ВЛИЯНИЕ ПОРОВОГО ОСАДКООБРАЗОВАНИЯ НА ФИЛЬТРАЦИОННЫЕ СВОЙСТВА ГОРНЫХ ПОРОД

Ю. Ф. Антонов, В. А. Мордвинов

Пермский государственный технический университет

Внутрипластовое осадкообразование существенно изменяет структуру пустотного пространства горных пород на некоторый период времени. Воздействие на пропластки с различной проницаемостью в неоднородных по составу и по коллекторским свойствам пластах в процессе проведения геолого-технических мероприятий (ГТМ), основанных на внутрипластовом осадкообразовании, позволяет эффективно регулировать (выравнивать) фильтрационно-емкостные свойства (ФЕС) принимающих или отдающих интервалов горных пород.

Для оценки воздействия композиции на горные породы с различной проницаемостью с целью регулирования их ФЕС были проведены опыты по фильтрации осадкообразующего состава через образцы кернового материала Мамонтовского (пласт БС₁₀), Южно-Сургутского (пласт БС₁, БС₂₋₃), Восточно-Сургутского (пласт БС₁₀) и Западно-Сургутского (пласт БС₂₋₃) месторождений. Образцы диаметром 27,0 мм имели длину 25,1...33 мм, проницаемость 0,0314...1,1095 мкм², открытую пористость 0,224...0,325, карбонатность 4,98...6,15 % (табл. 1).

Фильтрацию проводили при постоянном перепаде давления (0,25 МПа). Значение перепада рассчитано из условия распределения давления в пласте на удалении от стенки скважины, соответствующем средней длине образцов (около 30 мм), при условии создания давления на устье скважины 20 МПа, при глубине забоя 2000 м и диаметре скважины по долоту 0,2159 м. Продолжительность прокачки композиции составляла 30 мин. Температура при проведении опытов поддерживалась на уровне 20...22 °С. Предварительно для образцов определяли начальные значения пористости и проницаемости по жидкости (5 %-ный раствор *CaCl*₂). Коэффициент открытой пористости определялся по методу Преображенского, карбонатность – на приборе Кларка (АК-4). Начальная проницаемость оценивалась при фильтрации раствора *CaCl*₂ на установке УИПК-1М в режиме $q = 5,86 \text{ см}^3$ /мин, при условии прокачки 30-ти поровых объемов (PV) жидкости. Объемный расход CaCl₂ выбран по средней удельной приемистости скважины 10,0 м³/(сут·м) в расчете на единицу поверхности фильтрации вскрытого разреза в скважине и с учетом площади торцевой поверхности образцов $(5,72 \cdot 10^{-4} \text{ м}^2)$.

В качестве осадкообразующей композиции использован лигносульфонатнонефтяной состав (ОЛИНС). Характеристика состава приведена в табл. 2.

Через каждые 1...5 мин (первые 10 мин с частотой 1,5...2 мин) определяли объем профильтрованной через образец композиции и его текущую проницаемость.

Таблица 1

Характери	стика об	разцов	горных	пород

№ п/п	№ образца	Месторожде- ние	Интервал отбора керна, м	Пласт	Nº ckb.	Тип кол-ра	$D_{o \hat{o} p}$, MM	$L_{oar{o}p},$ MM	$K_{\mu a \eta}, { m MKM}^2$	$m_{0}, \%$	$K_{\kappa a p \delta}, \%$
1	198931	Мамонтовское	2473- 2484	БС10	1555	тер	27,0	29,3	0,0314	22,40	5,12
2	198938	Мамонтовское	2473- 2484	БС10	1555	тер	27,0	31,0	0,0605	22,90	5,38
3	901003	Ю. Сургутское	2156- 2163	БС2-3	4528	тер	27,0	26,9	0,0625	26,90	4,98
4	903001	3. Сургутское	2150- 2165	БС2-3	1528	тер	27,0	31,0	0,1626	26,50	5,98
5	903008	3. Сургутское	2150- 2165	БС2-3	1528	тер	27,0	33,0	0,2083	26,50	5,40
6	902006	В. Сургутское	2353- 2360	БС10	933	тер	27,0	32,9	0,1530	27,80	6,01
7	902007	В. Сургутское	2353- 2360	БС10	933	тер	27,0	25,1	0,3740	29,30	5,90
8	903006	3. Сургутское	2150- 2165	БС2-3	1528	тер	27,0	32,6	0,4826	23,80	5,62
9	902015	В. Сургутское	2353- 2360	БС10	933	тер	27,0	30,3	0,6019	24,90	5,97
10	902004	В. Сургутское	2353- 2360	БС10	933	тер	27,0	23,3	0,8304	28,90	5,35
11	902010	В. Сургутское	2353- 2360	БС10	933	тер	27,0	30,0	1,1095	25,30	6,15

 $D_{\text{обр}}$ – диаметр; $L_{\text{обр}}$ – длина; $K_{\text{нач}}$ – начальная проницаемость; m_0 – коэффициент открытой пористости; $K_{\text{карб}}$ – карбонатность образцов.

