ДВУМЕРНАЯ ИНВЕРСИЯ ДАННЫХ ЭЛЕКТРОМАГНИТНОГО КАРОТАЖА НА ОСНОВЕ МЕТОДА КОНЕЧНЫХ РАЗНОСТЕЙ И НЕЛИНЕЙНОЙ МИНИМИЗАЦИИ

Игорь Владиславович Михайлов

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, аспирант, ведущий программист, e-mail: Mikhay-lovIV@ipgg.sbras.ru

Вячеслав Николаевич Глинских

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат физико-математических наук, заведующий лабораторией скважинной геофизики, e-mail: GlinskikhVN@ipgg.sbras.ru

Марина Николаевна Никитенко

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат технических наук, старший научный сотрудник, e-mail: NikitenkoMN@ipgg.sbras.ru

Ирина Владимировна Суродина

Институт вычислительной математики и математической геофизики СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Лаврентьева, 6, кандидат физико-математических наук, старший научный сотрудник, e-mail: sur@ommfao1.sscc.ru

Разработан и программно реализован точный алгоритм двумерной инверсии данных электромагнитного каротажа, в основе которого лежат метод конечных разностей и нелинейная минимизация. Восстановлено пространственное распределение геоэлектрических параметров газо-, нефте-, водонасыщенных коллекторов, осложнённых глинистыми и карбонатными прослоями.

Ключевые слова: электромагнитный каротаж, численное моделирование, двумерная инверсия, метод конечных разностей, нелинейная минимизация.

2D INVERSION OF ELECTROMAGNETIC LOGGING DATA BASED ON THE FINITE DIFFERENCE METHOD AND NONLINEAR MINIMIZATION

Igor V. Mikhaylov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Ph. D. Student, Leading Programmer, e-mail: MikhaylovIV@ipgg.sbras.ru

Viacheslav N. Glinskikh

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Ph. D., Head of the Borehole Geophysics Laboratory, e-mail: GlinskikhVN@ipgg.sbras.ru

Marina N. Nikitenko

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Ph. D., Senior Researcher, e-mail: NikitenkoMN@ipgg.sbras.ru

Irina V. Surodina

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 630090, Russia, Novosibirsk, 6 Lavrentjeva Prospect, Ph. D., Senior Researcher, e-mail: sur@ommfao1.sscc.ru

We have developed an exact software algorithm for two-dimensional inversion of electromagnetic logging data. It bases upon the finite difference method and nonlinear minimization. Spatial distribution of the geoelectric parameters of gas-oil-water saturated reservoirs complicated by the presence of clay and carbonate interlayers has been reconstructed.

Key words: electromagnetic logging, numerical simulation, 2D inversion, finite difference method, nonlinear minimization.

Традиционно численная инверсия электромагнитных сигналов заключается в определении электрофизических и геометрических параметров прискважинной области и пласта в рамках цилиндрической слоисто-однородной модели. Такой одномерный подход ограничен случаями, когда мощность пластов превышает длины зондов, поскольку в обратной ситуации значительное влияние на сигнал может оказывать вертикальная неоднородность разреза. Так, например, следствием наличия карбонатных и глинистых прослоев на интервале коллектора является распределение удельного электрического сопротивления (УЭС) по глубине, отличное от распределения в мощном однородном коллекторе, в котором высокие значения УЭС в кровельной части, обусловленные высоким содержанием нефти, постепенно уменьшаются с глубиной и в подошвенной части соответствуют насыщению пластовой водой. Численная инверсия на основе цилиндрически-слоистой модели приведёт в таких случаях к недостоверным геоэлектрическим моделям. Это свидетельствует о необходимости одновременного восстановления как радиального, так и вертикального распределения УЭС околоскважинного пространства в рамках двумерной геоэлектрической модели (рис. 1), учитывающей влияние маломощных прослоев в коллекторе и вмещающих его пород. Иными словами, сигналы электромагнитного каротажа могут быть адекватно проинтерпретированы только с использованием двумерной инверсии.

Рис. 1. Двумерная геоэлектрическая модель

Развитие теоретико-методической базы количественной интерпретации во многом зависит от разработки программно-алгоритмических средств математического моделирования и инверсии. Известны работы, посвящённые быстрому двумерному моделированию и инверсии сигналов электромагнитного каротажа в линеаризованных постановках [2], [3], [9]. Несмотря на высокую скорость расчётов, в ряде случаев они не обеспечивают необходимой точности решения.

Для более точного восстановления геоэлектрических параметров геологического разреза в рамках данной работы программно реализована двумерная инверсия данных электромагнитного каротажа на основе метода конечных разностей и нелинейной минимизации. Численное решение прямой двумерной задачи сводится к системам линейных алгебраических уравнений с комплексными неэрмитовыми симметричными матрицами, что позволяет достигать высокой производительности расчётов [5]. Алгоритм численной инверсии основан на методе деформируемых многогранников [7]. Он позволяет быстро выбрать правильное направление поиска и значительно уменьшить минимизируемую функцию уже на первых итерациях. В инверсионной модели параметры можно фиксировать или задавать для них ограничения.

