Статья подготовлена при финансовой поддержке Русского Географического Общества в рамках проведения научно-исследовательской караванной экспедиции «Великая степь — перекресток культур и дорог».

- 1. Бакинова Т. И. и др. Кормовые ресурсы сенокосов и пастбищ Калмыкии. Ростов-на-Дону. Изд-во СКНЦ ВШ. 2002. 184 с.
- 2. Лиджиева Н. Ц., Уланова С.С., Федорова Н. Л. Опыт применения индекса вегетации (NDVI) для определения биологической продуктивности фитоценозов аридной зоны на примере региона Черные Земли // Известия Саратовского университета. Серия Химия. Биология Экология 2012. Т. 12. № 2 С. 93-96.
- 3. Материалы геоботанического обследования природных кормовых угодий совхоза «Эрдниевский» Юстинского района Калмыцкой ССР, Институт ЮЖГИПРОЗЕМ, Элиста. 1992. 53 с.
 - 4. Джапова Р. Р. Динамика пастбищ и сенокосов Калмыкии. Элиста. Изд-во Калм. ун-та. 2008. 176 с.

УЛАНОВА С.С.

ГЕОЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ ИСКУССТВЕННЫХ ВОДОЕМОВ РЕСПУБЛИКИ КАЛМЫКИЯ С ИСПОЛЬЗОВАНИЕМ МЕТОДОВ ЭКОТОННОЙ КОНЦЕПЦИИ

Аннотация: В статье представлены результаты долговременного мониторинга по Чограйскому водохранилищу — изменение гидрологических параметров с 1969 по 2013 г. Рассмотрено влияние водохранилища на экотонную систему «вода-суша» в нижнем бьефе Чограя, в русле реки Восточный Маныч. Описаны состав и структура компонентов блоков экотонных систем в нижнем бьефе водохранилища.

Ключевые слова: искусственные водоемы, мониторинг, площадь водной поверхности, экотонные системы, растительность.

Искусственные водоемы аридной зоны относятся к наиболее сложным и динамичным водным объектам, что обусловлено экстремальными климатическими особенностями, равнинным характером окружающих ландшафтов и значительными колебаниями уровня водоема в осенне-летний период. Выявление особенностей формирования природных комплексов на побережьях водохранилищ в условиях аридного региона Калмыкии с позиций геоэкологии, как эколого-географического явления, представляется весьма актуальным, так как позволяет установить механизмы и закономерности его развития, оценить степень развития и масштабы опасности.

Основным методическим приемом в исследованиях было рассмотрение территории, подверженной влиянию как экотонной системы «вода-суша» и состоящей из участков территории (структурнофункциональных блоков), испытывающих разное воздействие водохранилища: волновую абразию и длительное заливание на обнажающемся дне водохранилища (флуктуационный блок); заливание, абразию и аккумуляцию отложений на кратковременно заливаемом участке территории побережья (динамический блок); подтопление неглубоко залегающими к поверхности грунтовыми водами на более удаленном от уреза воды участке побережья (дистантный блок), косвенное влияние водоема через микроклимат – маргинальный блок [1, 5].

Целью экспедиционных исследований 2012 гг. было получить количественные геоданные для установления сезонных и разногодичных изменений экологических факторов и компонентов природных экосистем в разных блоках экотона на побережьях искусственных водоемов Калмыкии. Исследования проводились согласно созданной и апробированной ранее нами методики комплексного изучения искусственных водоемов и экотонных зон «вода-суша» для аридных территорий, сочетающей наземные исследования с геоинформационными технологиями. Во время полевых работ проводилось топоэкологическое инструментальное профилирование прилегающих к водоемам территорий, сопровождающееся заложением ключевых участков и отбором проб для изучения: минерализации поверхностных вод; структуры и солевого режима почв; видового состава, обилия, проективного покрытия растительных сообществ; глубины залегания и минерализации грунтовых вод.

Объектами долговременного геоэкологического мониторинга являются наиболее значимые в водном хозяйстве республики водоемы: вдхр. Чограйское, Цаган-Нур, Деед-Хулсун, Красинское, Состинские водоемы, озеро Маныч-Гудило. В данной статье представлены результаты полевых наблюдений за 2012 г. по Чограйскому водохранилищу.

