

УДК 551.73:551.24

СОСТАВ, ВОЗРАСТ И ТЕКТОНИЧЕСКОЕ ЗНАЧЕНИЕ ГРАНИТНЫХ ВАЛУНОВ В ДЕВОНСКИХ КОНГЛОМЕРАТАХ СЕВЕРО-ЗАПАДНОЙ ЧАСТИ ШПИЦБЕРГЕНА

А.Н.СИРОТКИН¹, А.Н.ЕВДОКИМОВ²

¹ Полярная морская геологоразведочная экспедиция (ΦГУП ПМГРЭ), г. Ломоносов, Россия ² Санкт-Петербургский горный университет, Санкт-Петербург, Россия

Выделение комплексов раннепротерозойского возраста в составе кристаллического фундамента – важнейшая задача изучения докембрийских образований всего Шпицбергена и его северо-западной части. Территория этого района сложена тремя глубоко метаморфизованными комплексами, которые подверглись процессам мигматизации и гранитизации в среднем рифее и прорваны гранитоидами среднерифейского и среднепалеозойского возрастов. В свою очередь, выходы фундамента перекрыты терригенными породами девонского грабена Шпицбергена, среди которых значительный объем занимают конгломераты. В ходе исследования петрографического, химического составов, а также изотопных характеристик цирконов из валунов базальных конгломератов серии Ред Бей (D₁), свиты Вульфбергет на мысе Конгломератодден установлено наличие здесь окрашенных в красный цвет (мясо-красных) гранитов с изотопным возрастом 1631±19 млн лет, что сопоставимо с позднекарельскими процессами, активно проявленными на архипелаге. Доказано также, что преобразования этих пород в интервале 380±42 млн лет также хорошо сопоставляются со среднепалеозойскими событиями, с которыми связана значительная перестройка фундамента. Определенный нами возраст является еще одним доказательством проявления на северо-западе Шпицбергена раннедокембрийских (позднекарельских) процессов.

Ключевые слова: циркон, абсолютный возраст, валуны гранитоидов, фундамент, северо-западный Шпицберген.

Как цитировать эту статью: Сироткин А.Н. Состав, возраст и тектоническое значение гранитных валунов в девонских конгломератах северо-западной части Шпицбергена / А.Н.Сироткин, А.Н.Евдокимов // Записки Горного института. 2016. Т. 222. С. 789-797. DOI 10.18454/PMI.2016.6.789

Введение. Определение времени образования метаморфических комплексов северозападного Шпицбергена (далее – СЗШ) – одна из главных проблем геологического изучения фундамента архипелага. Первоначальное предположение о каледонском возрасте регионального метаморфизма этих комплексов [2, 12] базировалось, в основном, на присутствии здесь красноцветного орогенного комплекса девонского грабена, массивов среднепалеозойских гранитов и на редких калий-аргоновых датировках. С.А.Абакумов, много лет посвятивший изучению этого района, выделил внутри метаморфического комплекса три серии: нижнепротерозойские Смеренбург-фиорд и Ричарддален и рифейскую Кросс-фиорд [1], основываясь на различиях в их составе и степени метаморфизма. Позже изотопными методами было доказано широкое проявление в этом районе процессов среднерифейского (гренвильского) ультраметаморфизма, проявившегося, в том числе, и в виде тел анатектических гранитоидов (рис.1) [8]. На сегодняшний день широкое применение цирконометрии позволило выделить в этом районе архипелага целый ряд этапов тектоно-магматической и тектоно-метаморфической активности (AR₂ - PR₁ - R₂ - V - PZ₂), но обнаружить при этом собственно раннепротерозойские породы не удалось [6]. Все зерна циркона, имеющие возраст 1900-1650 млн лет, идут в ассоциации с зернами (или каймами) других возрастов, что дает основания для отнесения их к детритовым или захваченным [10, 11].

