ВЛИЯНИЕ ПОРОВОГО ОСАДКООБРАЗОВАНИЯ НА ФИЛЬТРАЦИОННЫЕ СВОЙСТВА ГОРНЫХ ПОРОД

Ю. Ф. АНТОНОв, В. А. МоРДВИНОв
Пермский государственный технический университет

Внутрипластовое осадкообразование существенно изменяет структуру пустотного пространства горных пород на некоторый период времени. Воздействие на пропластки с различной проницаемостью в неоднородных по составу и по коллекторским свойствам пластах в процессе проведения геолого-технических мероприятий (ГТМ), основанных на внутрипластовом осадкообразовании, позволяет эффективно регулировать (выравнивать) фильтрационно-емкостные свойства (ФЕС) принимающих или отдающих интервалов горных пород.

Для оценки воздействия композиции на горные породы с различной проницаемостью с целью регулирования их ФЕС были проведены опыты по фильтрации осадкообразующего состава через образцы кернового материала Мамонтовского (пласт БС 10), Южно-Сургутского (пласт БС 1, БС $_{2-3}$), Восточно-Сургутского (пласт $Б С_{10}$) и Западно-Сургутского (пласт БС ${ }_{2-3}$) месторождений. Образцы диаметром 27,0 мм имели длину $25,1 \ldots 33$ мм, проницаемость $0,0314 \ldots 1,1095$ мкм 2, открытую пористость $0,224 \ldots 0,325$, карбонатность $4,98 \ldots 6,15 \%$ (табл. 1).

Фильтрацию проводили при постоянном перепаде давления (0,25 МПа). Значение перепада рассчитано из условия распределения давления в пласте на удалении от стенки скважины, соответствующем средней длине образцов (около 30 мм), при условии создания давления на устье скважины $20 \mathrm{MПа}$, при глубине забоя 2000 м и диаметре скважины по долоту 0,2159 м. Продолжительность прокачки композиции составляла 30 мин. Температура при проведении опытов поддерживалась на уровне $20 \ldots 22^{\circ} \mathrm{C}$. Предварительно для образцов определяли начальные значения пористости и проницаемости по жидкости (5%-ный раствор CaCl_{2}). Коэффициент открытой пористости определялся по методу Преображенского, карбонатность - на приборе Кларка (АК-4). Начальная проницаемость оценивалась при фильтрации раствора CaCl_{2} на установке УИПК-1М в режиме $q=5,86 \mathrm{~cm}^{3} /$ мин, при условии прокачки 30 -ти поровых объемов (PV) жидкости. Объемный расход CaCl_{2} выбран по средней удельной приемистости скважины $10,0 \mathrm{~m}^{3} /(с у т \cdot м)$ в расчете на единицу поверхности фильтрации вскрытого разреза в скважине и с учетом площади торцевой поверхности образцов $\left(5,72 \cdot 10^{-4} \mathrm{~m}^{2}\right)$.

В качестве осадкообразующей композиции использован лигносульфонатнонефтяной состав (ОЛИНС). Характеристика состава приведена в табл. 2.

Через каждые $1 \ldots 5$ мин (первые 10 мин с частотой $1,5 \ldots 2$ мин) определяли объем профильтрованной через образец композиции и его текущую проницаемость.

Характеристика образцов горных пород

				$\begin{aligned} & \text { ت} \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \stackrel{0}{0} \\ & 01 \\ & 01 \end{aligned}$		$\begin{aligned} & \sum_{1}^{5} \\ & 0 \text { 僉 } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \end{aligned}$	$\begin{aligned} & \text { o̊ } \\ & \text { E } \end{aligned}$	20
1	198931	Мамонтовское	$\begin{gathered} \hline 2473- \\ 2484 \end{gathered}$	БС10	1555	тер	27,0	29,3	0,0314	22,40	5,12
2	198938	Мамонтовское	$\begin{gathered} \hline 2473- \\ 2484 \end{gathered}$	БС10	1555	тер	27,0	31,0	0,0605	22,90	5,38
3	901003	Ю. Сургутское	$\begin{gathered} \hline 2156- \\ 2163 \\ \hline \end{gathered}$	БС2-3	4528	тер	27,0	26,9	0,0625	26,90	4,98
4	903001	3. Сургутское	$\begin{aligned} & 2150- \\ & 2165 \\ & \hline \end{aligned}$	БС2-3	1528	тер	27,0	31,0	0,1626	26,50	5,98
5	903008	3. Сургутское	$\begin{aligned} & 2150- \\ & 2165 \\ & \hline \end{aligned}$	БС2-3	1528	тер	27,0	33,0	0,2083	26,50	5,40
6	902006	В. Сургутское	$\begin{aligned} & 2353- \\ & 2360 \\ & \hline \end{aligned}$	БС10	933	тер	27,0	32,9	0,1530	27,80	6,01
7	902007	В. Сургутское	$\begin{aligned} & \hline 2353- \\ & 2360 \\ & \hline \end{aligned}$	БС10	933	тер	27,0	25,1	0,3740	29,30	5,90
8	903006	3. Сургутское	$\begin{aligned} & 2150- \\ & 2165 \end{aligned}$	БС2-3	1528	тер	27,0	32,6	0,4826	23,80	5,62
9	902015	В. Сургутское	$\begin{aligned} & 2353- \\ & 2360 \\ & \hline \end{aligned}$	БC10	933	тер	27,0	30,3	0,6019	24,90	5,97
10	902004	В. Сургутское	$\begin{aligned} & 2353- \\ & 2360 \end{aligned}$	5C10	933	тер	27,0	23,3	0,8304	28,90	5,35
11	902010	В. Сургутское	$\begin{gathered} \hline 2353- \\ 2360 \\ \hline \end{gathered}$	БС10	933	тер	27,0	30,0	1,1095	25,30	6,15

