= ГЕОХИМИЯ ==

УДК 552.323.6(518.3)

## ПЕРВАЯ НАХОДКА ЭКСПЛОЗИВНЫХ ЩЕЛОЧНЫХ ПИКРИТОВ В НАДАНЬХАДА-АЛИНЕ (КНР)

© 2009 г. С. А. Щека, Ю. Г. Волохин, А. А. Карабцов

Представлено академиком Л.Н. Когарко 29.01.2009 г.

Поступило 29.08.2008 г.

В 1990-х годах во время совместных российско-китайских геологических исследований сопредельных территорий России и КНР одним из авторов (Ю.Г. Волохин) была отобрана обширная коллекция образцов на площади хр. Наданьхада (Наданьхада-Алинь) в северо-восточном Китае. Последующее детальное изучение коллекции показало, что в ней присутствуют своеобразные эксплозивные слюдистые пикриты, ранее неизвестные в этом районе. Они привлекают интерес и потому, что трубки и дайки этих пород широко представлены в Приморье [1–3], а в россыпях вблизи тел и в коренных породах присутствуют мелкие алмазы [3-6]. Возможность находки алмазов предполагается и в изученном районе КНР [7]. В связи с этим породы из коллекции были изучены более детально.

На территории Приморья породы подобного типа входят в состав юрского меймечит-пикритового комплекса, включающего также щелочные базальты и концентрически-зональные габброперидотитовые с нефелиновыми сиенитами интрузии [8, 9]. Перечисленные породы образуют типичную щелочно-ультраосновную формацию.

На территории Китая, в Наданьхада-Алине интрузивы этого типа в свое время изучались С.С. Зиминым [10], который составил геологическую схему района. Первые находки ультраосновных вулканитов в изученном районе отмечены К. Сью [11], который назвал их коматиитами изза спинифексоподобных структур. Приводимый им анализ и микрофотографии показывают, что это типичный лавовый пикрит щелочного ряда, подобный пикритам Приморья. Позднее были описаны пикриты, щелочные базальты и концентрически-зональные интрузивы [12]. Меймечиты и трубки взрыва слюдистых пикритов не установлены, хотя полная геологическая аналогия районов Приморья и КНР не оставляет сомнения в присутствии этих пород.

Первые известные авторам сведения по геологии изучаемого района приводятся С.С. Зиминым [10], схему которого с дополнениями и уточнениями, с учетом данных геолого-съемочных работ последних лет авторы приняли за основу (рис. 1). Фактически площадь хр. Наданьхада представляет продолжение Бикинской зоны Приморья на территории Китая и все геологические структуры, стратиграфия и магматизм двух зон идентичны. Наиболее древние карбон-нижнепермские отложения вскрываются в тектонических блоках среди мезозойских пород [13, 14]. Блоки сложены известняками с карбон-пермской фауной и зеленокаменными вулканитами. В Приморье им соответствуют офиолиты себучарской свиты [8]. Мезозойские образования слагают дугообразно изогнутую моноклиналь с падением на восток. В основании их залегает существенно кремнистая триасовая толща, которая сменяется глинистокремнистыми сланцами юры. На уровне тоарского-батского ярусов появляются сначала туфы, затем лавы и субвулканические тела щелочных базальтов и пикритов. В Приморье к этому уровню относятся меймечиты, трубки взрыва и дайки слюдистых пикритов, а также концентрическизональные габбро-перидотитовые интрузии [9]. Характерным типоморфным горизонтом этого уровня являются пласты и конкреции марганцовистых пород. К-Аг-возраст трубок 152-159 млн. лет.

