ОПРЕДЕЛЕНИЕ ИЗМЕНЕНИЯ НАПРАВЛЕНИЯ ТРЕЩИНОВАТОСТИ КОЛЛЕКТОРА ПО ДАННЫМ ВСП

Иван Андреевич Карпов

Новосибирский государственный университет, 630090, Россия, г. Новосибирск, ул. Пирогова, 2, магистрант, тел. (952)925-70-97, e-mail: ivkarpov7@gmail.com

Сергей Борисович Горшкалёв

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат технических наук, заведующий лабораторией многоволновой сейсморазведки, тел. (383)330-77-55, e-mail: GorskalevSB@ipgg.sbras.ru

Дмитрий Михайлович Вишневский

Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, научный сотрудник лаборатории численного моделирования геофизических полей, тел. (383)333-00-54, e-mail: VishnevskyDM@ipgg.sbras.ru

В работе представлены результаты обработки синтетических данных ВСП в модели с неоднородными азимутально-анизотропными слоями. С помощью поляризационного анализа методом псевдовращений было определено переменное направление трещиноватости в исследуемом анизотропном слое.

Ключевые слова: многоволновая сейсморазведка, анизотропия, поляризация.

DETERMINATION OF VARYING FRACTURING DIRECTION WITHIN RESERVOIR ON THE BASIS OF VSP DATA

Ivan A. Karpov

Novosibirsk State University, 630090, Russia, Novosibirsk, 2 Pirogov St., MSc student, tel. (952)925-70-97, e-mail: ivkarpov7@gmail.com

Sergei B. Gorshkalev

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Ph. D., Head of the Laboratory of Multi-wave seismic exploration, tel. (383)330-77-55, e-mail: GorshkalevSB@ipgg.sbras.ru

Dmitriy M. Vishnevskiy

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, Koptyug Prospect 3, Scientist in the Laboratory of Numerical modelling of geophysical fields, tel.: +7 (383) 333-00-54, e-mail: VishnevskyDM@ipgg.sbras.ru

This article presents the results of processing of synthetic VSP data acquired in model comprising two inhomogeneous azimuthally anisotropic layers. Using the pseudo-rotation method of polarization analysis the varying fracturing direction in one of the anisotropic strata was assessed.

Key words: multicomponent seismic exploration, anisotropy, wave polarizations.

Юрубчено-Тохомская зона нефтегазонакопления (ЮТЗ) – месторождение на юге Сибирской платформы, приуроченное к эрозионной поверхности рифейских отложений, представленных карбонатными породами, фильтрационноёмкостные свойства которых определяются кавернозно-трещинной пористостью. Для ЮТЗ характерно латеральное изменение направления трещиноватости. Таким образом, актуальна задача выявления геофизическими методами вариации этого направления на площади.

Моделирование волновых полей

Для изучения возможности решения данной задачи методами сейсморазведки в ИНГГ СО РАН была построена трехмерная модель. За основу была взята горизонтально-слоистая скоростная модель ЮТЗ с двумя трансверсальноизотропными слоями с горизонтальной осью симметрии бесконечного порядка (HTI). Эти слои имитируют пласты с направлением трещиноватости, перпендикулярным оси симметрии бесконечного порядка. Рифейские карбонаты соответствуют интервалу глубин 2300–2760 м (табл. 1).

Таблица 1

Глубина подошвы, м	<i>V_P</i> , м/с	<i>V_S</i> , м/с	ρ, т/м ³	K _P	K _{SV}	K _{SH}
170	2000	900	2.10	1.13	1.07	1.13
470	3600	1700	2.40			
870	5600	3100	2.65			
1070	6500	3500	2.75			
1320	4800	2700	2.50			
1600	6100	3200	2.70			
2100	5250	2850	2.60			
2220	6300	3400	2.75			
2300	5300	2800	2.60			
2760	6900	3400	2.80	1.1	1.05	1.1
∞	3700	1500	2.40			

Упругие параметры модели

Направление оси симметрии бесконечного порядка в анизотропных слоях изменялось в зависимости от X-координаты по закону $\varphi = 45 \pm (15 + X/50)$, где «+» соответствует нижнему слою, «-» – верхнему. φ – угол от оси X к оси Y в градусах.

По конечно-разностной схеме Лебедева [3] моделировалось полное волновое поле с источниками типа вертикальной силы в координатах X = 0 м, $Y = \pm 900$ м с регистрацией трехкомпонентных данных в вертикальной скважине X = 900 м, Y = 0 м (рис. 1) в интервале глубин 0–2850 м с шагом 10 м. Компоненты приема совпадают с глобальной системой координат.

Рис. 1. Схема расположения пунктов возбуждения (ПВ) и скважины. XY – глобальная система координат. Х`Y` – система координат, связанная с направлениями на ПВ

Обработка данных

Восходящие обменные волны, образовавшиеся на подошве рифейского коллектора, обеспечивают наибольшую область освещения рифейских карбонатов по сравнению с нисходящими волнами. Задачей обработки является определение векторов смещения образовавшихся квазипоперечных волн, на основании которого прогнозируется направление трещиноватости рифейского коллектора.

