УДК 549.752.141′143: 552.321(571.62)

Н.А.ЕГОРОВА, студентка, natulyal131208@rambler.ru **В.И.А.ЛЕКСЕЕВ**, канд. геол.-минерал. наук, доцент, wia59@mail.ru Национальный минерально-сырьевой университет «Горный», Санкт-Петербург

N.A.EGOROVA, student, natulyal131208@rambler.ru V.I.ALEKSEEV, PhD in geol. & min. sc., associate professor, wia59@mail.ru National Mineral Resources University (Mining University), Saint Petersburg

ОСОБЕННОСТИ СОСТАВА МОНАЦИТА И КСЕНОТИМА КАК ОСНОВА РАСЧЛЕНЕНИЯ ГРАНИТОИДОВ ВЕРХНЕУРМИЙСКОГО МАССИВА (ПРИАМУРЬЕ)

Установлены главные черты эволюции состава монацита-(Се) и ксенотима-(Y) в гранитоидах Верхнеурмийского массива в Приамурье. Предлагается использовать выявленные особенности акцессорных фосфатов для регионального расчленения гранитоидов и оценки потенциальной рудоносности интрузивных массивов.

Ключевые слова: монацит, ксенотим, гранитоиды, Приамурье.

COMPOSITION FEATURES OF MONAZITE AND XENOTIME AS A BASIS OF PARTITION OF VERKHNEURMIYSKY GRANITE MASSIF (AMUR RIVER REGION)

The main lines of monazite-(Ce) and xenotime-(Y) composition evolution were established in granitoids of the Verkhneurmiysky massif in Amur River region. It is suggested to use revealed features of accessory phosphates composition for a regional partition of granitoids and the assessment of intrusive massifs ore-potential.

Key words: monazite, xenotime, granitoids, Amur River region.

Введение. Промышленные редкометалльные проявления Баджало-Комсомольского оловорудного района приурочены к положительным морфоструктурам, насыщенным гранитоидными интрузиями. Источниками оруденения являются крупные магматические очаги, испытывающие эманационную и кристаллизационную дифференциацию И воздействие мантийных флюидов. Исследование акцессорных минералов и минеральных ассоциаций позволяет проводить корректное расчленение гранитоидов района, реставрировать условия формирования гранитоидных серий и оценивать потенциальную рудоносность конкретных массивов этих серий [1]. Крупнейший интрузивный массив района – Верхнеурмийский, представляет собой многофазный плутон биотитовых лейкогранитов, осложненный внедрением редкометалльных циннвальдитовых гранитов. Нами были исследованы акцессорные монацит-(Се) и ксенотим-(Ү), установленные в последовательно образованных крупнозернистых биотитовых гранитах, среднезернистых порфировидных биотитовых гранитах, мелкозернистых порфировых биотитовых гранитах (гранит-порфирах), лейкократовых циннвальдитовых гранитах, а также в монцогранитпорфирах автономного дайкового комплекса.

Особенности состава монацита и ксенотима. Для удобства изучения состава монацита и ксенотима гранитоидов принято деление лантаноидов (Ln) на группы: Се_д

(La – Eu) и Yg (Gd – Lu). Состав изоморфных смесей редкоземельных элементов в минералах определяется множеством причин: генетическим типом минерализации, стадийностью процессов, составом магматических пород, положением в гидротермальнометасоматических зонах, pH и Eh среды минералообразования. Редкоземельные элементы, благодаря их уникальным свойствам, можно отнести к важнейшим индикаторам поведения минералов в ходе геологических процессов [2]. Количественные минералогогеохимические данные позволяют полно и достоверно изучить эволюцию редких элементов в процессе дифференциации гранитной магмы и выявить геохимическую специализацию отдельных интрузивных фаз.

В работе использованы структурнохимические данные, полученные в ЦКП Горного университета на электронных микроскопах JSM-6460LV и JSM-7001F с системой энергодисперсионного микроанализа Oxford INCA Energy. Методом расчета по зарядам были определены эмпирические формулы монацитов и ксенотимов в гранитоидах (табл.1, 2).

Представительные формулы монацита:

• (Ce_{0,51}La_{0,17}Sm_{0,02}Nd_{0,18}Th_{0,06})PO_4 - в биотитовых гранитах;

• (Ce_{0,46}La_{0,16}Nd_{0,17}Th_{0,06}U_{0,01}Si_{0,16})PO_4 - в дайках;

• $(Ce_{0,45}La_{0,17}Sm_{0,03}Nd_{0,17}Gd_{0,02}Th_{0,03}Ca_{0,02}) \times$ \times PO₄ – в циннвальдитовых гранитах.