Рассматриваемые слюдистые пикриты вскрыты в дорожной выемке в 6 км севернее р. Дадайхэ. Здесь они слагают крутопадающее тело мощностью около 6 м, залегающее в шаровых лавах вблизи западного края крупного Жаохэйского габбро-верлитового массива, т.е. как и в Приморье подобные тела локализованы по периферии щелочно-ультраосновных массивов и фактически являются их флюидизированными апофизами. Поскольку в районе встречаются палеозойские зеленокаменные вулканиты, представленные океаническими толеитами, был выполнен анализ двух образцов шаровых лав, вмещающих слюдистые пикриты (табл. 1). Анализы наряду с данными китайских исследователей [12] показали, что это типичные юрские высокотитанистые

Дальневосточный геологический институт

Дальневосточного отделения

Российской Академии наук, Владивосток



**Рис. 1.** Геологическая схема места находки пикритов (по [10], с дополнениями авторов и с учетом данных геологической службы Китая). 1 – четвертичные отложения; 2 – неогеновые (?) базальтоиды; 3 – песчаники, алевролиты, аргиллиты, переслаивающиеся с вулканитами и кремнями (J<sub>2</sub>); 4 – диабазы, спилиты, туфы, шаровые лавы, лавобрекчии (J<sub>2</sub>); 5–7 – Жаохэйский массив: 5 – верлиты, клинопироксениты, 6 – линзы дунитов, 7 – габбро-диабазы, габбро, габбро-пегматиты; 8 – высокоглиноземистые гранитоиды (K<sub>1</sub>); 9 – разломы; 10 – элементы залегания; 11 – места отбора проб.

пикрито-базальты. Слюдистые пикриты слагают эксплозивное тело, о чем свидетельствуют гипербазитовые включения (размером до 3 см) с характерными для подобных тел симплектитами хромшпинели и клинопироксена (рис. 2), отличными от выделений шпинели в интрузивных массивах.

Макроскопически пикриты – грубозернистые породы с порфиробластами керсутита и титанфлогопита, размера до 20 мм. Порфиробласты окружаются мелкозернистой (0.1–1 мм) часто трахитоидной массой керсутита, флогопита и ильменита, цементируемых кальцитом. Керсутит обнаруживает более раннее образование, чем флогопит. Кроме того, в породе отмечаются и прожилки вторичного кальцита, иногда рассекающие по спайности порфиробласты флогопита. Редко в основной массе появляются лейстовидные зерна клинопироксена, интенсивно замещаемого керсутитом, флогопитом и карбонатом. Вблизи вторичного карбоната флогопит замещается хлоритом, сопровождаемым рутилом. Как будет показано далее, первичный карбонат является магматическим, а такие разности (карбонатит-пикриты) широко представлены в эксплозиях Приморья. Гипербазитовые включения нацело замещены тальком. Они пересекаются прожилками и окаймляются лейстовидным (вторичным) флогопитом. В мелкочешуйчатом тальковом агрегате просматриваются грубые трещины спайности исходного ортопироксена. Отмечаемые в

ДОКЛАДЫ АКАДЕМИИ НАУК том 429 № 3 2009

| Оксид             | 1     | 2      | 3 (4) | 4 (17) | 5     | 6 (25) | 7 (6) |  |
|-------------------|-------|--------|-------|--------|-------|--------|-------|--|
| SiO <sub>2</sub>  | 46.16 | 40.16  | 45.69 | 46.68  | 38.63 | 48.10  | 37.48 |  |
| TiO <sub>2</sub>  | 2.61  | 3.71   | 2.84  | 2.69   | 3.10  | 2.18   | 3.58  |  |
| $Al_2O_3$         | 10.87 | 12.04  | 11.81 | 12.24  | 7.20  | 9.48   | 8.08  |  |
| $Fe_2O_3$         | 15.82 | 18.70  | H.a.  | 4.21   | 14.34 | H.a.   | 16.01 |  |
| FeO               | H.a.  | H.a.   | 12.21 | 7.61   | H.a.  | 12.63  | H.a.  |  |
| MnO               | 0.17  | 0.20   | 0.17  | 0.23   | 0.26  | 0.17   | 0.25  |  |
| MgO               | 10.33 | 8.60   | 10.47 | 8.36   | 19.59 | 18.54  | 15.33 |  |
| CaO               | 8.73  | 13.67  | 9.90  | 11.34  | 6.16  | 7.26   | 8.99  |  |
| Na <sub>2</sub> O | 2.82  | 1.49   | 2.88  | 2.62   | 0.87  | 1.10   | 0.94  |  |
| K <sub>2</sub> O  | 0.30  | 0.85   | 0.72  | 0.84   | 1.69  | 0.23   | 1.99  |  |
| $P_2O_5$          | 0.29  | 0.52   | 0.27  | H.a.   | 0.41  | 0.30   | 1.19  |  |
| П.п.п.            | 1.49  | 0.40   | 3.00  | 3.37   | 7.26  | —      | 5.43  |  |
| Сумма             | 99.59 | 100.30 | 99.98 | 100.18 | 99.49 | 100.00 | 99.27 |  |
| f                 | 43.6  | 52.3   | 40.0  | 43.6   | 26.9  | 27.7   | 34.5  |  |

