= ГЕОЛОГИЯ =

УДК 552.2:551.72(575.5)

ПЕРВЫЕ РЕЗУЛЬТАТЫ U-Рb-ГЕОХРОНОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ ПОРОД ГРАНУЛИТОВОГО КОМПЛЕКСА ХАНКАЙСКОГО МАССИВА ПРИМОРЬЯ (МЕТОД LA-ICP-MS)

© 2010 г. Академик А. И. Ханчук, Г. М. Вовна, В. И. Киселёв, М. А. Мишкин, С. Н. Лаврик

Поступило 20.04.2010 г.

В настоящей работе приведены первые результаты применения метода масс-спектрометрии с индуктивно связанной плазмой и лазерной абляцией пробы (LA-ICP-MS) для датирования по цирконам гранулитовых пород Ханкайского массива Приморья. Ханкайский массив (террейн), совместно с Хингано-Буреинским (Россия) и Цзямусским (КНР) относятся к числу главных структурных элементов притихоокеанского сегмента Центрально-Азиатского складчатого пояса. Возраст и происхождение метаморфических пород этих массивов имеют важное значение для понимания структурной эволюции всего Центрально-Азиатского складчатого пояса. Согласно [1], гранулитовые комплексы кристаллических массивов Дальнего Востока России относятся к архею, хотя изотопным датированием эти представления не подтверждены. В связи с этим изотопно-геохронологические исследования гранулитовых пород Ханкайского массива представляются весьма актуальными.

Гранулитовый комплекс Ханкайского массива распространен в его северной части, где выделен под названием иманской серии [2] (рис. 1). Разрез иманской серии представлен в основании диопсид-кальцитовыми мраморами с редкими прослоями биотитовых сланцев и известково-силикатных пород (ружинская свита). Выше залегают биотитовые и высокоглиноземистые сланцы и гнейсы, содержащие отдельные маломощные прослои различных кварцитов (гранатовых, магнетитовых, графитовых), эвлизитов, мраморов, известково-силикатных пород, двупироксен-амфиболовых сланцев (матвеевская свита). Породы иманской серии подвергнуты высокоградиентному метаморфизму в условиях гранулитовой фации и в значительной степени гранитизированы и мигматизированы [2]. Иманская серия Ханкайского массива Приморья традиционно сопоставляется по литолого-петрографическому составу и гранулитовой степени метаморфизма с машаньской серией сопредельной структуры Китая массивом Цзямусы ([3] и др.). Наши изотопные исследования относятся к породам матвеевской свиты, иманской серии. Опробованию были подвергнуты двупироксен-амфиболовые сланцы, залегающие согласно в виде прослоя мощностью около 1 м среди гранитизированных пород матвеевской свиты (проба Н-1) в карьере, в 3 км к югозападу от с. Невское. Проба имеет следующий минеральный состав, об. %: плагиоклаз 38, гиперстен 20, клинопироксен 12, амфибол 25, биотит 5, акцессории: апатит, циркон, магнетит. Химический состав двупироксен-амфиболового сланца, мас. %: SiO₂ 47.16; TiO₂ 1.0; Al₂O₃ 17.12; Fe₂O₃ 1.93; FeO 8.10; MnO 0.12; MgO 8.57; CaO 13.42; Na₂O 1.30; K₂O 0.40; P₂O₅ 0.05; сумма 99.17. Петрохимические особенности двупироксен-амфиболового сланца соответствуют толеитовым базальтам.

Все изотопные измерения выполнены в лаборатории аналитической химии ДВГИ ДВО РАН на масс-спектрометре с индуктивно связанной плазмой Agilent 7500a, соединенном с системой лазерной абляции пробы UP-213. Акцессорный циркон из образцов выделялся по стандартной методике. Конечный отбор цирконов осуществлялся вручную под бинокуляром. Выбранные зерна совместно с цирконовым стандартом ТЕ-MORA [5] были зафиксированы смолой ЕРО-КWICК. С помощью электронного микрозонда JXА-8100 получены соответствующие "back-scattered electron microscopy" (BSE) изображения цирконов для детального изучения их внутренней структуры и выбора точек проведения изотопных измерений. Диаметр абляционного кратера составлял приблизительно 40 мкм. Исследуемый материал из ячейки образца транспортировался смесью газов - гелий и аргон. Технические детали методики описаны в [6-8]. Измеренные величины обрабатывались с помощью программ Glitter v. 4.4.2 ("Access Macquarie Ltd."). U-Рb-отношения нормализовались на соответствующие значения

Дальневосточный геологический институт

Дальневосточного отделения

Российской Академии наук, Владивосток

Рис. 1. Схематическая геологическая карта северной части Ханкайского массива (карта составлена по [4] с изменениями). 1 - кайнозойские отложения; 2 - габбро-гранитные комплексы палеозойского и мезозойского возраста; <math>3 позднепалеозойские отложения; 4 -кембрийские отложения орловской серии; 5 -раннепалеозойские гранитоиды уссурийского комплекса; 6 - 8 - протерозойские отложения: 6 -лесозаводской, 7 -уссурийской, 8 -иманской серии; 9 -разломы; 10 -геологические границы; 11 -место отбора пробы на изотопный анализ и ее номер; 12 -район исследований, показанный на врезке.

