— ГЕОЛОГИЯ —

УДК 549.6(553.411)

## ПЕРВАЯ НАХОДКА ГРОТИТА В ЗОЛОТОРУДНЫХ МЕСТОРОЖДЕНИЯХ

© 2009 г. А. С. Вах, О. В. Авченко, А. А. Карабцов, В. А. Степанов

Представлено академиком А.И. Ханчуком 05.03.2009 г.

Поступило 24.03.2009 г.

Гротит – богатая алюминием и фтором разновидность титанита (сфена) с теоретической формулой (Ca,REE)(Ti,Al,Fe)SiO<sub>4</sub>(O,OH,F) [1] является довольно редким минералом, который ранее был неизвестен в рудах месторождений благородных металлов. Титаниты с высокими концентрациями алюминия (до 14 мас. %) и фтора (до 2.5 мас. %) характерны для эклогитов, доломитов и мраморов Австрии [2, 3]. Оловосодержащие минералы серии титанит-малайяит с теоретической формулой CaSnO[SiO<sub>4</sub>] широко известны в оловорудных скарновых месторождениях России и мира [4]. Своеобразный по составу фтор-глиноземистый титанит (с содержаниями Al<sub>2</sub>O<sub>3</sub> от 9 до 13.5 мас. % и F от 3 до 5 мас. %), который может быть отнесен к гротиту, был выявлен в метаморфизованных углеродисто-кремнистых осадках кремневой формации Сихотэ-Алиня (Приморье) [5].

Гротит в благороднометальных объектах впервые обнаружен при изучении минерального состава руд Березитового золотополиметаллического месторождения Верхнего Приамурья. Месторождение расположено на северо-восточном фланге Приамурской золоторудной провинции [6], в активизированных структурах юго-восточной части Северо-Азиатского кратона, в зоне сочленения его с образованиями северного обрамления Тукурингра-Джагдинского террейна Монголо-Охотского орогенного пояса [7]. Рудное тело месторождения представлено крупной субмеридиональной зоной минерализованных сульфидами метасоматических пород, локализованной в массиве раннепротерозойских порфировидных гранодиоритов. Зона состоит из двух крутопадающих воронкообразных тел, сопряженных вблизи поверхности, но выклиниваю-

Дальневосточный геологический институт

Дальневосточного отделения

Российской Академии наук, Владивосток

Научно-исследовательский геотехнологический центр Дальневосточного отделения

Российской Академии наук,

Петропавловск-Камчатский

щихся с глубиной (рис. 1). В плане зона имеет сложную линзовидную форму и крутое падение  $(70^\circ - 75^\circ)$  в юго-западном направлении. Длина ее на поверхности достигает 950 м. Мощность зоны меняется от 10–15 до 110 м.

Метасоматиты месторождения представлены породами кварц-мусковитового состава с вкрапленностью альмандин-спессартинового граната и турмалина. Реже в составе пород в переменных количествах встречаются ортоклаз, хлорит, биотит, анортит, цинковая шпинель (железистый ганит), сфен, циркон, эпидот, алланит (ортит), пренит, фторапатит, флюорит и графит.

Зона метасоматитов месторождения повсеместно содержит в себе в виде сложных прожилков и гнезд полиметаллическую минерализацию. Основные минералы руд – сфалерит, галенит, пирит, пирротин, магнетит. По своему составу руды месторождения преимущественно цинковые, с подчиненным количеством свинца.

На месторождении выделено два типа золотосодержащих руд, существенно различающихся по структурной позиции, минеральному составу и степени золотоносности [8]. Первый (основной) тип представлен существенно полиметаллическим оруденением с сопутствующей золотой минерализацией, локализованным в пределах метасоматической зоны в виде сложного рудного штокверка. Второй золотосодержащий тип руд развит на месторождении крайне незначительно и имеет секущий характер по отношению к золотополиметаллическому оруденению. Рудные тела приурочены к субширотным разрывным нарушениям и находятся как в пределах метасоматической зоны, так и во вмещающих гранодиоритах. Они представлены маломощными жилами и тонкими прожилками сульфидного, кварц-сульфидного и кварц-гранат-сульфидного состава.