Чтобы избавиться от интерференции анализируемого сигнала с другими типами волн, проведено параметрическое разделение волновых полей, в результате которого удалось выделить поле восходящих поперечных волн (рис. 2).

Исследование проводилось методом псевдовращений [2, 4], в котором два источника продольных волн, вынесенных в ортогональных направлениях, используются для расчета синтетического воздействия на границу в любом направлении. Основанием для выбора метода стала его помехоустойчивость: когда азимут источника близок к плоскостям симметрии среды, одна из квазипоперечных волн обладает незначительной интенсивностью, что приводит к несостоятельности методов, использующих один источник [1].

Четырехкомпонентная матрица данных для і-го отсчета по времени:

$$A_i = \begin{pmatrix} X'x'_i & X'y'_i \\ Y'x'_i & Y'y'_i \end{pmatrix},$$

где $X'x'_i$, $X'y'_i$, $Y'x'_i$ и $Y'y'_i$ – амплитуды сигнала на соответствующих компонентах (рис. 1). Большими символами обозначены направления на источники, а малыми – направление приемников. Вращаем матрицу A_i как $A_i' = R \cdot A_i \cdot R^T$, где $R = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{pmatrix}$, а φ – направление синтетического воздействия.

Рис. 2. Результаты параметрического разделения волновых полей – восходящие поперечные волны

В верхней части рис. З изображена четырехкомпонентная сейсмограмма, соответствующая матрице A, а в нижней – азимутальные сейсмограммы, представляющие зависимость компонент A'_{11} и A'_{12} матрицы A' от азимута синтетического воздействия. Компонента A'_{11} параллельна воздействию, A'_{12} ортогональна ему.

Матрица энергий компонент матрицы А':

$$E'_{kl} = \sum_{i} (A'_i)_{kl}^2$$

Минимизируя недиагональные компоненты E', находим направления горизонтальных проекций векторов смещений волн S₁ и S₂, распространяющихся от границы как квазипоперечные (рис. 3).

Очевидно существование зависимости между глубиной регистрации и удалением от скважины точки обмена: чем выше приемник, тем дальше от скважины происходит отражение от подошвы неоднородного анизотропного слоя, и поперечные волны пересекают анизотропный слой на разных удалениях. Это приводит к изменению поляризации квазипоперечных волн в зависимости от глубины регистрации. Согласно лучевой схеме, в скоростной модели ЮТЗ при выносе ПВ 1270 м область освещения рифейского коллектора отраженными от его подошвы обменными волнами ограничена 430 м.

Рис. 3. Четырехкомпонентная сейсмограмма (сверху) и азимутальные сейсмограммы A11` и A12` для Z = 500 м. Линии φ1 и φ2 – направления горизонтальной проекции поляризации квазипоперечных волн

На рис. 4 представлены результаты поляризационного анализа методом псевдовращений. Пунктирные линии – модельные параметры, где нижняя показывает направление оси симметрии O_{∞} в точке обмена, верхняя – направление оси симметрии O_{∞} в точке пересечения лучом кровли слоя рифейских карбонатов (и в координате скважины при Z > 2300 м).

Рис. 4. Поляризация квазипоперечных волн, определенная по методу псевдовращений, в сравнении с параметрами модели

Результаты поляризационного анализа характеризуются стабильностью и положительным трендом, описывающим изменение направления трещиноватости в рифейском коллекторе. При субвертикальном распространении вектор смещения быстрой квазипоперечной волны параллелен направлению трещиноватости. Видно хорошее совпадение направления трещиноватости, определенного по минимизации $E'_{12}+E'_{21}$, с направлением трещиноватости в модели.

Заключение

Была проведена обработка данных по модели, содержащей HTI-слои с переменным по латерали направлением оси симметрии бесконечного порядка. Показана принципиальная возможность, определения изменений направления трещиноватости рифейских карбонатов, которая позволяет получать достоверные результаты до удаления 430 м от скважины, при выносе ПВ 1270 м.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Оболенцева И.Р., Горшкалев С.Б. Алгоритм разделения квазипоперечных волн в анизотропных средах // Физика Земли. - 1986. - № 2. - С. 101–105.

2. Gorshkalev S.B., Karsten W.V., Lebedev K.A., Trigubov A.V., Volkov G.V. Polarization processing of PS waves for estimation of anisotropy in fractured reservoirs, the Yurubchen-Tokhomo petroleum province: testing new algorithm // Russian geology and geophysics. - 2004. - V.45, N6. - P. 716–728.

3. Lisitsa V.V., Vishnevsky D.M. Lebedev type scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity // Geophysical Prospecting. - 2010. - V.58. - P. 619–635.

4. MacBeth C. Shear wave analysis for azimuthal anisotropy using pseudo rotation of marine VSP // Extended Abstracts 58-th EAGE Meeting. - 1996. - V.2 - C022.

© И. А. Карпов, С. Б. Горшкалёв, Д. М. Вишневский, 2015