Таблица 2

Состав и свойства осадкообразующей композиции

Кинематическая	Показатель	
вязкость,	кислотности	
мм ² /с	pН	
59,5	1,8	
	MM ² /c	

* - технические лигносульфонаты

После фильтрации осадкообразующего состава образцы выдерживались в течение 18 часов, затем осуществлялась фильтрация раствора *CaCl*₂ в обратном направлении до стабилизации расхода (проницаемости).

Результаты опытов приведены на рисунке и в табл. 3.

Рисунок. Восстановление проницаемости образцов

Таблица 3

		Проницаемость, мкм2					Отношение проницаемостей*			H, PV	
№ п/п		№ образца	Начальная (К ₀)	Через 10 мин (К ₁₀)	Через 20 мин (К ₂₀)	Через 30 мин (К ₃₀)	После про- качки CaCl ₂ (K _{cr})	$ m K_0 m / m K_{min}$	$K_{cr}\backslash K_0$	$K_{\rm cr}\backslash K_{\rm min}$	Объем прокачки ОЛИНС за 15 мин, РV
1	198931	0,0314	0,0015	0,0015	0,0006	0,0249	1,00	0,79	1,13	0,058	
2	198938	0,0605	0,0021	0,0021	0,0021	0,0357	1,93	0,59	1,62	0,072	
3	901003	0,0625	0,0039	0,0015	0,0012	0,0521	2,99	0,83	2,37	0,211	
4	902006	0,1530	0,0256	0,0179	0,0143	0,0258	8,47	0,17	1,17	0,301	
5	903001	0,1626	0,0205	0,0056	0,0051	0,0438	5,64	0,27	1,99	0,316	
6	903008	0,2083	0,0256	0,0120	0,0090	0,0220	6,63	0,11	1,00	0,758	
7	902007	0,3740	0,0284	0,0076	0,0055	0,1050	11,62	0,28	4,77	0,827	
8	903006	0,4826	0,0369	0,0414	0,0266	0,0365	15,37	0,08	1,20	0,956	
9	902015	0,6019	0,0631	0,0330	0,0248	0,0380	21,15	0,06	1,73	0,985	
10	902004	0,8304	0,0659	0,0373	0,0735	0,0675	26,45	0,03	3,07	1,035	
11	902010	1,1095	0,1020	0,0354	0,0522	0,0328	35,33	0,03	1,49	1,051	

Данные опытов по фильтрации осадкообразующего состава

* K_0 – начальная проницаемость (до прокачки ОЛИНС); K_{\min} – минимальное значение проницаемости; K_{10} , K_{20} и K_{30} – проницаемость образцов через 10, 20 и 30 мин при фильтрации ОЛИНС; K_{cr} – проницаемость при обратной прокачке водного раствора CaCl₂.

Максимальная величина отношений начальной (до опыта) проницаемости для образцов составляла от 1,93 до 35,3, после опыта (обратная фильтрация раствора $CaCl_2$) – от 1,13 до 3,07, т.е. произошло выравнивание проницаемости образцов за счет, главным образом, многократного уменьшения этого показателя для образцов с высокой начальной проницаемостью.

Коэффициент восстановления проницаемости для низкопроницаемых образцов (менее 0,063 мкм²) составил более 0,6, для образцов с проницаемостью более 0,15 мкм² – менее 0,3.

С учетом объемов осадкообразующего состава, поступившего в образцы горных пород при фильтрации (табл. 3), можно говорить о том, что кольматация низкопроницаемых образцов носит, в основном, поверхностный характер, поэтому для них при обратной фильтрации происходит более полное восстановление проницаемости.

Полученные лабораторные данные указывают на возможность существенного ограничения поступления воды в промытые высокопроницаемые прослои продуктивных пластов нагнетательных скважин с применением осадкообразующих составов типа ОЛИНС.