Гротит выявлен в обоих типах золотосодержащих руд месторождения, как непосредственно в метасоматических породах зоны с золотополиметаллическим оруденением, так и за ее пределами, в слабо измененных протерозойских гранодиоритах с золотосульфидной минерализацией. В рудной зоне гротит выявлен в ортоклаз-хлорит-



**Рис. 1.** Продольный разрез рудоносной зоны Березитового месторождения. *1* – порфировидные гранодиориты и граниты (*a*), гнейсовидные гранодиориты (*б*); *2*–*4* – основные типы рудно-метасоматических пород: *2* – турмалин-гранат-ортоклаз-мусковит-кварцевые с преимущественно пиритовой минерализацией, *3* – турмалин-гранат-мусковит-кварцевые с пирит-сфалеритовой минерализацией, *4* – турмалин-гранат-кварц-мусковитовые с пирит-пирротин-сфалеритовой минерализацией; *5* – слабозолотоносная кварцевая жила и околожильные мусковит-кварцевые измененные породы; *6* – гранатсодержащие дайки метапорфиритов; *7* – дайки спессартитов и диоритовых порфиритов; *8* – основные тектонические нарушения; *9* – границы контура распространения основных типов рудно-метасоматических пород. На врезке звездочкой показано географическое положение Березитового золотополиметаллического месторождения.

кварц-гранатовых минеральных "обособлениях", которые довольно редко в виде единичных гнезд (размером не более первых сантиметров) встречаются в основной массе метасоматитов турмалингранат-мусковит-кварцевого состава с прожилково-вкрапленной галенит-сфалеритовой минерализацией. В отличие от вмещающих их метасоматитов, в составе рассматриваемых минеральных "обособлений" в значительных объемах появляются ортоклаз и хлорит, а количество граната резко увеличивается до 20–30%. За пределами рудоносной зоны гротит установлен в слабо измененных раннепротерозойских гранодиоритах, которые претерпели метасоматические преобразования на контакте с секущими их прожилковыми золотосульфидными рудами. Руды представлены тонкими прерывистыми сульфидными прожилками (мощностью не более 10 мм), приуроченными к субширотным трещинам скалывания или отрыва. Метасоматические преобразования в гранитоидах фиксируются в их калишпатизации (образование вторичного ортоклаза по плагиоклазу), развитии хлорита по агрегатам первичного биотита и лейкоксенизации первичного титанита.

В золотосодержащих рудах месторождения гротит находится в единой парагенетической ассоциации с хлоритом. В хлоритах метасоматических пород рудной зоны гротит присутствует в виде многочисленных рассеянных в нем пластин-



**Рис. 2.** Форма выделений гротита в кварц (Кв)-ортоклаз (Орт)-хлоритовой (Хл) минеральной ассоциации. Гротит развивается в межзерновом пространстве агрегатов хлорита, а также на контакте ортоклаза и хлорита. Изображение в обратно рассеянных электронах.

чатых агрегатов, которые развиваются в межзерновом пространстве, либо в форме сложных узких реакционных кайм, которые зачастую приурочены к контакту хлорита и ортоклаза (рис. 2). Размер выделений гротита от 20 до 50 мкм, реже до 100 мкм. Часто совместно с агрегатом гротита отмечается присутствие железистого пирофанита, который зачастую замещает его агрегаты (рис. 3).

Состав гротита в изученных образцах непостоянен. Содержание основных компонентов по результатам 22 анализов, выполненных в лаборатории рентгеновских методов Аналитического центра ДВГИ ДВО РАН с помощью рентгеноспектрального микроанализатора JXA-8100, изменяется в следующих пределах, мас. %: SiO<sub>2</sub> 30.56–34.07, Al<sub>2</sub>O<sub>3</sub> 7.91–12.71, TiO<sub>2</sub> 22.83–28.29, CaO 23.55–29.21, FeO 0.52–4.25, F 2.19–6.16. Полученные микрозондовые анализы в целом хорошо согласуются с теоретической формулой гротита (табл. 1). Распределение основных компонентов в пределах одного зерна гомогенное.