Таблица 1. Химический состав юрских пикритов и базальтов Наданьхада-Алиня и сопредельных территорий Приморья

Примечание. 1–4 – базальты; 5, 7 – пикриты (1 – обр. 28/1; 2 – 30/1; 5 – 28/2). 1–3, 5, 6 – Наданьхада-Алинь (3 и 6 – по [12]); 4, 7 – Приморье. В обр. 5 и 7 дополнительно определены (10<sup>-4</sup>%): Cr 646, 669, V 282, 325, Ni 919, 525, Co 70, 69, Cu 49, 90, Zn 158, 179, Pb 6, 6, As 2, 2, Ba 835, 1143, Rb 42, 86, Sr 650, 1027, Y 37, 54; Zr 37, 54, Nb 92, 123, Th 15, 26, U 3, 6, S 170, 392, Cl 80, 116. 1–3, 5–7 – по данным РСФА; 4 – метод мокрой химии. f = Fe/(Fe + Mg) ат. %. Н.а. – не анализировалось.

| Оксид             | Срх<br>м.з. | Sp     |        | Ilm    | Hbц   |       | Нb к.з. |       | Hbц   | Hb κ  | Phl к.з. |       | Phl   | Та    | Chl   | Ca    | Ca    |
|-------------------|-------------|--------|--------|--------|-------|-------|---------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|
|                   |             | ц      | к      | 11111  | к.з.  | к     | ц       | к     | в Са  | в Са  | ц        | к     | c Ca  | 14    | CIII  | в Phl | в Рb  |
| SiO <sub>2</sub>  | 47.25       | 0.75   | 2.06   | _      | 45.42 | 43.39 | 42.60   | 43.60 | 51.48 | 49.42 | 37.11    | 36.84 | 39.11 | 62.20 | 33.96 | _     | —     |
| TiO <sub>2</sub>  | 0.35        | 0.38   | 2.06   | 48.00  | 2.59  | 3.50  | 2.63    | 3.33  | 1.99  | 1.31  | 5.78     | 6.05  | 2.25  | —     | 0.03  | —     | —     |
| $Al_2O_3$         | 1.80        | 25.21  | 12.75  | _      | 8.37  | 9.44  | 10.55   | 9.59  | 4.80  | 3.91  | 14.74    | 14.75 | 13.06 | —     | 15.92 | —     | —     |
| FeO               | 5.48        | 15.02  | 23.15  | 38.94  | 10.93 | 10.02 | 14.77   | 9.29  | 12.80 | 11.37 | 9.41     | 9.45  | 10.40 | 3.98  | 14.08 | —     | —     |
| MnO               | 0.30        | 0.02   | 1.25   | 4.21   | 0.27  | 0.02  | 0.02    | 0.02  | 0.44  | 0.34  | 0.02     | 0.02  | 0.24  | _     | 0.02  | 0.40  | -     |
| MgO               | 22.38       | 13.80  | 8.11   | -      | 15.41 | 15.42 | 12.39   | 15.91 | 15.18 | 15.82 | 17.16    | 16.86 | 19.62 | 27.90 | 21.92 | —     | -     |
| CaO               | 22.50       | _      | -      | -      | 10.13 | 10.82 | 10.11   | 11.11 | 5.97  | 7.82  | _        | _     | _     | _     | 0.20  | 55.28 | 52.80 |
| Na <sub>2</sub> O | -           | _      | -      | -      | 4.18  | 3.57  | 3.17    | 3.21  | 7.19  | 5.77  | 0.98     | 0.79  | 1.02  | _     | —     | —     | -     |
| K <sub>2</sub> O  | -           | _      | -      | -      | 0.86  | 1.29  | 1.68    | 1.28  | 0.45  | 0.49  | 9.79     | 9.64  | 8.53  | _     | 1.10  | —     | -     |
| $Cr_2O_3$         | -           | 39.45  | 36.04  | -      | —     | —     | 0.16    | 0.16  | —     | _     | 0.30     | _     | _     | _     | —     | —     | -     |
| F                 | —           | —      | —      | —      | —     | —     | —       | —     | 1.10  | 1.00  | 0.22     | 0.85  | —     | —     | —     | —     | —     |
| Cl                | —           | —      | _      | _      | -     | -     | 0.03    | —     | 0.03  | —     | —        | 0.09  | —     | —     | -     | _     | -     |
| Сумма             | 100.0       | 99.99* | 99.83* | 98.40* | 98.16 | 97.47 | 98.06   | 97.50 | 99.70 | 98.65 | 95.48    | 95.34 | 94.23 | 94.64 | 87.21 | 55.68 | 53.27 |
| f                 | 11.6        | 44.7   | 70.5   |        | 28.3  | 26.7  | 40.0    | 24.7  | 32.1  | 28.7  | 23.5     | 23.9  | 22.9  | 7.4   | 26.5  |       |       |