изотопных отношений стандартного циркона TE-MORA, возраст которого принят равным 416.75 млн. лет [5]. Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1σ, погрешности вычисленных конкордантных возрастов и пересечений с конкордией приводятся на уровне 2σ. Диаграммы с конкордией строились с использованием программы Isoplot/Ex v. 3.00 [9].

В монофракции цирконов пробы H-1 по цвету, морфологическим и текстурным признакам выделено два типа.

1. Цирконы типа I представлены светло-розовыми прозрачными удлиненно-призматическими двупирамидальными кристаллами длиной от 250 до 500 мкм ($K_y = 2.5-3$). В BSE-изображении они имеют отчетливое двухфазное строение – незональное ядро и зональную оболочку (рис. 2a). Некоторые зерна имеют трещины, перпендикулярные удлинению (рис. 2), другие хаотично трещиноваты. В отдельных зернах циркона типа I в ядрах наблюдаются обильные твердофазные включения (рис. 2б). Из граней развиты {100}, {110} и {111}. Морфология ядер зерен типа I может свидетельствовать об их магматическом происхождении [10]. U–Pb-изотопный точечный

Рис. 2. BSE-изображения проанализированных цирконов типов I (а, б) и II (в, г) пробы H-1. Номера точек анализов соответствуют номерам в табл. 1.

№ точки анализа	Изотопные отношения			Возраст, млн. лет	
	207 Pb/ 235 U, ±%	206 Pb/ 238 U, ±%	207 Pb/ 206 Pb, ±%	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U
Цирконы типа I					
H1-14	1.05917 ± 6.36	0.12586 ± 2.11	0.06821 ± 6.58	733.4 ± 33.2	764.2 ± 15.2
H1-16	1.0991 ± 6.20	0.12274 ± 2.00	0.07258 ± 6.41	752.9 ± 32.9	746.3 ± 14.1
H1-17	1.08086 ± 6.37	0.12225 ± 2.12	0.07166 ± 6.60	744.1 ± 33.6	743.5 ± 14.9
H1-19	1.061 ± 6.16	0.12727 ± 1.99	0.06757 ± 6.38	734.3 ± 32.3	772.3 ± 14.5
H1-20.1	1.06152 ± 6.21	0.12471 ± 2.01	0.06899 ± 6.42	734.6 ± 32.4	757.6 ± 14.4
H1-20.2	1.05709 ± 6.16	0.12629 ± 1.98	0.06784 ± 6.37	732.4 ± 32.1	766.6 ± 14.3
H1-23.1	1.05834 ± 3.49	0.12348 ± 1.92	0.06943 ± 3.66	733 ± 18.2	750.6 ± 13.6
H1-25.1	1.08298 ± 3.17	0.1286 ± 1.78	0.06821 ± 3.28	745.1 ± 16.7	779.9 ± 13.1
H1-27.1	1.10286 ± 6.32	0.12395 ± 2.09	0.07212 ± 6.54	754.7 ± 33.7	753.3 ± 14.8
H1-35	1.07331 ± 4.96	0.12719 ± 2.37	0.06836 ± 5.24	740.4 ± 26.1	771.8 ± 17.3
Н1-25.2(к)	0.66639 ± 3.01	0.08273 ± 1.72	0.06525 ± 3.10	518.5 ± 12.2	512.4 ± 8.4
Н1-27.2(к)	0.65647 ± 3.45	0.08254 ± 1.85	0.06442 ± 3.59	512.4 ± 13.9	511.3 ± 9.1
Н1-38(к)	0.6269 ± 6.20	0.0803 ± 2.43	0.0632 ± 6.61	494 ± 4.91	498 ± 2.34
Цирконы типа II					
H1-26.1	0.66757 ± 3.05	0.08479 ± 1.72	0.06377 ± 3.14	519.2 ± 12.4	524.7 ± 8.7
H1-32	0.6645 ± 3.83	0.08233 ± 1.94	0.06538 ± 3.99	517.4 ± 15.5	510 ± 9.5
H1-33	0.67567 ± 3.90	0.08375 ± 1.96	0.06535 ± 4.06	524.2 ± 16.0	518.5 ± 9.8
H1-34	0.65436 ± 4.30	0.08384 ± 2.09	0.06322 ± 4.51	511.2 ± 17.3	519 ± 10.4
H1-36	0.6340 ± 4.12	0.0803 ± 1.36	0.0573 ± 3.96	499 ± 3.25	498 ± 1.31
H1-37	0.6286 ± 4.12	0.0799 ± 1.31	0.0571 ± 3.86	495 ± 3.18	496 ± 1.26
H1-39	0.6415 ± 4.43	0.0810 ± 1.48	0.0574 ± 4.32	503 ± 3.49	502 ± 1.42