В метасоматически измененных гранитоидах хлорит по своему составу может быть отнесен к смешанослойным слюдам биотит—хлорит с неравномерным неупорядоченным переслаиванием биотитовых и хлоритовых пакетов (табл. 1). Близкие по составу слюды с соотношением слоев биотита и хлорита 1 : 1 описаны в литературе как продукт хлоритизации биотита [9]. Гротит находится в агрегатах смешанослойных слюд биотит—хлорит, образуя в нем редкие пластинчатые удлиненные выделения вдоль спайности этого минерала. Размер агрегатов не превышает 10—20 мкм. Форма и характер выделений гротита в слюдах во многом аналогичны их выделениям в хлоритах из



**Рис. 3.** Развитие пирофанита по агрегатам гротита. Изображение в обратно рассеянных электронах.

метасоматических образований рудоносной зоны. Состав гротита хотя и не постоянен, однако характеризуется относительно узким интервалом изменений содержаний основных компонентов, мас. %: SiO<sub>2</sub> 31.87–32.87, Al<sub>2</sub>O<sub>3</sub> 7.84–9.73, TiO<sub>2</sub> 23.29–27.54, CaO 26.42–28.42, FeO 0.93–1.87, F 2.70–3.59 (по данным 9 определений). Состав гротита из измененных гранитоидов, по отношению к гротитам из метасоматитов рудной зоны, характеризуется более низкими содержаниями фтора и алюминия (табл. 1).

Проведенные исследования показали, что одной из новых особенностей рудно-метасоматических пород Березитового месторождения является наличие в них своеобразного минерала титана - гротита, который ранее в составе руд месторождений золота никогда не фиксировался. Находка гротита в рудах Березитового месторождения является одним из минералогических подтверждений высказанной ранее авторами точки зрения о сложном полигенном генезисе месторождения [8]. Установлено, что на заключительной стадии его формирования первичные полиметаллические рудоносные образования претерпели высокотемпературные преобразования. Предполагается, что это явление обусловлено воздействием локального высокотемпературного гидротермального флюида, связанного, вероятнее всего, с процессами раннемелового магматизма, широко проявленного в районе.

Этот вывод подтверждается и находками фторглиноземистого титанита в метаморфизованных металлоносных осадках Приморья, где он находится в ассоциации с кварцем, барийсодержащим калиевым полевым шпатом, хлоритом, магнетитом, железистым пирофанитом, альмандин-спессартиновым гранатом. По набору минералов, слагающих эти образования, и по наличию в этих

| Mac    |   |
|--------|---|
| ния,   |   |
| эджс   |   |
| сторе  |   |
| о мес  |   |
| ского  |   |
| ээни   |   |
| цпати  |   |
| ЭМИП   |   |
| LOITO. |   |
| ЮГО    |   |
| OTO 3  |   |
| ИТОВ   |   |
| ebea   |   |
| tra B  |   |
| IdoID  |   |
| аих    |   |
| анит   |   |
| фodı   |   |
| а, пи  |   |
| отит   |   |
| aв гр  |   |
| COCT   |   |
| кий    |   |
| лчес   |   |
| Хим    |   |
| a 1.   |   |
| 0лиц   |   |
| La     | I |

