ГЕОДЕЗИЯ

УДК 528:550.482+551:2/3,263

О КОМПЛЕКСНОЙ ИНТЕРПРЕТАЦИИ ДАННЫХ ГЕОДЕЗИЧЕСКО-ГРАВИМЕТРИЧЕСКОГО МОНИТОРИНГА ТЕХНОГЕННОЙ ГЕОДИНАМИКИ НА МЕСТОРОЖДЕНИЯХ НЕФТИ И ГАЗА

Анатолий Иванович Каленицкий

Сибирская государственная геодезическая академия, 630108, Россия, г. Новосибирск, ул. Плахотного, 10, доктор технических наук, профессор кафедры астрономии и гравиметрии СГГА, тел. (383)361-01-59, e-mail: kaf.astronomy@ssga.ru

Эдуард Лидиянович Ким

Сибирская государственная геодезическая академия, 630108, Россия, г. Новосибирск, ул. Плахотного, 10, начальник штаба гражданской обороны СГГА, тел. (383)361-03-56, e-mail: 52tkrbv@rambler.ru.

Излагаются методика и некоторые результаты комплексной интерпретации данных геодезическо-гравиметрического мониторинга техногенной геодинамики, полученных в двух циклах наблюдений на Вынгапуровском месторождении углеводородов.

Ключевые слова: геодинамический полигон, нивелирование, гравиметрия, мониторинг техногенной геодинамики, интерпретация результатов комплексных натурных измерений.

ABOUT COMPLEX INTERPRETATION OF DATA OF GEODETIC AND GRAVIMETRIC MONITORING OF TECHNOGENIC GEODINAKMIKA ON OIL AND GAS DEPOSITS

Anatoly I. Kalenitsky

Siberian State Academy of Geodesy, 630108, Russia, Novosibirsk, 10 Plakhotnogo St., Prof., Dr., department of astronomy and gravimetry SSGA, tel. (383)361-01-59, e-mail: kaf.astronomy@ssga.ru

Eduard L. Kim

Siberian State Academy of Geodesy, 630108, Russia, Novosibirsk, 10 Plakhotnogo St., chief of a staff of civil defense, tel. (383)361-03-56, e-mail: 52tkrbv@rambler.ru

The technique and some results of integrated interpretation of geodetic, gravimetric monitoring technological Geodynamics received two cycles of observations at Vyngapurovskoye hydrocarbons.

Key words: Geodynamic landfill, leveling, gravimetry, geodynamics technological monitoring, interpreting the results of field measurements of complex.

До последнего времени традиционно складывался своеобразный подход к изучению геодинамических процессов на месторождениях углеводородов (УВ) с использованием высокоточных геодезических методов натурных измерений: нивелирования и координирования [1, 2]. В целом ряде случаев дополнительно использовалась еще и гравиметрия в сугубо «геодезическом» приложении к обработке и интерпретации результатов нивелирования. Цель приложения заключалась в учете изменения уклонений отвеса для внесения поправок в данные нивелирования [3].

В настоящее время такой подход к использованию результатов гравиметрии на геодинамических полигонах (ГДП) в пределах месторождений УВ не только устарел, но и ничем не оправдан. Он ведет к нерациональной трате значительных средств. Действительно, значения аномалий высот сейчас достаточно точно и непосредственно определяются как разность высот, получаемых, с одной стороны, из спутниковых координатных определений, а с другой – по результатам нивелирования [4]. Изменения этих значений, вычисленных по традиционной методике, в районах освоения месторождений нефти и газа настолько незначительны, что их не требуется учитывать. Самое же главное состоит в том, что преобразование гравитационного поля (поля силы тяжести) в возмущающий потенциал по своей сути является процедурой сугубо сглаживающей (интегральной), выявляющей его глобально-региональные особенности в общеземном масштабе. Дифференциация такого поля с целью оценки изменения трансформант на относительно локальных площадях или участках может привести к их искажению, а, в конечном итоге, – к неправильному истолкованию.