Чограйское водохранилище, расположенное в русле реки Восточный Маныч в 1969 г., создавалось для многоцелевого использования: питьевого водоснабжения, ирригации, рыбоводства, рыболовства, рекреации. За более чем 40-летний период использования произошло значительное (до 4,3 м) падение уровня водоема и увеличение минерализации его вод, в результате чего в настоящее время водохранилище используется для бытового водоснабжения, ирригации (в меньшем объеме), водопоя скота, неорганизованной рекреации. Водные ресурсы Чограйского водохранилища слагаются из вод рек Терек и Кума, поступающих по Терско-Манычскому водному тракту и вод местного стока с водосборной площади 13600 км². Сюда входят водосборы балок Голубь, Чограй, Рагули (4500 км²), и ранее входил полностью бассейн реки Калаус (9100 км²). Средняя минерализация вод местного стока составляет 5 г/л. Приточность воды в водохранилище из этих источников составляет примерно 26 млн.м³ в год при обеспеченности Р=75%. Остальной сток задерживается 32 прудами. Водохранилище простирается с запада на восток на 48,8 км. Наибольшая ширина у плотины – 8,8 км (табл.1).

Таблица 1 Общие морфометрические характеристики Чограйского водохранилища (по данным государственного водного реестра и регулярных наблюдений)

Площадь акватории	193 км ²		
Полезный объем	0.67 км ³		
Объем водоема	0.72 км ³		
	25.30 ФПУ		
Уровни водохранилища	24.2 НПУ		
	18.00 УМО		
	Минимальная 2.3 м		
Глубина	Средняя 3.7 м		
	Максимальная 10.8		

Многолетний геоинформационный мониторинг Чограйского водохранилища по данным материалов космической информации выявил значительную динамику гидрометрических параметров водного объекта в зависимости от антропогенного воздействия (табл.2).

Таблица 2 Гидрологические параметры Чограйского водохранилища (по данным материалов космической информации и сопряженных полевых исследований)

Годы	S, KM ²	V, млн. м ³	Н, м	Минерализация,
				г/л
1969	193	720	24.2	1.1
1975	142.5	408	22.8	1.5
1991	132.7	415	22.2	1.4
1999	113.4	300	21.0	2.5
2001	130.4	410	22.0	1.3
2003	130.6	410	22.1	1.4
2004	130.4	408	22.0	1.4
2007	79	190	19.6	1.7
2008	60	110	19.3	1.8
2009	93.2	265	20.9	2.6
2010	123.8	360	21.2	1.4
2011	125.9	400	21.9	1.6
2012	112.1	295	21.0	1.9
2013	78.67	190	19.9	2.9

Впервые за весь период наблюдений (с 2001 г) в апреле 2013 года был отмечен минимальный уровень водохранилища. Хвостовая часть водохранилища заканчивалась уже на уровне п. Приманычский (здесь

раньше была практически центральная часть водоема). Минерализация хвостовой части водохранилища составила 3,72 г/л. Минерализация центральной части составила 2,9 г/л. Тип засоления – натриево-хлоридносульфатный. Сократившиеся размеры водоема наглядно подтверждаются материалами дистанционного зондирования. Площадь Чограйского водохранилища по данным космической съемки за март 2013 г. составила 78,67 км² (ИСЗ «Landsat-7», ETM +). Анализ результатов геоинформационного мониторинга показывает, что максимальное наполнение водохранилища было отмечено в 1969 г, в период ввода в эксплуатацию. Его площадь тогда составила 193 км². Более чем за 40-летний период функционирования площадь водоема несколько раз сокращалась до критических размеров. Минимальные значения площади были отмечены в 1999, 2007, 2008, 2013 гг. Причиной таких резких сокращений площади водного зеркала в 1999 году явилось значительная сработка водохранилища в летний период в целях снижения минерализации водоема для последующего наполнения его преимущественно терской водой (минуя Левокумский гидроузел в 1999-2000 гг.). Сложение антропогенного и климатического факторов (1999 г. оказался маловодным) привели к значительному уменьшению площади водного зеркала (113.4 км²) и снижению уровня водохранилища по сравнению с 1969 г на 3,2 м. Сокращение площади в 2007-2008 гг. и в 2013 г. практически до уровня мертвого объема произошло в результате спуска воды из водохранилища, производимое в целях реконструкции плотины. В результате резких колебаний уровня воды в достаточно короткий промежуток времени и длительное маловодие (2006-2008 г.г и в 2012-2013 гг.) в связи с затянувшимся ремонтом плотины привели к засолению водоема и гибели обширных массивов тростниковых плавней. Это в свою очередь повлияло на места обитания и гнездовий краснокнижных видов птиц, ухудшению почвенного покрова и снижению биоразнообразия растительности [3, 4].