Монациты циннвальдитовых гранитов характеризуются накоплением наиболее тяжелых металлов Ln – Sm, Gd, но при этом обеднены Th и U. Для монацитов даек отмечено обратное соотношение этих примесей (см. рисунок, *a*).

Представительные формулы ксенотима:

• $(Y_{0,72}Sm_{0,01}Gd_{0,04}Dy_{0,06}Er_{0,03}Yb_{0,06}Th_{0,01} \times U_{0,01})PO_4$ – в биотитовых гранитах;

• $(Y_{0,73}Nd_{0,02}Gd_{0,04}Dy_{0,05}Er_{0,05}Yb_{0,06}Th_{0,03}) \times$ \times PO₄ – в гранит-порфирах;

• $(Y_{0,72}Ce_{0,07}Nd_{0,06}Gd_{0,01}Dy_{0,07}Yb_{0,06}Th_{0,24} \times Ca_{0,01}Si_{0,23})PO_4 - в дайках;$

• $(Y_{0,60}Nd_{0,01}Sm_{0,01}Gd_{0,03}Dy_{0,07}Ho_{0,01}Er_{0,06}\times \times Yb_{0,10}U_{0,01})PO_4$ – в циннвальдитовых гранитах.

Для ксенотимов гранитоидов отмечена тенденция обогащения тяжелыми Ln от ранних фаз к поздним и дальнейшее накопление тяжелых Ln в ксенотимах циннвальдитовых гранитов; последние наиболее бедны торием. Для ксенотимов даек характерно обогащение легкими Ln (Ce, Nd) и уменьшение содержания Y_g, а также накопление тория и обеднение ураном (см. рисунок, *б*).

Особенности формирования массива. При рассмотрении эволюции гранитоидов Верхнеурмийского массива необходимо учитывать возможность мантийного вклада в происхождение магмы. Это подтверждают выявленные в обрамлении плутона интрузивно-дайковые пояса. Акцессории дайки отличаются особыми трендами накопления Ce_g и Y_g , а также высокими концентрациями радиоактивных элементов (см. рисунок). Отмечена связь интрузивно-дайковых поясов и редкометалльного оруденения.

Установленные тенденции изменения химизма акцессорных монацита и ксенотима из различных гранитоидов могут объясняться процессами дифференциации магмы. В частности, антагонизм лантаноидов Се_g и Y_g, а также других элементов отражает обогащение поздних порций магмы кремнием, летучими элементами, торием, ураном, тяжелыми лантаноидами и иттрием.

Выводы

1. Установлено минимальное содержание примесных лантаноидов в структуре монацита и ксенотима даек по сравнению с монацитом и ксенотимом биотитовых и циннвальдитовых гранитов. Акцессории редкометалльных циннвальдитовых гранитов обогащены тяжелыми лантаноидами.

2. Торий и уран накапливались преимущественно в акцессорных фосфатах из циннвальдитовых гранитов и дайковых монцонитоидов.

3. Эволюция состава монацита и ксенотима гранитов Верхнеурмийского массива

Таблица 1

Состав представительных проб монацита, % (по массе)

Компонент	Биотитовый гранит				Биотитовый монцогранит					Циннвальдитовый гранит					
La ₂ O ₃	9,52	14,13	18,41	14,13	9,52	12,44	11,61	12,13	12,28	10,46	11,67	12,53	13,7	9,75	12,51
Ce_2O_3	42,56	50,98	32,09	32,6	29,13	32,96	33,96	36,63	33,18	31,84	34,49	33,69	36,36	25,14	33,65
Nd_2O_3	17,15	14,34	8,38	11,88	17,15	10,55	11,61	9,7	11,56	16,92	8,92	12,38	11,29	17,95	11,9
Sm_2O_3	2,18	0,91	-	-	2	-	-	-	-	-	1,61	2,31	1,62	5,17	2,17
ThO_2	8,02	0,63	9,17	8,72	8,01	10,6	6,44	4,86	6,1	6,18	2,46	4,95	2,42	0	4,25
UO_2	0,21	0,12	0	0	0,21	0	0	0	1,17	0	_	_	_	-	-
SiO ₂	-	-	-	-	-	3,86	0	5,7	3,44	0	-	-	-	-	-
Gd_2O_3	_	_	_	_	-	_	_	_	_	_	1,26	1,44	0	0	1,41
CaO	_	_	—	-	-	—	-	—	_	—	0	0	0,17	1,13	0,19

Примечание. Прочерк – элемент не установлен.