$D_{\text {обр }}$ - диаметр; $L_{\text {обр }}$ - длина; $K_{\text {нач }}$ - начальная проницаемость; m_{0} - коэффициент открытой пористости; $K_{\text {карб }}$ - карбонатность образцов.

Таблица 2
Состав и свойства осадкообразующей композиции

№ п/п	Содержание ингредиентов в ОЛИНС, масс. \%				$\begin{array}{\|c} \hline \text { Плотность, } \\ \text { кг } / \mathrm{m}^{3} \end{array}$	Кинематическая вязкость, $\mathrm{Mm}^{2} / \mathrm{c}$	Показатель кислотности pH
	HCl	$\mathrm{Al2}$ (SO4) 3	ЛСТ*	Нефть			
1	0,50	15,00	20,00	20,00	1175,0	59,5	1,8

* - технические лигносульфонаты

После фильтрации осадкообразующего состава образцы выдерживались в течение 18 часов, затем осуществлялась фильтрация раствора CaCl_{2} в обратном направлении до стабилизации расхода (проницаемости).

Результаты опытов приведены на рисунке и в табл. 3 .

Рисунок. Восстановление проницаемости образиов

Таблица 3

Данные опытов по фильтрации осадкообразующего состава

$\left\|\begin{array}{c} № \\ \Pi / \Pi \end{array}\right\|$	№ образца	Проницаемость, мкм2					Отношениепроницаемостей*			
								$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	告	
1	198931	0,0314	0,0015	0,0015	0,0006	0,0249	1,00	0,79	1,13	0,058
2	198938	0,0605	0,0021	0,0021	0,0021	0,0357	1,93	0,59	1,62	0,072
3	901003	0,0625	0,0039	0,0015	0,0012	0,0521	2,99	0,83	2,37	0,211
4	902006	0,1530	0,0256	0,0179	0,0143	0,0258	8,47	0,17	1,17	0,301
5	903001	0,162	0,0205	0,005	0,00	0,0438	5,6	0,27	1,99	0,316
6	903008	0,2083	0,0256	0,0120	0,0090	0,0220	6,63	0,11	1,00	0,758
7	902007	0,3740	0,0284	0,0076	0,0055	0,1050	11,62	0,28	4,77	0,827
8	903006	0,4826	0,0369	0,0414	0,0266	0,0365	15,37	0,08	1,20	0,956
9	902015	0,6019	0,0631	0,0330	0,0248	0,0380	21,15	0,06	1,73	0,985
10	902004	0,8304	0,0659	0,0373	0,0735	0,0675	26,45	0,03	3,07	1,035
11	902010	1,1095	0,1020	0,0354	0,0522	0,0328	35,33	0,03	1,49	1,051

* K_{0} - начальная проницаемость (до прокачки ОЛИНС); $K_{\min }$ - минимальное значение проницаемости; K_{10}, K_{20} и K_{30} - проницаемость образцов через 10,20 и 30 мин при фильтрации ОЛИНС; $K_{\text {ст }}$ - проницаемость при обратной прокачке водного раствора CaCl_{2}.

Максимальная величина отношений начальной (до опыта) проницаемости для образцов составляла от 1,93 до 35,3 , после опыта (обратная фильтрация раствора CaCl_{2}) - от 1,13 до 3,07 , т.е. произошло выравнивание проницаемости образцов за счет, главным образом, многократного уменьшения этого показателя для образцов с высокой начальной проницаемостью.

Коэффициент восстановления проницаемости для низкопроницаемых образцов (менее 0,063 мкм ${ }^{2}$) составил более 0,6 , для образцов с проницаемостью более 0,15 мкм ${ }^{2}$ - менее 0,3 .

С учетом объемов осадкообразующего состава, поступившего в образцы горных пород при фильтрации (табл. 3), можно говорить о том, что кольматация низкопроницаемых образцов носит, в основном, поверхностный характер, поэтому для них при обратной фильтрации происходит более полное восстановление проницаемости.

Полученные лабораторные данные указывают на возможность существенного ограничения поступления воды в промытые высокопроницаемые прослои продуктивных пластов нагнетательных скважин с применением осадкообразующих составов типа ОЛИНС.