| Формула минерала | $(Ca_{0.91}\ Fe_{0.07})_{0.98}(Al_{0.41}\ Ti_{0.58})_{0.99}Si_{1.03}O_4(O_{0.51}F_{0.49})_{1.13}$ | $(Ca_{0.97} \ Fe_{0.03})_{1.00} (Al_{0.32} Ti_{0.67})_{0.99} Si_{1.02} O_4 (O_{0.69} F_{0.27})_{0.96}$ | $(Ca_{0.99}\ Fe_{0.02})_{1.01}(Al_{0.30}Ti_{0.67})_{0.97}Si_{0.99}O_4(O_{0.68}F_{0.38})_{1.06}$ | $(Ca_{0.98}\ Fe_{0.02})_{1.00}(Al_{0.40}Ti_{0.59})_{0.99}Si_{1.01}O_4(O_{0.60}F_{0.32})_{0.92}$ | $(Ca_{0.98}\ Fe_{0.03})_{1.01}(Al_{0.33}Ti_{0.64})_{0.97}Si_{1.00}O_4(O_{0.65}F_{0.35})_{1.00}$ | $(Ca_{0.98}\ Fe_{0.03})_{1.01}(Al_{0.33}Ti_{0.65})_{0.98}Si_{1.01}O_4(O_{0.66}F_{0.32})_{0.98}$ | $(Ca_{0.97} \ Fe_{0.02})_{0.99}(Al_{0.47} Ti_{0.52})_{0.99} Si_{1.02} O_4(O_{0.61} F_{0.55})_{1.16}$ | $(Fe_{0,41}Mn_{0.62})_{1.03} (Ca_{0.01} Ti_{0.98})_{0.99}O_3$ | $(Fe_{0,48}Mn_{0.51})_{0.99} (Ca_{0.01} Ti_{1.00})_{1.01}O_3$ | $(Mn_{0.16}Fe_{2.06}\ Mg_{2.49})_{4.71}\ Al_{1.29}(OH)_8[Al_{1.10}Si_{2.90}O_{10.19}]$ | $(Mn_{0,19}Fe_{2.04}~Mg_{2.54})_{4.77}~Al_{1.23}(OH)_8[Al_{1.18}Si_{2.82}O_{10.06}]$ | $(Mn_{0.14}Fe_{2.10}~Mg_{2.50})_{4.74}~Al_{1.25}(OH)_8[Al_{1.17}Si_{2.83}O_{10.09}]$ | $(Ca_{0.95}Fe_{0.05})_{1.00}  (Al_{0.37}Ti_{0.55})_{0.92}Si_{1.07}O_4(O_{0.64}F_{0.37})_{1.01}$ | $(Ca_{0.98}Fe_{0.03})_{1.01}  (Al_{0.32}Ti_{0.66})_{0.98}Si_{1.01}O_4(O_{0.66}F_{0.34})_{1.00}$ | $(Ca_{0.94}Fe_{0.03})_{0.97}(Al_{0.30}Ti_{0.68})_{0.98}Si_{1.04}O_4(O_{0.74}F_{0.28})_{1.02}$ | $(Ca_{0.94}Fe_{0.04})_{0.98}(Al_{0.32}Ti_{0.66})_{0.98}Si_{1.04}O_4(O_{0.71}F_{0.31})_{1.02}$ | $(K_{0.15}Mn_{0.08}Ti_{0.07}Fe_{2.33}Mg_{1.95})_{4.59}Al_{1.41}(OH)_8[Al_{0.92}Si_{3.08}O_{10.49}]$ | $(K_{0.34}Mn_{0.09}Ti_{0.07}Fe_{1.95}Mg_{2.00})_{4.46}Al_{1.55}(OH)_8[Al_{0.81}Si_{3.19}O_{10.53}]$ | $(K_{0.38}Mn_{0.08}Ti_{0.15}Fe_{2.05}Mg_{1.96})_{4.62}Al_{1.37}(OH)_8[Al_{0.86}Si_{3.14}O_{10.44}]$ | лической минерализацией (1–7 — гротит; 8, 9 — пирофанит; 10–12 —<br>(13–16 — грогит; 17–19 — смешанослойная слюда биотит-хлорит). |
|------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Сумма            | 99.66                                                                                             | 99.42                                                                                                  | 100.45                                                                                          | 98.46                                                                                           | 97.91                                                                                           | 98.64                                                                                           | 101.07                                                                                               | 93.27                                                         | 98.02                                                         | 86.64                                                                                  | 87.24                                                                                | 85.93                                                                                | 97.02                                                                                           | 98.60                                                                                           | 97.19                                                                                         | 97.3                                                                                          | 86.54                                                                                               | 87.31                                                                                               | 89.86                                                                                               | юлимета.<br>изацией                                                                                                               |
| $-0=F_2$         | 2.03                                                                                              | 1.14                                                                                                   | 1.61                                                                                            | 1.36                                                                                            | 1.44                                                                                            | 1.35                                                                                            | 2.59                                                                                                 |                                                               |                                                               |                                                                                        |                                                                                      |                                                                                      | 1.51                                                                                            | 1.33                                                                                            | 1.14                                                                                          | 1.25                                                                                          |                                                                                                     |                                                                                                     |                                                                                                     | а золотоп<br>минерал                                                                                                              |
| Ц                | 4.83                                                                                              | 2.70                                                                                                   | 3.82                                                                                            | 3.22                                                                                            | 3.42                                                                                            | 3.20                                                                                            | 6.16                                                                                                 |                                                               |                                                               |                                                                                        |                                                                                      |                                                                                      | 3.59                                                                                            | 3.26                                                                                            | 2.70                                                                                          | 2.98                                                                                          |                                                                                                     |                                                                                                     |                                                                                                     | й зоны с<br>фидной                                                                                                                |
| $K_2O$           |                                                                                                   |                                                                                                        |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                      |                                                               |                                                               |                                                                                        |                                                                                      |                                                                                      |                                                                                                 |                                                                                                 |                                                                                               |                                                                                               | 1.07                                                                                                | 2.51                                                                                                | 2.85                                                                                                | азовани<br>отосуль                                                                                                                |
| FeO              | 2.40                                                                                              | 1.17                                                                                                   | 0.73                                                                                            | 0.80                                                                                            | 1.07                                                                                            | 1.11                                                                                            | 0.90                                                                                                 | 17.97                                                         | 22.29                                                         | 23.04                                                                                  | 23.04                                                                                | 23.31                                                                                | 1.70                                                                                            | 0.99                                                                                            | 1.24                                                                                          | 1.62                                                                                          | 25.50                                                                                               | 21.86                                                                                               | 23.48                                                                                               | ских обр<br>гов с зол                                                                                                             |
