Мобильные сейсмоактивные складчатые системы, геосинкли-Тектоническая $\sigma_{H \max} \approx \psi \lambda^{\kappa} \gamma H + \theta \approx \sigma_1;$ нальные складчатые и подвижные $300 \le H \le 2000;$ пояса, тектонические шарьяжи. $\sigma_{h\min} = (0,6 \div 0,85) \sigma_{H\max} \approx \sigma_2;$ $1.2 \le \lambda \le 2.0$ Невыдержанный тектонический $\sigma_v \approx \gamma H \approx \sigma_3$ режим. $\sigma_{H_{\rm max}} = \lambda \gamma H \approx \sigma_1 \approx \sigma_2;$ Геостатическая Молодые подвижные платформы, $\sigma_{h\min} = (0,8 \div 1,0) \sigma_{H\max} \approx \sigma_3;$ $300 \le H \le 5000;$ грабены, шарьяжи. нетекто- $0.8 \le \lambda \le 1.2$ нический и сбросовый режимы. $\sigma_{v} \approx \gamma H \approx \sigma_{1} \approx \sigma_{2}; \quad \sigma_{1} \approx \sigma_{2} \approx \sigma_{3} \approx \gamma H$ Платформенные осадочные чех-Гравитационная $\sigma_{H\max} \approx \lambda \gamma H \approx \sigma_2;$ лы, подвижные щиты и платфор- $300 \le H \le 5000; \quad \lambda = \frac{V}{1 - V}$ $\sigma_{h\min} \approx \lambda \gamma H \approx \sigma_3; \ \sigma_{\nu} \approx \gamma H \approx \sigma_1$ мы, рифты, Каледониды в виде шарьяжей.

Таблица 1. Соответствие геомеханических моделей геосреды типу тектонических структур

^{*} Примечание: γ – удельный вес пород, МН/м³; H – глубина залегания, м; λ – коэффициент бокового давления, (распора); v – коэффициент Пуассона; κ – эмпирический коэффициент, учитывающий деформационно-прочностные свойства пород. Для прочных пород κ = 0,17÷0,30, для пород средней прочности и ниже κ = 0,10÷0,17; α , δ , ψ и θ – эмпирические коэффициенты пропорциональности, $\alpha \approx 32$ ÷37, $\delta \approx 65$ ÷80, $\psi \approx 0,8$ ÷0,9, $\theta \approx 5$ ÷10.

Puc. 1. Горнотехническая ситуация при переходе комбинированной технологии выемки с закладкой и обрушением на отработку системой с обрушением

с обрушением: І-вариант – классический (без обрушения пород над заложенными камерами); ІІвариант – с принудительным погашением налегающих пород над закладкой на расстоянии 100 м до линии перехода.

Область расчета включала 5 последовательно вынимаемых панелей с общей длиной фронта отработки по простиранию 300 м и пролетом выработанного пространства 200 м (рис. 2). Руда, вмещающие породы и закладка при моделировании принимались с физико-механическими свойствами, характерными для вкрапленных полиметаллических рудных залежей месторождений Норильского региона.

Сравнительная оценка геомеханических полей напряжений и устойчивости пород в сложившейся горнотехнической ситуации в районе перехода геотехнологий в зависимости от вида исходной модели геосреды приведена в табличной форме. В табл. 2-4 приведены качественные картины распределения напряжений и возможные зоны запредельного деформирования пород (по критерию Кулона-Мора) по характерным сечениям. В табл. 5 – количественные данные абсолютных величин

Рис. 2. Горнотехническая ситуация при переходе комбинированной технологии с предварительно погашенной кровлей над заложенными камерами на отработку системой этажного обрушения

действующих напряжений в массиве пород.

Анализ результатов исследований НДС массива пород и их устойчивости в разрезе над зоной обрушения в 50 м от линии перехода показал:

– максимальные сжимающие напряжения σ_1 наблюдаются в кровле над зоной обрушения налегающих пород при геодинамическом и тектоническом типах геосреды (соответственно σ_1 составляет 60 и 40 МПа). При этом в І-варианте их концентрация выше на 15-20 %;

 закладочные массивы при наличии зоны обрушения над ними испытывают минимальные нагрузки;

 в почве над заложенными камерами и погашенными целиками породы горнотехнической конструкции, предусматривающей посадку кровли над закладочными массивами испытывают напряжения σ_1 в 1,1-1,15 раза выше, чем в І-варианте;

 потеря устойчивости пород отмечается в кровле и почве зоны обрушения в условиях гравитационной модели геосреды – П-вариант, а также в налегающей толще над погашенными целиками в массивах с геодинамическим распределением исходных напряжений – І-вариант.