Становится все более очевидным, что результаты детальной высокоточной гравиметрии, как высокоразрешающего *геодезическо-геофизического* метода, следует использовать повсеместно с результатами нивелирования и координирования непосредственно для решения целого ряда задач, возникающих при мониторинге локальной техногенной геодинамики в самых разнообразных случаях [4, 5, 6, 7, 8, 9]. Применительно к специфике условий исследований на месторождениях нефти и газа, к ним, в частности, можно отнести:

- уточнение контура границ залежей нефти и газа;
- выявление, картирование и уточнение (совместно с сейсморазведкой) положения разломов в фундаменте и дизъюнктивных нарушений в осадочном чехле;
- определение направления смещений блоков горных пород в фундаменте и осадочной продуктивной толще;
- определение (уже после первого цикла натурных измерений) участков повышенной промышленной опасности;
- картирование местоположения флюидоподводящего канала жерловой фации в фундаменте;
- корректирование положения расчетных интерпретационных профилей в пределах площади геодезическо-гравиметрического мониторинга в последующих циклах;

- определение интервалов продолжительности и частоты повторения геодезическо-гравиметрических натурных измерений с целью выявления короткопериодных, в том числе сезонных, вертикальных смещений земной поверхности по расчетным профилям;
- выработку рекомендаций по объему, детальности и частоте натурных измерений в последующих циклах геодезическо-гравиметрического мониторинга техногенной геодинамики и предложений по снижению последствий ее воздействия на устойчивость промышленного и гражданского комплекса, природной среды;
- определение объема перемещения масс в осадочном чехле и, как следствие, оценку его воздействия на устойчивость земной поверхности.

Приведем, в связи с вышеизложенным, некоторые результаты количественной интерпретации изменения отметок высот реперов нивелирования и значений аномального поля силы тяжести на них, выявленных в двух циклах натурных геодезическо-гравиметрических измерений по одному из расчетных профилей на Вынгапуровском ГДП.

Профиль общей длиной 32 км проложен с юга на север. На рис. 1 приведена его средняя и северная части, представляющие наибольший интерес. Отметки высот рельефа местности на всем протяжении профиля изменяются в интервале $110{-}132$ м (рис $1, \delta$).

Рис. 1. Графики:

a) изменения локального поля силы тяжести; б) рельефа местности; в) разности высот пунктов между 2 и 1 циклами наблюдений; г) изменения аномального гравитационного поля между 2 и 1 циклами наблюдений

Профиль пересекает зону продуктивных горизонтов с залежами углеводородного сырья, отражаемую отрицательными (порядок -0.10 мГал) значениями локального поля силы тяжести (рис. 1, a). В северной части профиля выделяется положительная локальная аномалия (до +0.13 мГал), отражающая гравитационный эффект блока горных пород повышенной плотности, находящегося вне зоны продуктивных горизонтов. Следует заметить, что по результатам площадной гравиметрии в первом цикле измерений была выделена серия дизьюнктивных нарушений северо-восточного и северо-западного простирания с пересечением предположительно в районе участка, расположенного западнее пунктов Д035 и Д036 рассматриваемого расчетного профиля на расстоянии 0.7-0.9 км от него. Эти нарушения, расходясь веерообразно, пересекают расчетный профиль в средней части представленного на рис. 1 его фрагмента, в том числе вблизи реперов 11BД95, Д135, 11BД105 и 11BД106 (x = 4.25-4.52 км, 12.25 км, 15.81 км).

Разность аномального гравитационного поля по результатам первого (I) и второго (II) циклов по расчетному профилю отражает существенное перемещение масс в геологическом разрезе с его крайней северной части в район вышеуказанного участка дизъюнктивных нарушений, создавая сугубо узколокальный максимум величиной +0,23 мГал в пункте 11BЛ14 (x = 10,2 км). Дефицит извлеченных масс создает в северной части профиля отрицательный эффект с минимальным значением, равным -0,18 мГал на пункте Д043 (x = 19,4 км) (см. рис. $1, \varepsilon$).