Таблица 2. Химический состав минералов из слюдистых пикритов Наданьхада-Алиня, мас. %

Примечания. Индексы минералов и сокращения: Cpx – клинопироксен, Sp – шпинель, Ilm – ильменит, Hb – роговая обманка, Phl – флогопит, Ta – тальк, Chl – хлорит, Ca – кальцит; ц, к – центр, край зерна; к.з., м.з. – крупное, мелкое зерно. Дополнительно определены: ZnO 1.80 (Sp  $\kappa$ ), NiO 0.56% (Ta), SrO – 0.47% (Ca в Hb). \* – в сумму входит Fe<sub>2</sub>O<sub>3</sub> 5.43% (Sp  $\mu$ ); 14.40% (Sp  $\kappa$ ); 7.27%

(IIm), найденные расчетом по стехиометрии. Формулы минералов: Sp ц.  $-Mg_{0.627}Fe_{0.382}^{2+}Fe_{0.124}^{3+}Ti_{0.009}Al_{0.906}Cr_{0.952}O_4$ ; Sp к.  $-Mg_{0.400}Fe_{0.641}^{2+}Mn_{0.036}Zn_{0.044}Fe_{0.316}^{3+}Ti_{0.052}Al_{0.498}Si_{0.069}Cr_{0.944}O_4$ ; IIm  $-Fe_{0.840}^{2+}Mn_{0.089}Fe_{0.140}^{3+}Ti_{0.929}O_3$ .



Рис. 2. Морфология выделений хромшпинелидов в гипербазитовых включениях. Шлиф. Ник. ||.

Приморье в подобных породах алмазы не превышают по размеру 0.3 мм и обнаруживаются в шлифах (рис. 3).



**Рис. 3.** Зерно алмаза в эксплозивном пикрите. Р. Анюй, Приморье. Шлиф Ник.||.

По химическому составу (табл. 1) породы КНР, как и Приморья, представляют типичные высокотитанистые щелочные пикриты, обогащенные как сидерофильными (Cr, Ni, Co, Ti), так и литофильными (Rb, Sr, Ba, Zr, Nb и Th) примесями, что согласуется с их высокой флюидонасыщенностью.