Напряженно-деформированная ситуация в сечении по линии перехода комбинированной технологии в систему с обрушением свидетельствует о следующем:

 в условиях отсутствия зоны обрушения над закладочными массивами при всех видах геомеханических моделей на участках в районе центральной части камеры с твердеющей закладкой и

	кладкои										
N⁰	Геодинамический (I)	Тектонический (II)	Геостатический (III)	Гравитационный (IV)							
I – вариант											
II – вариант											

		I I I		r ··· r · · · ·	the left of the left	
Габлина 3. Зоны	запрелельного леб	ормирования по	орол в пролольно	м разрезе по	пентру камеры	г с за

рудного целика, а также их кровли наблюдается рост максимального главного напряжения σ_1 (от 1,1 до 2,0 раза);

– кровля и борта буро-доставочных ортов в варианте с принудительным погашением налегающих пород над закладкой испытывают повышенные максимальные касательные напряжения $\tau_{\rm max}$, превышающие в 1,1-1,5 раза, чем в случае без обрушения пород над заложенными камерами;

 применительно к обоим вариантам горнотехнической ситуации перехода одной технологии в другую обширные зоны запредельного деформирования горных пород в кровле и бортах выработок формируются в условиях геодинамической и гравитационной моделях геосреды;

 наличие области разрушения пород в районе кровли над закладочными массивами и рудным целиком во II-варианте при гравитационном характере распределения исходных напряжений в недрах позволяет обеспечить плавное сдвижение налегающей толщи с развитием опасных деформаций вглубь массива и возможный выход их на дневную поверхность.

Влияние рассматриваемой горнотехнической ситуации на НДС призабойной области этажной выемки в центральном продольном сечении камеры с закладкой и целика с обрушением показало:

 вблизи закладочных массивов в призабойной зоне по рудной залежи в І-варианте независимо от геомеханической модели геосреды главная компонента σ_1 на 10-15 % больше, чем при наличии зоны обрушения над закладкой. Аналогичная картина наблюдается в районе целика по рудной залежи;

– наличие в кровле и почве выработанного пространства значительных по величине растягивающих усилий σ_3 во II-варианте в условиях гравитационного распределения исходного поля напряжений способствует развитию областей запредельного деформирования пород;

 в І-варианте при геодинамическом типе изменения напряжений в массиве за счет трехкратного превышения горизонтальной максимальной природной компоненты минимальной в кровле над зоной обрушения отмечается потеря устойчивости пород;

 для обоих вариантов стыковки геотехнологий устойчивость пород наблюдается в тектонической и геостатической моделях.

Таким образом, проведенный сравнительный анализ НДС массива пород и устойчивости конструктивных элементов горнотехнической обстановки перехода комбинированной геотехнологии в систему этажного обрушения в различных типах геомеханических условий разработки на глубине 1000 м и мощности рудной залежи 20 м позволил установить:

- наличие участка обрушенных налегаю-

Таблица 4. Зоны запредельного деформирования пород в продольном разрезе по центру целика с обрушением