Предполагаемое перемещение масс в геологическом разрезе, по-видимому, нашло отражение и в своеобразных вертикальных смещениях земной поверхности, зафиксированных в отличии результатов нивелирования II цикла от таковых в I цикле (см. рис. 1, ϵ). В частности, это отражается знакопеременным (до ± 10 мм) смещением пунктов в интервале от пункта Д036 (ϵ = 12,5 км) к северу до пункта Д041(ϵ = 17,7 км). Вместе с тем наблюдается возрастающее к югу воздымание поверхности рельефа местности до пункта Л124 (ϵ = 6,1 км), где его величина составила 157 мм (0,157 м), а затем резко снижающееся до ϵ мм в пункте Д135 (ϵ = 4,6 км) в месте предполагаемого дизъюнктивного нарушения.

Полученные результаты потребовали проведения количественной оценки перемещаемых масс и интерпретации механизма вертикальных смещений земной поверхности.

Было очевидно, что они в значительной степени связаны с извлечением воды в северной части профиля с целью нагнетания ее в продуктивные горизонты для замещения извлекаемых запасов углеводородного сырья. Исходя из этого и с учетом значений плотности воды ($\sigma_{\rm B} = 1,0~{\rm г/cm}^3 = 1,0~{\rm т/m}^3$) и осадочной толщи ($\sigma = 2,0~{\rm г/cm}^3 = 2,0~{\rm т/m}^3$), была выполнена оценка объема извлеченных масс воды и степень его распределения в разрезе продуктивных образований. В связи с этим рассмотрим кратко результаты решения обратной и прямой задач гравиметрии с целью интерпретации изменения гравитационного поля вертикальных смещений поверхности.

На рис. 2 схематически показаны кривая отрицательной локальной аномалии в северной части профиля и численные параметры ее изменения относительно точки минимума. Оговоримся сразу же, что в первом приближении аномальные массы извлеченной воды были представлены объемом шара. Это позволяет однозначно определить массу и *предельную* глубину залегания (известно, что при использовании других форм аномальной массы глубина их залегания будет всегда меньше).

Рис. 2. Схема кривой отрицательной локальной аномалии северной части профиля

Известно [10, 11], что аномальный гравитационный эффект шаровой массы определяется уравнением

$$\Delta g_{\text{III}}(x, H_{\text{III}}) = f \cdot M_{\text{III}} \cdot \frac{H_{\text{III}}}{r^3}, \tag{1}$$

где
$$M_{\text{ш}} = V_{\text{ш}} \cdot \sigma = \frac{4}{3}\pi R^3 \cdot \sigma$$
 – масса шара;

 σ – плотность шаровой массы;

$$f = 6.67 \cdot 10^3 \cdot \frac{\text{M}\Gamma \text{a.s.} \cdot \text{M}^2}{m};$$

R – радиус шара;

 $r = \sqrt{H_{\text{III}}^2 + x^2}$ — расстояние от результативной точки на расчетном профиле до центра шара;

 $H_{\rm m}$ – глубина центра шара относительно результативного уровня;

x — расстояние на расчетном профиле результативной точки относительно точки, в которой гравитационный эффект шара максимальный по величине (соответствующей в плане центру шара).

В рассматриваемом случае определение неизвестных ($H_{\text{ш}}$ и $M_{\text{ш}}$) может быть выполнено с использованием параметров аномалии в точках максимального по абсолютной величине значения $\Delta g(x=0)$ и его половинного значения $\Delta g(x=0) = \frac{1}{2} \Delta g(x=0)$. Из выражения (1) следует, что

$$\frac{2}{\left(\sqrt{a^2 + H_{\text{III}}^2}\right)^3} = \frac{1}{H_{\text{III}}^3}.$$
 (2)

Отсюда, учитывая, что $a=x_{1/2}=1,615$ км, получаем значение $H_{\rm m}=2,186$ км. Тогда из выражения (1) следует, что $M_{\rm m}\cong 12~845~000$ т, а радиус шара равняется величине $R_{\rm m}=0,313$ км.

Вместе с тем, очевидно, что резервуар, из которого производился забор водных масс для замещения пространства, откуда извлекалось углеводородное сырье, имеет малое сходство с шаровой емкостью. Скорее всего, это водоносный пласт субгоризонтального простирания. Это означает, что глубина его залегания будет меньше, чем предельная, определенная для шаровой емкости, а горизонтальные размеры – шире.