| MnO              |                                                                                                   |                                                                                                        |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                      | 26.75                                                         | 23.61                                                         | 1.77                                                                                   | 2.10                                                                                 | 1.56                                                                                 |                                                                                                 |                                                                                                 |                                                                                               |                                                                                               | 0.91                                                                                                | 0.97                                                                                                | 0.92                                                                                                | одиорил                                                                                                                           |
| CaO              | 26.72                                                                                             | 28.36                                                                                                  | 29.21                                                                                           | 28.74                                                                                           | 28.28                                                                                           | 28.37                                                                                           | 28.94                                                                                                | 0.49                                                          | 0.49                                                          |                                                                                        |                                                                                      |                                                                                      | 27.35                                                                                           | 28.42                                                                                           | 26.99                                                                                         | 26.98                                                                                         |                                                                                                     |                                                                                                     |                                                                                                     | о-метасс<br>Ных гран                                                                                                              |
| MgO              |                                                                                                   |                                                                                                        |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                      |                                                               |                                                               | 15.67                                                                                  | 16.08                                                                                | 15.61                                                                                |                                                                                                 |                                                                                                 |                                                                                               |                                                                                               | 11.96                                                                                               | 12.57                                                                                               | 12.54                                                                                               | из рудно<br>Зменень                                                                                                               |
| $TiO_2$          | 24.39                                                                                             | 27.98                                                                                                  | 28.29                                                                                           | 24.68                                                                                           | 26.40                                                                                           | 27.06                                                                                           | 23.26                                                                                                | 48.06                                                         | 51.63                                                         |                                                                                        |                                                                                      |                                                                                      | 23.29                                                                                           | 27.12                                                                                           | 27.54                                                                                         | 26.78                                                                                         | 0.89                                                                                                | 0.89                                                                                                | 1.92                                                                                                | інералы<br>алы из и                                                                                                               |
| $Al_2O_3$        | 10.83                                                                                             | 8.44                                                                                                   | 7.91                                                                                            | 10.71                                                                                           | 8.79                                                                                            | 8.72                                                                                            | 12.71                                                                                                |                                                               |                                                               | 18.99                                                                                  | 19.36                                                                                | 19.12                                                                                | 9.73                                                                                            | 8.57                                                                                            | 7.84                                                                                          | 8.32                                                                                          | 18.02                                                                                               | 18.70                                                                                               | 18.10                                                                                               | -12 – ми<br>– минер                                                                                                               |
| $SiO_2$          | 32.52                                                                                             | 31.91                                                                                                  | 32.10                                                                                           | 31.67                                                                                           | 31.39                                                                                           | 31.53                                                                                           | 33.69                                                                                                |                                                               |                                                               | 27.17                                                                                  | 26.66                                                                                | 26.33                                                                                | 32.87                                                                                           | 31.57                                                                                           | 32.02                                                                                         | 31.87                                                                                         | 28.19                                                                                               | 29.81                                                                                               | 30.05                                                                                               | іание. 1-<br>; 13—19 -                                                                                                            |
| № п.п.           | 1                                                                                                 | 7                                                                                                      | з                                                                                               | 4                                                                                               | 5                                                                                               | 9                                                                                               | ٢                                                                                                    | 8                                                             | 9                                                             | 10                                                                                     | 11                                                                                   | 12                                                                                   | 13                                                                                              | 14                                                                                              | 15                                                                                            | 16                                                                                            | 17                                                                                                  | 18                                                                                                  | 19                                                                                                  | Примеч<br>хлорит)                                                                                                                 |