Результаты долговременного гидрологического мониторинга водохранилища показывают значительное увеличение его минерализации со времени ввода в эксплуатацию (табл.2). Максимального значения она достигала в периоды наибольшего водосброса (2008-2009; 2012-2013 гг.). Качественный состав поверхностных вод Чограйского водохранилища незначительно варьирует по годам от хлоридно-сульфатнонатриевого до хлоридно-сульфатно-кальциевого или хлоридно-сульфатно-магниевого. Полевые исследования показывают, что в направлении от плотины к зоне выклинивания подпора минерализация воды возрастает и эта тенденция характерна для всех лет наблюдений (рис.1).

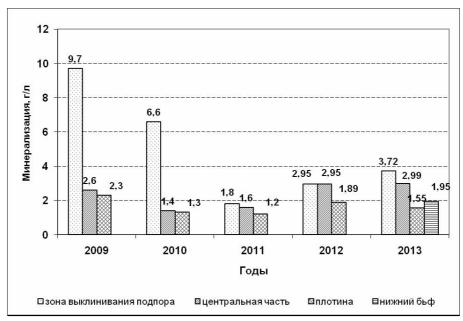


Рис. 1. Изменение минерализации по профилю водохранилища в течение 2009-2013 г.г.

Для изучения и оценки биоразнообразия экотонных систем и определения ресурсного потенциала побережий были выбраны ключевые участки, характеризующие различные биотопы побережий: в зоне выклинивания подпора, центральной, приплотинной части водоема, в нижнем бьефе водохранилища. В прошлые годы (2001-2009 гг.) были подробно изучены хвостовая, центральная и приплотинная часть, расположенные на северном побережье водоема [2, 3, 4]. Однако нижний бьеф водохранилища не был охвачен исследованиями, в связи с чем, весной 2012 г. были заложены топоэкологические профили на территории, расположенной непосредственно за плотиной и ниже, на расстоянии 5,7 км, по течению

русла реки Восточный Маныч. Протяженность профиля от уреза реки Восточный Маныч и до зональной растительности составила более 100 м. На данном профиле были выделены следующие блоки экотонной системы «вода-суша»: амфибиальный, флуктуационный, динамический, дистантный, маргинальный (табл. 3).

Таблица 3 Компоненты природных комплексов в блоках экотонной системы «вода-суша» в нижнем бъефе Чограйского водохранилища, на побережье р. В. Маныч (2012 г, весна/осень)

	Блоки и их протяженность, м					
Компоненты экосистем в блоках	Флуктуационный		Динамический	Дистантный	Маргинальный	
№ скважины	0	1	2	3	4	
Расстояние от уреза воды, м	0	12.8	44.4	79.4	100 -	
Превышение над урезом воды, м	0	0.28	1.03	1.49	1.8	
УГВ, м, весна/осень	0	0.67/1.30	1/1.75	2.6/2.9	3.5 и >	
Минерализация ГВ, г/л весна/осень	1.73/1.89	7.56/20.85	16.60/62.67	63.69/68.15	-	
Химизм, ГВ, г/л	Ca ²⁺ - Cl ⁻ - SO ₄ ²⁻	Ca ²⁺ - Cl ⁻ - SO ₄ ²⁻	Cl- Na -SO ₄	Cl- Na -SO ₄	-	
Почва (название)		Солончак сульфатно- хлоридный луговый	Солончак сульфатно- хлоридный луговый	Собственно луговы практически незасоленные глубокосолончаковать е	каштановые в	
тах солей, %		1.68	3.42	0.38	-	
Глубина его залегания, см		0-6	0-6	32-50	-	
Средневзвешенный сухой остаток, %		1.34	1.94	0.19	-	
Тип засоления почвы		Na ⁺ -Cl ⁻ ·	$-Na^+$ $-Cl^ -SO_4^{2-}$	Na+ -Cl ⁻ - Ca ²⁺	-	
Укос, воздушно- сухой вес, г/м2 весна/осень		30/274	34/182	22/254	20/232	
Количество видов растений весна/осень		7/6	9/8	7/8	6/6	