Определим параметры такого пласта, исходя из следующих соображений.

1. В плане пласт соответствует горизонтальному круговому диску. Площадь поверхности диска по размерам соответствует горизонтальному квадратному пласту такой же толщины. Расстояние от центра диска до стороны, ограничивающей квадратный пласт, составляет величину $a = x_{1/2}$. В этом случае сохраняется условие: $\Delta g\left(x_{\frac{1}{2}} = a\right) = \frac{1}{2}\Delta g(x = 0)$.

2. Масса пласта соответствует массе шара.

На рис. 2 диск и пласт в вертикальном разрезе показаны соответственно утолщенными линиями и штриховкой. Исходя из этого, величина радиуса диска составляет

$$\rho = \frac{2a}{\sqrt{\pi}} \cong 1,890 \text{ km}. \tag{3}$$

Вместе с тем, величина притяжения диска в точке с x = 0 определяется по известной формуле:

$$\Delta g(x=0) = 2\pi f \sigma \left[\Delta H - \sqrt{H_2^2 - \rho^2} + \sqrt{H_1^2 + \rho^2} \right] = -0.18 \text{ м} \Gamma \text{ал},$$
 (4)

где $\Delta H = H_2 - H_1$;

 H_2 – глубина нижней границы диска;

 H_1 – глубина верхней границы диска.

Учитывая, что в этом случае $H_1 < \rho > H_2$, а объем диска (как и масса) равен объему (и массе) шара, когда

$$\frac{4}{3}\pi R^3 \cong \pi \rho^2 \cdot \Delta H,\tag{5}$$

окончательно получаем: ΔH = 0,0114 км = 11,4 м; H_1 = 1,4143 км; H_2 = 1,4257 км; $H_{\rm cp}$ = 0,5(H_1 + H_2) = 1,4195 км \cong 1,420 км.

Выполним аналогичные расчеты для положительной аномалии силы тяжести в средней части представленного профиля, для которой имеем: $\Delta g(x=0)=+0.23~\mathrm{mFa}$ л, $x_{1/2}=a=0.44~\mathrm{km}$. В результате получаем $H_{\mathrm{III}}=0.57~\mathrm{km}$, $M_{\mathrm{III}}\cong 11.2\cdot 10^6~\mathrm{t}$, что соответствует объему $V_{\mathrm{III}}\cong 11.2\cdot 10^6~\mathrm{m}^3$. Это составляет 8,7% от всего объема извлеченной водной массы на севере профиля. Повидимому, не менее 90% водной массы было закачано в продуктивные пласты взамен извлеченного углеводородного сырья.

Вместе с тем, небольшие горизонтальные размеры аномалии свидетельствуют о том, что массы, создающие ее, имеют относительно небольшую протяженность в направлении по профилю и значительно большую – вкрест него. В таком случае приходится говорить об аномальной зоне, представляющей субвертикальную пластину, в пределах которой водные массы мигрировали, повидимому, снизу вверх по дизъюнктивному нарушению из-за несогласного залегания продуктивных пластов, перекрытых водонепроницаемым покрытием (предположительно глинистым). При этом основная масса воды заполнила объем самого нарушения, а остальная его часть нашла выход в приповерхностные отложения как с северной, так и, особенно, с южной стороны, способствуя разбуханию объема и поднятию их верхней поверхности. Это и отразили результаты нивелирования во ІІ цикле натурных измерений. По разностной кривой изменения высот земной поверхности видно, что с южного и северного краев поднятия отмечаются небольшие просадки рельефа местности, которым по плановому положению также соответствуют зоны дизъюнктивных нарушений в осадочном чехле.

Оценим по гравиметрическим данным параметры аномальной зоны, представив ее в виде вертикальной материальной пластины (рис. 3).

Введем обозначения: σ — аномальная плотность масс пластины, h — толщина пластины, ζ_1 и ζ_2 — соответственно ее верхняя и нижняя границы ($h < \zeta_1$). Предположим, что $\zeta_2 = H_{\text{III}} \cong 2,2$ км — предельный уровень забора водных масс, $\sigma \cdot h = \mu$, а h = 0,01 км.