Состав минералов (табл. 2) в общем обычен для этого типа пород. Клинопироксен низкоглиноземистый, высококальциевый, т.е. довольно низкотемпературный. Первичная хромшпинель умеренно хромистая, высокотитанистая, в краевой каемке обогащена Mn, Zn, Ti, Fe<sup>+3</sup> и Si. Последнее характерно для вторичных феррихромитов. Несмотря на высокую магнезиальность породы, ильменит лишен этого элемента, обогащен Мп и достаточно окислен. Крупные зерна керсутита всегда зональны: края обычно более магнезиальные и титанистые. В контакте со шлирами магматического кальцита керсутит обрастает синевато-зеленым глаукофаном (рис. 4); при этом кальцит обогащен Sr в отличие от вторичного кальцита из прожилков, в котором фиксируется только Mn. Это явление широко распространено в подобных породах, фиксируя, по мнению авторов, контакт выделившихся ранее силикатов с

ДОКЛАДЫ АКАДЕМИИ НАУК том 429 № 3 2009



Рис. 4. Кайма глаукофана вокруг керсутита на контакте с кальцитом (белое). Шлиф. Ник. ...

остаточным натрово-фторо-карбонатным расплавом.

Первичный флогопит — высокотитанистый, глиноземистый и низкофтористый, с примесями Na и Cr (вблизи гипербазитовых включений). В зонах вторичной карбонатизации в зернах появляется многократная зональность, а содержание TiO<sub>2</sub> падает от 6 до 2 мас. %. Тальк характеризуется низкой (7.4 ат. %) железистостью, отражая тем самым высокую магнезиальность первичных оливина и пироксенов, а хлорит наследует железистость исходного флогопита.

Обращаясь к находкам алмазов в рассматриваемых пикритах, отметим, что все они приурочены только к эксплозивным телам и отсутствуют в дайках и силах. Находимые в россыпях более крупные (до 8 мм) алмазы несут включения минералов пикритов и следы многократной перекристаллизации и растворения. Ранее было высказано предположение [4], что это обусловлено транспортировкой алмазов пикритовой магмой из нижних частей древних плюмов. Поэтому рассматриваемые эксплозии заслуживают дальнейшего детального изучения. Можно не сомневаться, что описанная находка не единична в Наданьхада-Алине, а меймечиты так же обычны, как в Приморье.

Авторы благодарят проф. Пекинского университета Шао Чжиянь за организацию экскурсии на изученный объект и В.С. Приходько, предоставившего образцы из бассейна р. Анюй. Работа выполнена при поддержке гранта ДВО-СО 06-11-СО-08-035.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Щека С.А. // ДАН. 1977. Т. 234. № 2. С. 444-447.
- 2. *Shcheka S.A. et al.* Plumes and Problems of Deep Source of Alkaline Magmatism. Khabarovsk: FEB RAS, 2003. P. 184–200.
- 3. Щека С.А. // Вестн. ДВО РАН. 1994. № 4. С. 53-61.
- 4. Щека С.А. и др. // Петрология. 2006. Т. 14. № 3. С. 319-336.
- 5. *Barron L.M. et al.* // Quart. Notes GS NSW. 2002. № 112. P. 9–15.
- 6. Иванов В.В., Колесова Л.Г., Ханчук А.И. // ДАН. 2005. Т. 404. № 1. С. 72–75.
- 7. *Tan Chengren* // Heilongiang Geol. 1994. V. 5. Р. 1–9 (кит., рез. англ.).
- Вулканические пояса Востока Азии / Под ред. А.Д. Щеглова. М.: Наука, 1984. 504 с.
- 9. *Щека С.А. и др.* В кн.: Триас и юра Сихотэ-Алиня. Владивосток: Дальнаука, 2008. Кн. 2. С. 125–145.
- 10. Зимин С.С. Парагенезисы офиолитов и верхняя мантия. М.: Наука, 1973. 251 с.
- 11. *Cui X.* // Contribs Project of Plate Tectonics in Northern China. 1986. № 1. Р. 199–207 (кит., рез. англ.).
- 12. *Zhang et al.* Terranes in Northeast China and Evolution of the Northeast Asian Margin. Beijing: Seism. Press, 1995. P. 72–97 (кит.).
- 13. *Kojima S.* // Palaeogeogr., Palaeoclim., Palaeoecol. 1989. V. 69. P. 213–232.
- 14. *Shao J.A. et al.* // J. Stratigr. 1990. V. 14. № 4. Р. 286–291 (кит., рез. англ.).