Цани сонованию ана	Напряжения, МПа (I, II, III и IV – тип геомеханической модели)											
наименование ана-		σ	1			σ	.3			$ au_{ m m}$	nax	
лизируемого участка	Ι	Π	III	IV	Ι	Π	III	IV	Ι	II	III	IV
в разрезе над зоной обрушения в 50 м от линии перехода												
в центре камеры с	8,5	<u>13</u>	<u>14</u>	<u>15</u>	4	<u>5</u>	<u>6</u>	7	2,25	<u>4</u>	4	<u>4</u>
твердеющей закладкой	4	3	3	1	0	0	0	0	2	1,5	1,5	0,5
в кровле над заложен- ной камерой	<u>18</u>	<u>15</u>	<u>14</u>	<u>14</u>	<u>7</u>	<u>5,5</u>	<u>4</u>	<u>2</u>	<u>5,5</u>	<u>4,75</u>	<u>5</u>	<u>6</u>
в кровле над зоной	<u>62</u>	<u>41</u>	<u>18</u>	0,5	0	<u>1</u>	<u>-1</u>	<u>-6,5</u>	<u>31</u>	<u>20</u>	<u>9,5</u>	<u>3,5</u>
обрушения целика	53	34	15	0,5	0	0	0	-9	26,5	17	7,5	4,75
в почве над заложен-	<u>40</u>	<u>20</u>	<u>16</u>	<u>13</u>	<u>11</u>	<u>10</u>	<u>10</u>	<u>0</u>	<u>14,5</u>	<u>5</u>	<u>3</u>	<u>6,5</u>
ной камерой	45	25	10	0,5	0	0	0	-5	22,5	12,5	5	2,75
в почве над зоной об-	<u>50</u>	$\frac{32}{25}$	$\frac{14}{14}$	0,5	$\frac{0}{2}$	$\frac{1}{2}$	$\frac{0}{0}$	<u>-8,5</u>	<u>25</u>	<u>15,5</u>	$\frac{7}{7}$	<u>4,5</u>
рушения целика	55	35	14	0,5	0	0	0	-9,2	27,5	17,5	/	4,85
	40	21	B pa	зрезе по 29	ЛИНИ	и перехо, °	ца 7	4	15	115	11.5	17
в районе центра каме-	<u>40</u>	<u>31</u>	<u>30</u>	30	10	<u>o</u>	<u>/</u>	<u>4</u>	<u>15</u>	<u>11,5</u>	<u>11,5</u>	17
ры с твердеющей за- кладкой	35	28	21	35	5	3	3	2	15	12,5	9	16,5
в районе центра рудно- го целика	<u>60</u> 54	$\frac{46}{43}$	$\frac{40}{38}$	<u>60</u> 56	$\frac{1}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{29,5}{27}$	$\frac{23}{21.5}$	$\frac{20}{19}$	$\frac{30}{28}$
в районе кровли над	82	80	70	60	27	25	25	15	27,5	27,5	22,5	22,5
заложенной камерой	40	40	40	56	0	3	1	5	20	18,5	19,5	25,5
в районе кровли над	<u>60</u>	<u>46</u>	<u>43</u>	<u>54</u>	<u>2</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>29</u>	<u>23</u>	<u>21,5</u>	<u>27</u>
рудным целиком	50	43	41	52	0	0	0	0	25	21,5	20,5	26
в районе кровли над	<u>130</u>	<u>125</u>	<u>120</u>	<u>100</u>	<u>38</u>	<u>34</u>	<u>36</u>	<u>24</u>	<u>46</u>	<u>45,5</u>	<u>42</u>	<u>38</u>
зонои обрушения це- лика	135	135	135	120	35	35	35	20	50	50	50	50
в кровле буро-	<u>80</u>	<u>76</u>	<u>30</u>	<u>54</u>	<u>5</u>	<u>3</u>	<u>5</u>	<u>20</u>	<u>37,5</u>	<u>36,5</u>	<u>12,5</u>	<u>17</u>
доставочного орта (в	84	82	40	56	2	2	0	0	41	40	20	28
в бортах буро-	120	115	115	130	10	10	12	22	55	52,5	51,5	54
доставочного орта (в	130	125	125	130	18	15	15	15	56	55	55	57.5
границах руд. целика)	150	125	123	150	10	15	15	15	50	55	55	57,5
	26	вр	азрезе п	о центр	у кам	еры с за	кладко	Й	0	0	0.5	65
в кровле над заложен- ной камерой	<u>26</u>	<u>24</u>	<u>22</u>	<u>15</u>	<u>8</u>	<u>8</u>	<u> </u>	<u> </u>	9	<u>8</u>	8,5	<u>0,5</u>
в кровле над зоной					_	_	_		2^{-5}	105	11.5	275
оорушения	57	62	23 60	0,5	12	14	14	-5	28,3	24	23	2,75
в призаобиной области по рудной запежи	<u>61</u>	<u>53</u>	<u>50</u>	$\frac{70}{60}$	5	5	<u>14</u> 5	$\frac{11}{4}$	$\frac{27}{28}$	$\frac{24}{24}$	$\frac{2.5}{22.5}$	$\frac{29,3}{28}$
no pjgnon swithin	01	B Da	зрезе п	о центр	v цели	ка с обру	ушение	M	20		22,0	20
в кровле над зоной	63	42	22	0,5	0	0	0	-4	31,5	21	11	2,25
обрушения	55	36	20	0,5	0	0	0	-6	27,5	18	10	3,25
в призабойной области	<u>63</u>	<u>50</u>	44	<u>54</u>	0	2	2	2	31,5	<u>24</u>	21	26
по рудной залежи	57	48	44	56	0	2	2	0	28,5	23	21	28
в призабойной области	<u>63</u>	<u>52</u>	<u>50</u>	<u>58</u>	0	2	<u>2</u>	2	31,5	<u>25</u>	<u>24</u>	28
обрушения налегаю- щих пород	57	50	52	61	0	2	2	0	28,5	24	25	30,5
в призабойной зоне в 10 м от линии перехода												
в районе центра каме-	65	<u>54</u>	52	54	24	18	22	14	20,5	18	15	20
ры с твердеющей за- кладкой	63	52	50	56	12	10	10	10	25,5	21	20	23
в районе центра рудно-	<u>61</u>	<u>50</u>	<u>48</u>	<u>52</u>	<u>6</u>	<u>6</u>	<u>6</u>	<u>5</u>	<u>27,5</u>	<u>22</u>	<u>21</u>	<u>23,5</u>
го целика	59	48	46	54	10	6	6	7	24,5	21	20	23,5