Рис. 3. Параметры аномальной зоны, в виде вертикальной материальной пластины

Согласно [11] для любой точки на профиле на расстоянии x от эпицентральной точки можно записать:

$$\Delta g(x, y=0) = f \cdot \mu \cdot \ln \frac{x^2 + \zeta_2^2}{x^2 + \zeta_1^2}.$$
 (6)

Для эпицентральной точки и точки на расстоянии $a = x_{1/2} = 0,44$ км от нее выражение (6) можно записать в виде:

$$\begin{cases}
\Delta g(x=0) = f \cdot \mu \cdot \ln \frac{k^2 \cdot \zeta_1^2}{\zeta_1^2} = f \mu \cdot \ln k^2, \\
\Delta g(x=a) = f \cdot \mu \cdot \ln \frac{a^2 + k^2 \cdot \zeta_1^2}{a^2 + \zeta_1^2} = \frac{1}{2} f \mu \cdot \ln k^2,
\end{cases} \tag{7}$$

где

$$k = \frac{\zeta_2}{\zeta_1}. (8)$$

Из решения системы уравнений (7) находим, что реальное значение k составляет величину

$$k = \frac{a^2}{\zeta_1^2}.$$

Тогда, с учетом (8), окончательно получаем

$$\zeta_1 \cdot \zeta_2 = a^2, \quad \zeta_1 = \frac{a^2}{\zeta_2} \quad \text{или} \quad \zeta_2 = \frac{a^2}{\zeta_1} = \frac{0,1936 \text{ км}^2}{\zeta_1 \text{км}}.$$
 (9)

На основании этого выражения нетрудно рассчитать таблицу изменения значений ζ_2 в зависимости от величины ζ_1 с учетом того, что a=0,44 км. Соотношения значений ζ_2 и ζ_1 можно представить в виде графика (рис. 4). Наиболее реальный интервал изменения соотношения этих величин представлен на графике в виде заштрихованной области.

Рис. 4. График соотношения ζ_2 и ζ_1

Будем считать результативным в ней соотношение ζ_2 к ζ_1 , выделенное в указанном интервале утолщенной линией: ζ_1 = 80 м = 0,08 км, ζ_2 = 2,42 км. Требовалось определить ширину (h) пластины при вышеупомянутом условии, что $h < \zeta_1$. Кроме того, требовалось учесть долю пористости осадочных образований в предполагаемой зоне дизъюнктивных нарушений с тем, чтобы (хотя бы приближенно — данными по этому поводу авторы не располагали) оценить (с учетом насыщения водой) её плотность (σ) по отношению к плотности «ненарушенных» горных пород.

Определение значения о было выполнено из следующих соображений:

- 1) пористость горных пород в зоне дизъюнктивных нарушений составляет 25 %;
 - 2) плотность необводненных горных пород составляет 2,0 г/с 3 = 2,0 т/ 3 ;
- 3) плотность их в результате обводнения составляет $\sigma_{oбs} = 2.0 + 1.0 \cdot 0.25 = 2.25 \, \text{г/см}^3 \, (\text{т/м}^3).$

Таким образом, значение плотности обводненных горных пород в зоне дизъюнктивных нарушений принято равным $\Delta \sigma_a = 2,25 \text{ г/см}^3 = 2,25 \text{ т/м}^3$.

Тогда с учетом исходного выражения (6) и величины $\Delta g_{\text{max}}(x=0) = +0.23$ мГал находим значение h=20.3 м $\cong 0.020$ км.

Таким образом, вычисленные параметры обводненной зоны (предположительно дизьюнктивной), представленной в виде субвертикальной (слегка отклоняющейся внизу к северу) полуплоскости значительного простирания вкрест расчетного профиля, характеризуются следующими значениями: ширина зоны около 20 м, простирание по глубине – от 80 до 2 420 м.

Особо следует отметить, что достоверность определяемых параметров аномальных процессов, как в зоне извлечения водных масс, так и на площади их нагнетания в продуктивную толщу была бы значительно выше, если бы данные натурных геодезическо-гравиметрических измерений во втором цикле были бы не профильными, а площадными, как в первом.