%

ассоциациях гротита отмечаются определенные черты сходства этих пород с рудами Березитового месторождения. Формирование фтор-глиноземистого титанита в металлоносных осадках Приморья, по мнению Е.В. Перевозниковой и Н.В. Мирошниченко [5], обусловлено процессами контактового термального метаморфизма кремнисто-марганцовистых пород в связи с формированием гранитоидных интрузий.

Изучая условия образования глиноземистых титанитов в эклогитовых породах Австрии, Г. Франц и Ф. Спэр [2] пришли к заключению, что основным фактором, способствующим их появлению в минеральных парагенезисах, является величина давления фанерозойского метаморфизма, которая составляла порядка 18—22 кбар. Возрастание глиноземистости титанитов с увеличением давления было доказано ими экспериментально. Однако столь высокие значения давлений не характерны для рассматриваемых рудных систем. Нами предполагается, что появление гротита в рудных образованиях определяется, главным образом, химической активностью входящих в состав рудоносного флюида компонентов.

Возможно, повышенный потенциал фтора в термальном флюиде обусловил значительную подвижность в рудно-метасоматической системе такого инертного элемента, как титан, который в данном случае играет важную роль в формировании минерального состава рудоносных пород в виде летучего TiF<sub>4</sub> соединения. Это способствовало образованию в рудоносных породах не только простых оксидных форм титана (в виде ильменита, широко распространенного в рудах месторождения), но и более сложных многокомпонентных силикатных соединений.

Таким образом, проведенные исследования показали, что гротит служит важным типоморфным показателем проявления на Березитовом месторождении фторсодержащего флюида, способствующего на заключительном этапе перекристаллизации рудно-метасоматических пород и формированию золотой минерализации.

Авторы выражают благодарность руководству и геологическому персоналу ООО "Березитовый рудник" за оказанную помощь в проведении полевых работ на месторождении, а также сотрудникам лаборатории рентгеновских методов Аналитического центра ДВГИ ДВО РАН Г.Б. Молчановой и Н.И. Екимовой за консультации и помощь в аналитических работах.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 08–05–00106-а) и интеграционного гранта с СО РАН и УрО РАН № 09-II-СУ-08-003.

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Gaines R.V.* Dana's New Mineralogy: the System of Mineralogy of J.D. Dana and E.S. Dana. N.Y.: Wiley, 1997.
- 2. *Franz G., Spear F.* // Chem. Geol. 1985. V. 50. № 1/3. P. 33–46.
- 3. *Castelli D., Rubatto D.* // Contribs Mineral. and Petrol. 2002. V. 142. № 6. P. 627–639.
- 4. Александров С.М., Тронева М.А. // Геохимия. 2007. № 10. С. 1100—1113.
- 5. Перевозникова Е.В., Мирошниченко Н.В. // Тихоокеан. геология. 2009. Т. 28. № 3. С. 101–105.
- Степанов В.А., Мельников А.В., Вах А.С. и др. Приамурская золоторудная провинция. Благовещенск: АмГУ; НИГТЦ ДВО РАН, 2008. 323 с.
- Геодинамика, магматизм и металлогения Востока России / Под ред. А.И. Ханчука. Владивосток: Дальнаука, 2006. Кн. 1. 572 с.
- Bax A.C., Степанов В.А., Авченко О.В. // Руды и металлы. 2008. № 6. С. 44–55.
- Минералы. Справочник. Т. 4. В. 2. Слоистые силикаты. М.: Наука, 1992. 661 с.