Единственное исключение в этом ряду – определение возраста галек и валунов кварцевых порфиров в базальных конгломератах серии Сиктефьеллет (S_2 - D_1) из комплекса девонского грабена, залегающих на глубоко метаморфизованных породах серии Ричарддален. Фациальнолитологические характеристики серии Сиктефьеллет и пространственное расположение ее выходов позволяют утверждать, что снос материала для образования конгломератов и песчаников шел с запада и северо-запада, т.е. со стороны антиклинорного поднятия СЗШ, а минеральный состав этих пород указывает, по нашим данным, что их формирование проходило за счет разрушения глубоко метаморфизованных пород. Все это в совокупности указывает на то, что кварцевые порфиры являются местными по происхождению породами и относятся к этому району. Поэтому полученный по цирконам из этих пород возраст около 1740 млн лет [13] однозначно фиксирует карельский этап становления фундамента в этом районе. Это тем более важно, что в данном случае мы имеем дело не с гипотетическим протолитом, а с конкретным материалом.

А.Н.Сироткин, А.Н.Евдокимов

Состав, возраст и тектоническое значение гранитных валунов ...

Рис.1. Схема геологического строения северо-западного Шпицбергена

Северо-западная часть архипелага в тектоническом плане характеризуется как зона тектонического сочленения двух структур I порядка: антиклинорного выступа древнего кристаллического фундамента и девонского грабена Шпицбергена (рис.1). Северо-западный выступ кристаллического фундамента имеет ступенчатое сочленение со структурами грабена по системе субпараллельных разноамплитудных сбросов, которые формируют в борту грабена тектонические

Состав, возраст и тектоническое значение гранитных валунов ...

ступени с выходами под девонскими отложениями докембрийских глубоко метаморфизованных пород. Основная часть северо-западного выступа сложена глубоко метаморфизованными породами, среди которых можно предполагать блоки раннепротерозойского (серия Смеренбургфиорд) и раннерифейского (серия Кросс-фиорд) комплексов, интенсивно переработанных процессами среднерифейского (гренвильского) ультраметаморфизма. В южной части выступа закартированы крупные сопряженные синклинали и антиклинали субмеридионального простирания с шарнирами, полого погружающимися к югу, и углами падения пород на крыльях от 20 до 60°. В ядрах синклиналей выходят нижнерифейские породы, метаморфизованные в зеленосланцевой фации. Магматические образования представлены двумя комплексами. Тела среднерифейских анатектических гранитоидов приурочены к зонам мигматизации нижнепротерозойских и нижнерифейских пород. Среднепалеозойский субщелочной комплекс представлен крупным многофазным гранитным массивом Хорнемантоппен и серией более мелких тел, сложенных гранитами, граносиенитами, монцонитами, диоритами и лампрофирами [1, 5, 9].

Структуры девонского грабена протягиваются в субмеридиональном направлении через всю центральную часть острова Западный Шпицберген. С запада по системе глубинных разломов Монакобреен – Брейбогенони граничат с северо-западным выступом кристаллического фундамента; с востока они ограничены Биллефьордской зоной глубинных разломов. Разрез девонского комплекса представлен тремя сериями [3], разделенными поверхностями несогласий. Нижняя серия Сиктефьеллет (S₂-D₁), представлена конгломератами и песчаниками общей мощностью до 700 м. В ее базальных горизонтах, как упоминалось выше, присутствуют валуны глубоко метаморфизованных пород и валуны кварцевых порфиров, имеющие возраст около 1740 млн лет. Средняя – серия Ред Бей (D₁), представлена конгломератами, песчаниками и алевролитами (мощность более 2 км). Среди песчаников средней части серии описаны слои кислых вулканитов [4]. Две нижние серии известны только в западном борту грабена, в пределах западной тектонической ступени; в центральной части грабена они отсутствуют, но предполагается, что в пределах Биллефьордской зоны в основании девонского разреза присутствуют их аналоги. Верхняя серия Андре Ленд (D₁₋₃) имеет мощность около 3500-4000 м и представлена континентальными красноцветными и морскими сероцветными отложениями. С востока грабен граничит с антиклинорием западного Ню Фрисланда, который сложен нижнепротерозойскими породами серии Атомфьелла и представляет выступ карельского кристаллического основания [2, 6].