Флуктуационный блок был представлен камышево-тростниково-тамариксовыми сообществами с однолетниковой галофитной растительностью (*Tamarix ramosissima-Phragmites australis-Scirpus lacustris-Salicornia europaea*), произраставшими на границе воды и суши. Ширина флуктуационного блока составила 27,4 м. Относительные отметки высот на протяжении блока изменялись от 0 до 0,65 м. На расстоянии 12,8 м от уреза воды был заложен шурф для определения глубины залегания грунтовых вод. Грунтовые воды в данном блоке залегали на глубине 0,67 м. Степень минерализации составила – 7,56 г/л. Тип засоления вод – кальциево-хлоридно-сульфатный. Почвы данного блока были представлены луговыми солончаками хлоридно-сульфатного засоления. Средневзвешенное содержание солей в почвенном горизонте – 1,34 %. Максимум солей (1,68%) залегают в поверхностном горизонте (0-6 см). Камышево-тростниково-тамариксовые сообщества имели ОПП 35%. Сообщество двухярусное: первый ярус, высотой 1,2 м представлен *Таmarix ramosissima*, находящегося в несколько угнетенном состоянии, из-за стравливания КРС. Во втором ярусе, высотой 0,10-0,25 м, произрастали *Phragmites australis, Scirpus lacustris, Salicornia europaea, Suaeda salsa*,

Aeluropus littoralis, Atriplex pedunculata. Вес воздушно-сухой массы растений в данном блоке с 1 м² составил 30 г/м². Количество видов весной составило 7 видов. Осенью более выраженными в данном блоке оказались прибрежницево- клубнекамышево-тамариксовые сообщества, с ОПП 75%. Вес воздушно-сухой массы в осенний период составил 274 г/м². Большой объем растительной биомассы обеспечили растения Aeluropus littoralis, с обилием по шкале Друде сор3, и ПП 65%. Динамический блок, шириной 40 м, протянулся до 65,4 м от уреза воды. На протяжении блока отметки высот изменялись от 0,65 м до 1,27 м. Грунтовые воды залегали на глубине 1 м. Минерализация составила 16,6 г/л, тип засоления – хлоридно-натриево-сульфатный. Почвы – луговый солончак сульфатно-хлоридного засоления. Средневзвешенное содержание солей в почве −1,94%. Максимум залегания солей (3,42%) в приповерхностном слое −0-6 см. На данных почвах произрастали разнотравно-кострово-петросимониевые сообщества Petrosimonia triandra-Eremopyrum triticeum-Galium verum с ОПП 75%. Сообщество одноярусное, высотой 0,10-0,15 м с доминированием Petrosimonia triandra (40%), с обилием cop^2 по шкале Друде. Продуктивность блока составила $34 \, r/m^2$. Количество видов растений в данном блоке составило 9 видов. Осенью сообщества сменились на франкениево-шведковые ассоциации (Suaeda salsa-Frankenia hirsuta), с ПП до 35%. Вес биомассы осенью составил 182 г/м². Дистантный блок, шириной до 34,5 м протянулся до 100 м от уреза воды. Относительные отметки высот в пределах блока изменялись от 1,27 м до 1,79 м. Грунтовые воды заглубились до 2,6 м. Засоление грунтовых вод увеличилось в данном блоке до 63,69 г/л. Тип засоления натриево-хлоридно-сульфатный. Почвы данного блока – собственно луговые практически незасоленные солончаковатые. Средневзвешенный сухой остаток составил 0,19%. Максимум залегания солей – 0,38% - на глубине 32-50 см. Тип засоления почв – сульфатно-хлоридный. В данных эдафических условиях произрастали злаково-прутняковые сообщества (Kochia prostrata- $Eremopvrum\ triticeum$ -Poa bulbosa) с ОПП 20%. Вес воздушно-сухой массы составил 22 г/м². Количество видов растений в данном блоке составило 7 видов растений. В дистантном блоке осенью произрастали шведково-полынно-сарсазановые сообщества (Halocnemum strobilaceum-Artemisia austriaca-Suaeda salsa), с ОПП 65%. Вес воздушно-сухой массы составил 254 г/м2. Количество видов растений в данном блоке осенью составило 8 видов растений.