Вместе с тем, становится очевидной высокая степень необходимости комплексной оценки особенностей проявления техногенной геодинамики на участках интенсивной добычи не только углеводородного сырья, но и других ископаемых, а также при строительстве и эксплуатации крупных инженерных сооружений на основе разумного рационального применения натурных высокоточных геодезическо-гравиметрических измерений и незаформализованных методов качественной и количественной интерпретации их результатов. При этом особо следует учитывать, что гравиметрия должна применяться как опережающий метод, позволяющий на предварительном этапе уточнить геологотектоническую обстановку в районе исследований, выделить (с использованием данных других методов зондирования и морфометрического анализа) зоны повышенного промышленного риска [6–9].

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Кузьмин Ю.О., Жуков А.И. Современная геодинамика и вариации физических свойств горных пород. М.: МГТУ, 2004. 262 с.
- 2. Панжин А.А. GPS-технологии в геодезическом мониторинге НДС техногенного участка // Геомеханика в горном деле: сб. науч. тр. Екатеринбург: ИГД УрО РАН, 1999. С. 68–85.
- 3. Огородова Л.В. Высшая геодезия. Часть III. Теоретическая геодезия: учебник для вузов. М.: Геодезиздат, 2006. 384 с.
- 4. Каленицкий А.И., Гуляев, Ю.П. Гравиметрический метод оценки состояния и поведения оснований и сооружений // Изв. вузов. Сер. Строительство. 1994. № 3. С. 120–123.
- 5. Каленицкий А.И. Геодезическо-гравиметрический мониторинг техногенной геодинамики инженерных сооружений // Геодезия и картография. 2000. № 8. С. 24–27.
- 6. Каленицкий А.И., Ким Э.Л. О результатах применения гравиметрии на Западно-Суторминском геодинамическом полигоне // Вестник СГГА. – 2011. – Вып. 2 (15). – С. 3–6.
- 7. Результаты применения гравиметрии и высокоточного нивелирования при локализации участков повышенного геодинамического риска на месторождениях углеводородов / А.И. Каленицкий, Э.Л. Ким, М.Д. Козориз, В.А. Середович // Вестник СГГА. 2010. Вып. 1 (12). С. 14—20.
- 8. Каленицкий А.И., Ким Э.Л. Результаты первого цикла натурных геодезическогравиметрических измерений на Вынгапуровском геодинамическом полигоне // Геодезия и картография. -2011.- № 8.- C. 30–35.
- 9. Результаты комплексных геодезическо-гравиметрических наблюдений на геодинамическом полигоне Спорышевского месторождения УВ / А.И. Каленицкий, Э.Л. Ким, В.А. Середович, М.Д. Козориз // ГЕО-Сибирь-2011. Пленарное заседание: сб. матер. VII Междунар. научн. конгресса «ГЕО-Сибирь-2011», 19–29 апреля 2011 г., Новосибирск. Новосибирск: СГГА, 2011. С. 62–71.
- 10. Андреев Б.А., Клушин И.Г. Геологическое истолкование гравитационных аномалий. Л.: Недра, Ленингр. отд., 1965. 495 с.
 - 11. Гладкий К.В. Гравиразведка и магниторазведка. М.: Недра, 1967. 317 с.
- 12. Проблемы обеспечения точности координатно-временных определений на основе применения ГЛОНАСС технологий / Толстиков А.С., Ащеулов В.А., Антонович К.М., Сурнин Ю.В. // Вестник СГГА. -2012. Вып. 2 (18). С. 3-11.
- 13. Колмогоров В.Г. К вопросу о возможности изучения деформационного состояния земной поверхности по результатам повторного высокоточного нивелирования // Вестник СГГА. 2012. Вып. 1 (17). С. 9–14.
- 14. Дементьев Ю.В., Каленицкий А.И. О возможности и необходимости определения аномалий силы тяжести в полной топографической редукции // Вестник СГГА. 2011. Вып. 3 (16). С. 3–14.

Получено 12.12.2012

© А.И. Каленицкий, Э.Л. Ким, 2012