К востоку от Рауд-фиорда, в пределах тектонической ступени в западном борту девонского грабена, выступают глубоко метаморфизованные, предположительно нижнепротерозойские породы серии Ричарддален [1] и зонально метаморфизованные породы серии Кросс-фиорд (рис.1). Эти породы обнажены в тектонических блоках и перекрыты с угловым несогласием девонскими конгломератами. В блоках докембрийских пород отмечены тела среднерифейских гранитоидов и вендских метагабброидов и метагипербазитов [6, 7].

В полевом сезоне 2013 г. нами были изучены самые западные выходы девонских пород, выявленные на западном берегу Рауд-фиорда. Они представлены полимиктовыми конгломератами серии Ред Бей (D₁), объединенными в свиту Вульфбергет [3]. На мысе Конгломератодден, где

опробованы эти породы, описан блок конгломератов и гравелитов с прослоями песчаников, ограниченный с запада разломом Монакобреен, общей шириной до 300 м. Здесь фиксируются буровато-зеленовато-серые полимиктовые конгломераты, отчетливо слоистые, с крупными (до 2 м) прослоями бурых и зеленовато-серых песчаников и гравелитов. В конгломератах много валунов и гальки серых мраморов (1-1,5 м), но наряду с ними в большом количестве присутствуют обломки разнообразных метаморфических (сланцы, кварциты, гнейсы) и магматических пород. Среди магматитов преобладают серые биотитовые граниты; также встречаются валуны метабазитов и диоритов (рис.2). Все эти породы местного

Рис.2. Базальные конгломераты на мысе Конгломератодден, серия Ред Бей (D₁), свита Вульфбергет

происхождения. Наибольший интерес вызывают валуны (до 60 см) мясо-красных (проба 3813-3) и зеленовато-серых (проба 3813-4) гранитоидов, так как выходы подобных пород на современную дневную поверхность не известны в этом районе.

Аналитические исследования. Возраст циркона определен локальным уран-свинцовым (U-Pb) методом на ионном микрозонде SHRIMP II в центре изотопных исследований ВСЕГЕИ по стандартной методике [14]. Для выбора точек датирования в зернах использовались оптические (в проходящем и отраженном свете) и катодолюминесцентные (КЛ) изображения циркона. Тяжелые

Таблица 1

Элементы	Проба		Элементы	Проба		Элементы	Проба		Элементы	Проба	
и показатели	3813-3	3813-4	и показатели	3813-3	3813-4	и показатели	3813-3	3813-4	и показатели	3813-3	3813-4
SiO ₂	71,2	72,9	Сумма	99,99	100,07	Zr	357	214	Gd	6,83	7,05
TiO ₂	0,45	0,34	K _φ	0,71	0,63	Nb	15,8	9,72	Tb	0,93	1,0
Al_2O_3	13,8	13,9	al'	2,96	3,79	Ba	1190	850	Dy	5,53	4,82
Fe ₂ O ₃	0,49	0,40	V	27,5	18,6	Hf	9,32	6,07	Но	1,15	1,0
FeO	2,84	1,93	Cr	116	29,8	Th	13,9	22,2	Er	3,02	2,7
MnO	0,13	0,07	Co	4,4	4,08	Sc	3,03	3,0	Tm	0,53	0,43
MgO	1,33	1,34	Ni	16,7	6,49	La	53,7	60,2	Yb	3,68	2,77
CaO	0,8	0,34	Cu	12,9	9,82	Ce	108	131	Lu	0,55	0,43
Na ₂ O	2,48	2,52	Ga	15,3	12,7	Pr	13,9	16,2	ΣTR	250,34	291,4
K ₂ O	5,03	4,99	Rb	117	119	Nd	44	53,9	Eu/Eu*	0,59	0,66
P_2O_5	0,16	0,12	Sr	200	232	Sm	7,16	8,26			
П.п.п	1,28	1,22	Y	27,3	26,3	Eu	1,36	1,64			

Химический состав гранитоидов из валунов в девонских конгломератах серии Ред Бей

Примечание. Пробы из коллекции А.Н.Сироткина. Анализ выполнен в центральной аналитической лаборатории ВСЕГЕИ. Петрогенные оксиды приведены в процентах по массе, микроэлементы – в граммах на тонну. К_φ – коэффициент фракционирования; *al*' – коэффициент глиноземистости; ΣTR – сумма содержания редкоземельных элементов; Eu/Eu* – показатель европиевого минимума.