Минерализация поверхностных вод в русле реки Восточный Маныч оказалась в апреле и сентябре 2013 г. примерно одинаковой, с незначительным превышением в осенний период, составив 1,72 г/л и 1,89 г/л соответственно. Тип засоления с весны по осень изменился с кальциево-хлоридно-сульфатного на сульфатно-хлоридно-натриевое. Минерализация грунтовых вод на данном профиле к осени 2013 г. значительно увеличилась в 2,8 раз (с 7,56 г/л до 20,85 г/л) во флуктуационном блоке и в 3,8 раз (с 16,59 г/л до 62,67 г/л) в динамическом блоке. Тип засоления изменился с хлоридно-натриево-сульфатного на сульфатно-хлоридно-натриевый. Такое значительное различие в степени засоления в данных блоках можно объяснить более активными процессами транспирации в вышеперечисленных зонах, по сравнению с другими. Минерализация дистантного блока весной и осенью оказалась примерно одинакова и равна 63,68 г/л и 68,15 г/л соответственно. Тип засоления натриево-хлоридно-сульфатный весной, и хлоридно-сульфатно-натриевый осенью. Значительное превышение осенней урожайности в экотонах в 10-20 раз, можно объяснить увеличением галофитной растительности к осени.

Таким образом, Чограйское водохранилище, испытывающее в настоящее время значительную антропогенную трансформацию, используется преимущественно для технического водоснабжения, ирригации (в меньшем объеме), водопоя скота, неорганизованной рекреации. По качественному составу воды Чограйского водохранилища не соответствует государственным санитарно-эпидемиологическим правилам и нормативам для питьевого и хозяйственно-бытового водоснабжения. Длительное маловодие привело к значительному ухудшению экотонной структуры водохранилища: сокращению числа структурных блоков, засолению почвенного покрова, снижению биоразнообразия растительности. В хвостовой части водоема в связи с гибелью тростниковых плавней перестали гнездиться околоводные и водоплавающие птицы, уменьшились рыбные запасы, промысловые виды рыб сменились малоценными. Многолетние исследования искусственных водоемов Республики Калмыкия показали, что они создавались исключительно для водохозяйственных целей: питьевого водоснабжения и орошения. Но в аридных условиях с течением времени водохозяйственное значение водоемов снижается, при этом возрастает их средообразующая и природоохранная роль: они становятся опорными элементами экологического каркаса территории (ядрами), способствуя увеличению ландшафтного и биологического разнообразия достигающего значимости регионального уровня. Установленные закономерности свидетельствуют о необходимости пополнения вод водохранилища, при регулировании его уровня (водоподача и водосброс) не допускать резких колебаний уровня, так как очень важная средообразующая и природоохранная функция перестает выполняться водоемом.

Статья подготовлена при финансовой поддержке Русского Географического Общества в рамках проведения научно-исследовательской караванной экспедиции «Великая степь — перекресток культур и дорог».

- 1. Залетаев В.С. Структурная организация экотонов в контексте управления / Экотоны в иосфере, под ред. д. г. н., проф. В.С. Залетаева. "М.: РАСХН, 1997. С. 11-30.
- 2. Новикова Н.М., Уланова С.С. Эколого-географическая оценка искусственных водоемов Калмыкии и экотонных систем «вода-суша» на их побережьях // Проблемы региональной экологии. 2008. №2. С. 33-39.
- 3. Уланова С.С. «Эколого-географическая оценка искусственных водоемов Калмыкии и экотонных систем «вода-суша» на их побережьях М.: РАСХН. 2010. 254 с. ISBN 978-5-85941-389-8 . Отв. ред. д.г.н., проф. Н.М.Новикова.
- 4. Уланова С.С. Применение экотонной концепции для оценки биоразнообразия, формирующегося в зоне воздействия искусственных водоемов Калмыкии. // Аридные экосистемы, 2006, том 12, №30-31, С.97-107.
- 5. Экотонные системы «вода-суша»: методика исследований, структурно-функциональная организация и динамика. М.: Товарищество научных изданий КМК, / под ред. Н.М. Новиковой. 2011. 272 с.