Таблица 2

Компонент	Гранит										
	Бис	отитовый гра	нит	Гранит-порфир							
Nd_2O_3	_	_	_	_	_	_	0,03	3,73			
Sm_2O_3	-	-	0,48	_	-	-	_	_			
Gd_2O_3	4,24	3,41	3,47	3,52	3,58	2,78	2,1	5,52			
Tb_2O_3	-	-	0,03	_	-	-	-	-			
Dy_2O_3	5,55	6,57	5,55	5,45	4,11	4,66	5,1	4,87			
Ho_2O_3	-	-	0,12	_	-	-	-	-			
Er_2O_3	4,21	_	2,16	4,2	4,34	4,55	4,21	4,52			
Yb ₂ O ₃	3,7	5,49	4,69	5,04	5,59	4,65	4,57	4,29			
Y_2O_3	42,7	40,27	42,58	41,95	42,41	43,79	44,22	36,14			
ThO ₂	1,38	0,57	1,33	1,06	_	3,95	5,75	_			
UO_2	0,74	0,81	0,99	0,37	-	-	0,57	_			
	Биоти	говый монцо	гранит	Циннвальдитовый гранит							
Ce_2O_3	_	10,00	0,48	_	_	_	_	-			
Nd_2O_3	_	5,08	_	-	0,20	0,19	0,64	0,73			
Sm_2O_3	_	-	_	-	1,22	0,38	0,27	_			
Gd_2O_3	-	-	1,27	2,74	1,88	3,88	3,64	4,42			
Dy_2O_3	6,79	3,86	8,03	6,33	6,06	7,04	7,08	_			
Ho_2O_3	-	-	-	0,78	0,56	-	-	_			
Er_2O_3	-	_	-	4,78	5,17	5,38	5,65	6,83			
Tm_2O_3	-	_	-	0,42	0,28	_	_	_			
Yb ₂ O ₃	3,84	3,53	-	5,47	8,28	7,69	8,73	8,26			
Y_2O_3	30,34	33,93	28,77	41,20	38,32	31,95	35,36	27,76			
ThO ₂	31,56	_	24,03	-	0,57	0,16	_	_			
UO_2	_	-	_	-	0,78	0,30	_	-			
CaO	_	-	0,28	-	_	_	_	_			
SiO_2	-	-	6,23	-	-	-	-	-			

Состав представительных проб ксенотима, % (по массе)

Примечание. Прочерк – элемент не установлен.

Кривые распределения REE, Th, U в монацитах (*a*) и ксенотимах (*б*) гранитоидов Верхнеурмийского массива, нормированные по хондриту [3]

а: 1 – крупнозернистые биотитовые граниты; 2 – монцогранит-порфиры дайкового комплекса; 3 – лейкократовые циннвальдитовые граниты; б: 1 – крупнозернистые биотитовые граниты; 2 – биотитовые гранит-порфиры; 3 – монцогранит-порфиры дайкового комплекса, 4 – лейкократовые циннвальдитовые граниты

отражает дифференциацию магматических расплавов, увеличение во времени редкометалльного потенциала гранитоидов и может быть использована для их расчленения и металлогенической оценки. Исследования выполнены при финансовой поддержке Министерства образования и науки РФ (государственный контракт № 14.740.11.0192) и РФФИ (проект 11-05-00868-а).

ЛИТЕРАТУРА

1. *Марин Ю.Б.* Акцессорные минералы гранитоидных серий оловянных и молибденовых провинций // Записки РМО. 2004. № 6. С.1-7.

2. Семенов Е.И. Оруденение и минерализация редких земель, тория и урана (лантанидов и актинитов). М., 2001. 307 с.

3. *McDonough W.F.* The composition of the Earth W.F.McDonough, S.-s.Sun // Chem. Geol. 1995. Vol.120. P.223-253.

REFERENCES

1. *Marin Y.B.* Accessory minerals of granitoid series of tin and molybdenic provinces // Proceedings RMO. 2004. N 6. P.1-7.

2. *Semenov E.I.* Orudeneniye and mineralization of rare earths, thorium and uranium (lanthanides and actinides). Moscow, 2001. 307 p.

3. *McDonough W.F.*, *Sun S.-s*. The composition of the Earth // Chem. Geol. 1995. Vol.120. P.223-253.