Рис.3. Диаграммы SiO₂ – Na₂O+K₂O (*a*) и распределения РЗЭ (*б*) в гранитоидах из валунов в девонских конгломератах З и 4 – пробы соответственно 3813-3 и 3813-4

792

Состав, возраст и тектоническое значение гранитных валунов ...

Рис.4. Зерна проанализированных цирконов с указанием точек определения составов

немагнитные фракции (100-200 г), в которых находился циркон, получены с помощью электромагнитной сепарации и тяжелых жидкостей. Силикатный анализ и ICP-MS-анализ гранитов также выполнялись в лабораториях ВСЕГЕИ.

Проба 3813-3. Гранит крупнозернистый, мясо-красного цвета. Структура гранитная, разнозернистая; минеральный состав – микроклин (55 %), олигоклаз (20 %), кварц (20 %), биотит (5 %), циркон, хлорит, рудный минерал. Кварц резко ксеноморфен, формирует агрегаты между крупными зернами микроклина; отдельные кварцевые зерна имеют вытянутую форму и зубчатые границы. Полевые шпаты и биотит в заметной степени изменены (пелитизация, соссюритизация, карбонатизация, хлоритизация).

Проба 3813-4. Гранитоид порфировидный, зеленовато-серого цвета. Структура порфировая, крупнозернистая; минеральный состав – микроклин (65 %), олигоклаз (10 %), кварц (15 %), биотит (10 %), циркон, флюорит, рудный минерал, хлорит. Микроклин формирует крупные вкрапленники; плагиоклаз встречается редко, всегда в виде небольших прямоугольников. Кварц присутствует в виде крупных, почти изометричных зерен. Вторичные изменения выражены хлоритизацией биотита.

Химический состав (табл.1) показывает близость пород: на диаграмме SiO₂ – Na₂O + K₂O фигуративные точки составов располагаются на линии разграничения гранитов нормальной и умеренной щелочности, но состав пробы 3813-4 фиксируется также на границе поля лейкогранитов (рис.3, *a*). Породы являются высококалиевыми, относятся к калиево-натриевой серии. Коэффициент фракционирования K_{ϕ} у этих пород заметно различается; то же касается и коэффициента глиноземистости *al'* – соответственно 2,96 и 3,79, что указывает на заметные различия в количестве темноцветных минералов в этих породах. Пересчет химического состава на состав нормативных минералов показал их высокую глиноземистость (в обеих пробах присутствует нормативный корунд), а на диаграмме (Or + Ab) – An – Q проба 3813-4 попадает в поле щелочнополевошпатового гранита, а проба 3813-3 – в поле нормального гранита.

По составу микроэлементов в гранитах намечаются заметные различия, в первую очередь, по содержаниям Сг и Ni (табл.1); также заметно различаются по концентрации V, Zr, Nb, Ba, Hf, Th. Распределение РЗЭ указывает на значительную степень дифференциации материнских магм, в пробе 3813-4 наблюдается более высокое содержание РЗЭ в целом и легких РЗЭ в особенности, тогда как в граните пробы 3813-3 больше тяжелых РЗЭ (рис.3). Все петро- и геохимические характеристики, вместе взятые, указывают как на разные источники исходных магм, так и на различия в механизмах их кристаллизации.

Подводя первый итог, можно говорить о заметных различиях в петрографических и петрохимических характеристиках этих пород, что позволяет рассматривать их как представителей разных, самостоятельных геологических объектов.