Таблица 5	і Нап	ряженно-	лефс	пми	пованное	состояние	горно	технической	ситуации
таолица э	'. 11un	principli	μυψι	plant	pobulilloc	COCTOMINE	ropito	ICAIIII ICCROI	си уации

Примечание: в числителе І-вариант, в знаменателе – ІІ-вариант

щих пород над заложенными панелями приводит к разгрузке горной конструкции в призабойной зоне от действия максимальных сжимающих напряжений;

 в кровле и почве области отработки в условиях гравитационной модели геосреды формируются зоны с повышенными растягивающими напряжениями $\sigma_3 = -10$ МПа, что способствует развитию и выходу обрушения на дневную поверхность и как следствие к снижению горного давления на флангах участка выемки;

 наибольшая устойчивость горных пород в элементах рассматриваемой горнотехнической ситуации отмечается при тектоническом и геостатическом типе геомеханических условий разработки;

 в геодинамической и гравитационной моделях геосреды за счет высоких по величине соответственно горизонтальной и вертикальной составляющей в краевой части массива и кровле залежи формируются зоны обрушения пород;

 сформированная сплошная (единая) зона обрушенных пород по фронтам очистных работ (по целику и камере), к моменту перехода на систему этажного обрушения, благоприятно сказывается на устойчивости пород в призабойном массиве;

 вариант, предусматривающий посадку налегающих пород над заложенными камерами, является предпочтительнее, чем классический в виду большей устойчивости пород в области линии перехода одной технологии в другую и возможности активизации процессов выхода опасных деформаций (обрушения) на дневную поверхность.

СПИСОК ЛИТЕРАТУРЫ

1. *Фрейдин А. М., Неверов А. А., Неверов С. А., Филиппов П. А.* Современные способы разработки рудных залежей с обрушением на больших глубинах. – Новосибирск: Изд-во СО РАН, 2008.

2. *Неверов А.А.* К вопросу об отработке пологих мощных рудных залежей с закладкой и обрушением / А.А. Неверов, С.Ю. Васичев, А.М. Фрейдин / Труды Всероссийской конференции с участием иностранных ученных «Фундаментальные проблемы формирования техногенной геосреды», 9-12 октября 2012 г. в II т. Т. I. – Новосибирск: ИГД им. Н.А. Чинакала СО РАН. 2012.- С. 130-135.

3. Патент РФ № 1606667. Способ управления давлением / Фрейдин А.М., Какойло В.Н., Шалауров В.А., и др. – опубл. в БИ, 1990, № 42.

4. Зенкевич О. Метод конечных элементов в технике. – М.: Мир, 1975.

5. *Неверов С.А.* Типизация рудных месторождений с ростом глубины по виду напряженного состояния. Часть II. Тектонотипы рудных месторождений и модели геосреды / С.А. Неверов // Физикотехнические проблемы разработки полезных ископаемых. – 2012. – № 3. – С. 25-35.

6. *Неверов А.А.* Геомеханическое обоснование нового варианта камерной выемки пологих мощных залежей с выпуском руды из подконсольного пространства // Физико-технические проблемы разработки полезных ископаемых. – 2012. – № 6. – С. 87-97.

7. *Неверов А.А.* Геомеханическая оценка комбинированной геотехнологии при отработке мощной пологой рудной залежи / А.А. Неверов // Физико-технические проблемы разработки полезных ископаемых. – 2014. – № 1. – С. 119-131.

8. *Фрейдин А.М.* Идентификация тектонотипов массивов горных пород и ее приложение / А.М. Фрейдин, С.А. Неверов, А.А. Неверов // Горный журнал Казахстана. – 2013. – № 5. – С. 20-28.

Авторы статьи

Неверов Александр Алексеевич,

к.т.н., старший научный сотрудник лаборатории подземной разработки рудных месторождений ИГД СО РАН, e-mail: nnn_aa@mail.ru

Неверов Сергей Алексеевич,

к.т.н., старший научный сотрудник лаборатории подземной разработки рудных месторождений ИГД СО РАН, e-mail: nsa_nsk@mail.ru

Никольский Александр Михайлович,

к.т.н., старший научный сотрудник лаборатории подземной разработки угольных месторождений ИГД СО РАН, e-mail: nikosya@mail.ru

Алимсеитова Жанар Кенесхановна,

к.т.н., старший преподаватель кафедры географии, землеустройства и кадастра, факультета географии и природопользования Казахского Национального Университета им. аль-Фараби, 050038 Казахстан, г. Алматы, пр. аль-Фараби, д. 71, тел.8(727) 3773335, вн. 1488, e-mail: zhanar_igd@mail.ru

Поступило в редакцию 14.02.2015