Таблица 1. U–Pb-изотопные данные для цирконов из двупироксен-амфиболового сланца (проба H-1) гранулитового комплекса Ханкайского массива

Примечание. Ошибки приведены для интервала 1с; (к) – край зерна циркона типа I.

анализ цирконов проводился в центральной и краевой частях зерен. Полученные изотопные данные приведены в табл. 1. Ядра цирконов типа I имеют конкордантный средневзвешенный воз-

Рис. 3. Диаграмма с конкордией для цирконов типов I и II пробы H-1.

раст 757.4 \pm 4.4 млн. лет (рис. 3, табл. 1). Этот возраст соответствует, по нашему мнению, времени кристаллизации магматического протолита двупироксен-амфиболового сланца, представлявшего, вероятно, базитовый силл в исходной осадочно-терригенной толще матвеевской свиты.

2. Цирконы типа II преобладают в составе монофракции (около 70%). Они представлены бочонкообразными с большим числом граней или округлыми прозрачными, бесцветными кристаллами с алмазным блеском, размером 100-200 мкм $(K_v = 1 - 1.5)$. Зерна умеренно трещиноваты, некоторые имеют пятнистое строение (рис. 2). Морфологические особенности зерен циркона типа II могут свидетельствовать об их метаморфическом происхождении [10]. В ВЅЕ-изображении они практически имеют однофазное строение (рис. 2в, г). Для цирконов типа II и краевых зон цирконов типа I получен конкордантный возраст 506.9 ± 2.6 млн. лет (рис. 3, табл. 1). Полученные результаты свидетельствуют о том, что исходные породы иманской серии позднепротерозойского возраста претерпели гранулитовый метаморфизм в позднем кембрии.

ДОКЛАДЫ АКАДЕМИИ НАУК том 434 № 2 2010

Полученные нами результаты подтверждаются выполненными ранее изотопно-геохронологическими исследованиями методом SHRIMP для гранулитовых пород машаньской серии массива Цзямусы Китая, смежного с Ханкайским массивом [11, 12].

СПИСОК ЛИТЕРАТУРЫ

- Решения четвертого межведомственного регионального стратиграфического совещания по докембрию и фанерозою юга Дальнего Востока и Восточного Забайкалья. Хабаровск: ХГГП, 1994. 123 с.
- Мишкин М.А. Петрология докембрийских метаморфических комплексов Ханкайского массива Приморья. М.: Наука, 1969. 182 с.
- Мишкин М.А., Лаврик С.Н., Чжао Чунцзин и др. // Вестн. Дальневосточн.отд-ния Рос. АН. 1993. № 2. С. 30–38.
- 4. Ханчук А.И., Плюснина Л.П., Молчанов В.П. и др. // Тихоокеан. геология. 2007. Т. 26. № 1. С. 70–80.

- Black L.P., Kamo S.L., Aleinikoff G.M. et al. // Chem. Geo1. 2003. V. 200. P. 155–170.
- Horn I., Rudnick R. L., McDonough W.F. // Chem. Geol. 2000. V. 167. P. 405–425.
- 7. Jackson S.E., Pearson N.J., Griffin W.L. et al. // Chem. Geol. 2004. V. 211. P. 47–69.
- 8. Киселев В.И., Вовна Г.М., Мишкин М.А. и др. Материалы VIII науч. конф. "Аналитика Сибири и Дальнего Востока". Томск, 2008. С. 78–79.
- 9. *Ludwig K.R* // Berkeley Geochronol. Center. Spec. Publ. 2003. № 4. 70 p.
- Белов А.Н., Суханов М.К., Сонюшкин В.Е. и др. В кн.: Циркон в породах докембрия и фанерозоя. М.: Наука, 1985. С. 87–94.
- Wilde S., Dorsett-Bain H., Liu J. Proc. XXX Intern. Geol. Congr. Beijing. Amsterdam: VSP, 1997. V. 17. P. 59–74.
- Wilde S.A., Zhang X., Wu F. // Tectonophysics. 2000. V. 328. P. 115–130.