Результаты цирконометрии и интерпретация. Проба 3813-3. Из пробы валуна мясокрасного гранита выделена монофракция циркона, который представлен прозрачными и полупрозрачными субидиоморфными кристаллами призматического и короткопризматического облика. Они имеют размер 80-200 мкм при коэффициенте удлинения 2-3. Огранка кристаллов определяется сочетанием граней призмы и дипирамиды. В катодолюминесценции все зерна неоднородны: центральные и периферийные части зерен отличаются степенью просветления, центры всегда более светлые, характер зональности разный. В периферийных участках присутствует тонкая осцилляционная зональность, параллельная граням дипирамиды; к граням призмы она выклинивается. В центральных частях зерен осцилляционная зональность грубая и, как правило, дискордантна по отношению к зональности периферийных участков. Цирконы, представленные на рис.4, показали разброс индивидуальных значений возраста (²⁰⁶Pb/²³⁸U) от 435 до 1713 млн лет (табл.2). При этом надо отметить, что точки по периферийным участкам цирконовых зерен (замеры 7.1, 8.1, 9.1) дали большой разброс в интервале 435-896 млн лет, тогда как точки по ядрам кристаллов (замеры 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 10.1) составляют более компактную выборку возрастов в интервале 918-1713 млн лет (табл.2). Диаграмма с дискордией для этой пробы (рис.5) дает верхнее (1631±19 млн лет) и нижнее (380±42 млн лет) пересечения, указывая на раннепротерозойский возраст магматического события и возможный позднекаледонский возраст преобразования изотопной системы зерен циркона.

Таблица 2

Точка анализа	²⁰⁶ Pb _c , %	U, млн ⁻¹	Th, млн ⁻¹	²³² Th/ ²³⁸ U	²⁰⁶ Pb*, млн ⁻¹	Возраст ²⁰⁶ Pb/ ²³⁸ U, млн лет	Возраст ²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет	D, %	²⁰⁷ Pb/ ²³⁵ U	Точ- ность (±), %	²⁰⁶ Pb/ ²³⁸ U	Точ- ность (±), %	К, отн. ед.
Проба 3813-3, валун мясо-красного гранита													
1.1	0,00	341	281	0,85	44,9	918±12	903±23	-2	1,459	1,8	0,153	1,5	0,790
2.1	0,01	534	51	0,10	130	1604±21	1626±12	1	3,899	1,6	0,2825	1,5	0,922
3.1	0,04	197	76	0,40	34,1	1181±16	1131±26	$^{-4}$	2,146	2	0,2011	1,5	0,756
4.1	0,06	278	271	1,01	70,8	1637±22	1628±16	-3	4,096	1,7	0,2964	1,5	0,868
5.1	0,00	136	79	0,60	31,5	1544±21	1495±23	-3	3,483	2	0,2076	1,5	0,783
6.1	0,12	210	290	1,43	55,0	1713±22	1649±24	-4	4,255	2	0,3044	1,5	0,749
7.1	0,40	443	52	0,12	43,5	695,3±9,7	1279±35	84	1,31	2,3	0,1139	1,5	0,636
8.1	0,17	405	18	0,05	24,3	435,8±6,3	434±54	-1	0,535	2,8	0,0699	1,5	0,528
9.1	0,05	410	87	0,22	52,6	896±12	1376±20	54	1,804	1,8	0,1492	1,5	0,817
10.1	0,12	242	220	0,94	62,2	1683±22	1659±18	-1	4,192	1,8	0,22984	1,5	0,838
Проба 3813-4, валун зеленовато-серого гранитоида													
1.1	0,20	725	247	0,35	85,1	824±11	1184±23	44	1,494	1,9	0,1363	1,4	0,744
2.1	0,16	349	214	0,63	69,7	1344±18	1377±19	2	2,804	1,8	0,2318	1,5	0,825
3.1	0,13	461	253	0,57	65,6	986±13	937±31	-5	1,603	2,1	0,1654	1,5	0,690
4.1	0,15	1191	196	0,17	71,1	432,5±6	423±30	-2	0,529	2	0,06939	1,4	0,729
5.1	0,07	1367	210	0,16	82,4	436,7±6,1	428±28	-2	0,535	1,9	0,0701	1,4	0,749
6.1	0,03	990	56	0,06	58,5	428,9±6	417±27	-3	0,5229	1,9	0,0688	1,4	0,766
7.1	0,01	609	532	0,90	159	1714±22	1673±11	-2	4,312	1,6	0,3047	1,4	0,926
8.1	3,36	212	128	0,62	25,6	818±12	898±140	10	1,286	7	0,1352	1,6	0,230
9.1	0,13	285	155	0,56	62,6	1464±19	1442±27	-2	3,192	2,1	0,255	1,5	0,723
10.1	0,12	140	138	1,02	34,4	1615±22	1599±25	-1	3,875	2,1	0,2848	1,6	0,753