Программа двумерной инверсии была протестирована на синтетических, в том числе зашумлённых, и практических данных. На рис. 26 приведена реалистичная геоэлектрическая модель газо-, нефте-, водонасыщенного коллектора [6], перекрытого и подстилаемого глинистыми отложениями. Газоносная и нефтеносная части коллектора разделены маломощным (0.3 м) глинистым прослоем, в то время как на контакте нефтеносного и водоносного пласта находится тонкий высокоомный карбонатный прослой (0.3 м), что является достаточно типичным [4]. Мощность пластов, насыщенных газом и водой, составляет 2 м, а нефтенасыщенного – 1.4 м. В каждом из них присутствует зона проникновения. Параметры скважины: УЭС 2 Ом·м, радиус 0.108 м. Истинные модельные УЭС (Ом·м) показаны на рис. 2б чёрными цифрами.

На рис. 2а сплошными линиями показаны диаграммы электромагнитного каротажа в истинной модели (шум 3 %). На интервале пласта, насыщенного нефтью, отмечается значительное влияние глинистого и карбонатного прослоев на сигналы длинных зондов.

В качестве стартовой модели использовались результаты одномерной инверсии, полученные на основе цилиндрически-слоистой модели [8]. На втором этапе, при фиксированных горизонтальных границах, в процессе подбора двумерной модели уточнялись значения УЭС, а также положения радиальных границ. Электрофизические параметры вмещающих глин были взяты из одномерной инверсии и далее не подбирались.

Отметим, что по результатам одномерной инверсии в газоносном пласте наблюдалось не понижающее, а повышающее проникновение с очень широкой зоной проникновения, при этом УЭС пласта соответствовало его насыщению нефтью и водой. Другой важный момент касается нефтеносного пласта. При одномерной инверсии на его интервале был по необходимости введён дополнительный слой, соответствующий окаймляющей зоне [1], который в истинной модели отсутствует. В ходе двумерной инверсии окаймляющая зона была исключена. Причина таких недостоверных результатов одномерного подхода в том, что на сигналы в газоносном пласте значительное влияние оказывают перекрывающие глины и находящийся снизу глинистый прослой, а в нефтеносном – глинистый и карбонатный прослои, расположенные в его кровельной и подошвенной частях.

Рис. 2. Сигналы электромагнитного каротажа в модели газо-, нефте-, водонасыщенного коллектора в глинах, осложнённого глинистым и карбонатным прослоями (а), и геоэлектрические параметры истинной и подобранной моделей (б). Шифр сверху – длины зондов

На рис. 2а пунктиром показаны сигналы в истинной и подобранной моделях. Отмечается высокое совпадение диаграмм одноимённых зондов. На рис. 26 серыми цифрами обозначены УЭС в найденной модели, а серым пунктиром – границы зон проникновения. Параметры модели определены с хорошей точностью, при этом наибольшая эквивалентность наблюдается для зон проникновения в газонасыщенном и нефтенасыщенном пластах.

Двумерная инверсии также была успешно применена к практическим диаграммам из ряда скважин Широтного Приобья Западной Сибири. Таким образом, программно реализован эффективный алгоритм двумерной инверсии данных электромагнитного каротажа, позволяющий проводить точную реконструкцию пространственного распределения геоэлектрических параметров в разрезах сложного строения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Антонов Ю. Н., Сметанина Л. В., Михайлов И. В. Окаймляющая зона как признак подвижной нефти в терригенных коллекторах // Каротажник. – 2012. – Вып. 6 (216). – С. 16–40.

2. Глинских В. Н., Никитенко М. Н., Эпов М. И. Линеаризованные решения прямых и обратных двумерных задач высокочастотного электромагнитного каротажа в проводящих средах с учетом токов смещения // Геология и геофизика. – 2013. – Т. 54, № 12. – С. 1942–1951.

3. Глинских В. Н., Эпов М. И. Локально-нелинейные приближения высокочастотного электромагнитного поля для задач каротажа // Геология и геофизика. – 2006. – Т. 47, № 8. – С. 938–944.

4. Сахибгареев Р. С. Вторичные изменения коллекторов в процессе формирования и разрушения нефтяных залежей. – Л.: Недра, 1989. – 260 с.

5. Суродина И.В., Эпов М.И. Моделирование диаграмм высокочастотного электромагнитного каротажного зондирования в скважинах с высокопроводящим раствором // Каротажник. – 2013. – Вып. 5 (227). – С. 60–75.

6. Технология исследования нефтегазовых скважин на основе ВИКИЗ: Методическое руководство / Под ред. М. И. Эпова, Ю. Н. Антонова. – Новосибирск: НИЦ ОИГГМ СО РАН, Изд-во СО РАН, 2000. – 122 с.

7. Химмельблау Д. М. Прикладное нелинейное программирование. – М.: Мир, 1975. – 536 с.

8. Эпов М. И., Каюров К. Н., Ельцов И. Н. и др. Новый аппаратурный комплекс геофизического каротажа СКЛ и программно-методические средства интерпретации EMF PRO // Бурение и нефть. – 2010. – № 2. – С. 16–19.

9. Эпов М. И., Глинских В. Н. Электромагнитный каротаж: моделирование и инверсия. – Новосибирск: Академическое изд-во «Гео», 2005. – 98 с.

© И. В. Михайлов, В. Н. Глинских, М. Н. Никитенко, И. В. Суродина, 2015