Результаты локального U-Pb-анализа цирконов из гранитных валунов нижнедевонских конгломерато
(западный берег Рауд-фиорда, архипелаг Шпицберген)

Примечание. Номер аналитической точки соответствует номеру зерна и кратера в пределах этого зерна. Ошибки для интервала 1σ. Pb_c и Pb^{*} – нерадиогенный и радиогенный свинец. Ошибка калибровки стандарта для первой и второй пробы – по 0,44 % (1σ). Изотопные отношения скорректированы по измеренному ²⁰⁴Pb. D – дискордантность. К – коэффициент корреляции ошибок.

Проба 3813-4. Монофракция циркона, полученная из валуна зеленовато-серого гранитоида, представлена прозрачными и полупрозрачными кристаллами призматического и длиннопризматического облика, размер которых 150-250 мкм при коэффициенте удлинения до 5; редко отмечаются субизометричные кристаллы со слабо выраженными гранями призмы (см. рис.4). В КЛ-изображении кристаллы ведут себя по-разному, в частности, центральные участки характеризуются как темными, так и светлыми тонами. Осцилляционная зональность хорошо проявлена в периферийных участках, где может быть как тонко-, так и грубополосчатой. В центральных частях зерен такая зональность, как правило, выражена очень слабо. Изученные цирконы демонстрируют значительный разброс индивидуальных значений ²⁰⁶Pb/²³⁸U-возраста от 428 до 1714 млн лет (табл.2). На диаграмму Аренса – Везерилла (рис.6, а) вынесены конкордантные точки цирконов этого возрастного диапазона. Хорошо видно, что три точки (замеры значение 4.1. 5.1. 6.1) совпадают, показывая практически сходное возрастов (~432 млн лет). Эти точки характеризуют внешнюю часть цирконовых кристаллов (см. рис.4). Три точки (замеры 2.1, 9.1, 10.1) описывают ядра кристаллов и дают значения возраста в интервале 1344-1615 млн лет. Еще три точки (замеры 1.1, 3.1, 7.1) имеют на конкордии большой разброс в интервале 818-1714 млн лет и характеризуются промежуточным положением в кристаллах циркона (при их анализе захватывался материал как ядер, так и внешних кайм). Три первые из рассмотренных точек на диаграмме с конкордией Тера – Вассербурга (рис.6, δ) образуют компактный конкордантный кластер, соответствующий возрасту

Состав, возраст и тектоническое значение гранитных валунов ...

Рис.6. Проба 3813-4: *а* – диаграмма Аренса – Везерилла для 10 замеров; *б* – диаграмма с конкордией Тера – Вассербурга для 3 замеров; вероятность конкордии 0,55

432,3±6,7 млн лет, что указывает на каледонские процессы, в ходе которых происходила перекристаллизация циркона. В свою очередь, ядра этих цирконов можно рассматривать как фрагменты реликтовых, захваченных зерен, возраст которых может указывать на возраст древнего протолита.

Обсуждение полученных результатов. Представленные петрографические и петрохимические материалы по гранитам из валунов девонских конгломератов серии Ред Бей позволяют рассматривать их как представителей разных и самостоятельных геологических объектов. Одновременно нужно отметить, что зеленовато-серые граниты пробы 3813-4 хорошо сопоставляются по своим характеристикам с гранитоидами среднепалеозойского комплекса, которые широко представлены на площади СЗШ. Структурно-минералогическая характеристика зеленовато-серых гранитов напрямую коррелируется с породами массива Хорнеман; петрохимические характеристики этих гранитов позволяют отнести их к субщелочным разностям, близким к лейкогранитам. Все это дает возможность сравнивать граниты пробы 3813-4 с гранитоидами среднепалеозойского комплекса [5]. Установленный нами возраст кристаллизации этих пород (432,3±6,7 млн лет) является веским аргументом в пользу этого предположения и позволяет отнести их к ранним фазам среднепалеозойского магматизма на СЗШ.

Граниты мясо-красного цвета (проба 3813-3) по своим характеристикам не могут быть сопоставлены с гранитоидами какого-либо конкретного комплекса или массива этого района архипелага. В то же время их петрографические характеристики указывают на серьезные постмагматические преобразования (например, метаморфизм), что предопределяет докаледонское происхождение этих пород. Возраст магматического события для этих гранитов, полученный нами, составляет 1631±19 млн лет, что сопоставимо с позднекарельскими процессами, активно проявленными на архипелаге. Возможные

преобразования этих пород в интервале 380±42 млн лет также хорошо сопоставляются со среднепалеозойскими событиями, с которыми связана значительная перестройка древнего основания архипелага.

Выводы

1. Мясо-красные граниты, присутствующие в виде валунов в конгломератах серии Ред Бей (D₁) и выявленные нами на западном берегу Рауд-фиорда, позволяют датировать возраст магматического события как 1631±19 млн лет.

2. Характер изученных конгломератов указывает на местное происхождение валунного материала. Следовательно, определенный нами возраст является еще одним доказательством проявления на северо-западе Шпицбергена раннедокембрийских (позднекарельских) процессов.

3. Невозможность сопоставить данные граниты с каким-либо известным здесь комплексом не должна быть препятствием для вывода 2, так как выходы неизвестных пород могут быть перекрыты ледниками, которые широко развиты в этом районе, либо находиться в пределах морской акватории.

4. Валуны зеленовато-серых гранитов хорошо сопоставляются по своим характеристикам с гранитоидами среднепалеозойского комплекса. Полученный нами возраст кристаллизации этих пород (432,3±6,7 млн лет) является веским аргументом в пользу этого предположения и позволяет отнести их к ранним фазам среднепалеозойского магматизма на северо-западе архипелага Шпицберген.

ЛИТЕРАТУРА

1. Абакумов С.А. Основные черты геологии и метаморфизма Северо-Запада Шпицбергена // Геология Свальбарда. Л.: НИИГА, 1976. С. 22-31.

2. Красильщиков А.А. Стратиграфия и палеотектоника докембрия – раннего палеозоя Шпицбергена. Л.: Недра, 1973. 120 с.

3. *Мурашов Л.Г.* Стратиграфическое расчленение девонских отложений острова Шпицберген / Л.Г.Мурашов, Ю.И.Мокин // Геология Свальбарда. Л.: НИИГА, 1976. С. 78-92.

4. *Мурашов Л.Г.* Новые данные о проявлениях вулканизма в нижнедевонских и верхнетриасовых образованиях о. Западный Шпицберген / Л.Г.Мурашов, Т.М.Пчелина, Д.В.Семевский // Геология Шпицбергена. Л.: ПГО «Севморгеология», 1983. С. 96-101.

5. Сироткин А.Н. Среднепалеозойский гранитоидный магматизм архипелага Шпицберген // Геология и полезные ископаемые Кольского региона. Труды Х Всероссийской Ферсмановской научной сессии. Апатиты: Изд-во К&M, 2013. С. 99-103.

6. Сироткин А.Н. Эндогенные режимы и эволюция метаморфизма складчатых комплексов фундамента архипелага Шпицберген (на примере полуострова Ню Фрисланд) / А.Н.Сироткин, А.Н.Евдокимов. СПб: ВНИИОкеангеология, 2011. 270 с.

7. Сироткин А.Н. U-Pb возраст циркона из метабазитов кристаллического фундамента архипелага Шпицберген и история его формирования / А.Н.Сироткин, С.Г.Скублов // Региональная геология и металлогения. 2015. № 63. С. 47-58.

8. *Тебеньков А.М.* Главные геохронологические рубежи и этапы формирования фундамента Шпицбергена / А.М.Тебеньков, А.А.Красильщиков, Ю.А.Балашов // Доклады Академии наук. 1996. Т. 346. № 6. С. 786-789.

9. Additional Rb-Sr and singl-grain zircon datings of Caledonian granitoid rocks from Albert I Land, northwest Spitsbergen / Ju.A.Balashov, J.J.Peucat, A.M.Tebenkov, Y.Ohta, A.N.Larionov, A.N.Sirotkin // Polar Research. 1996. 15(2). P. 153-165.

10. Coupling, decoupling and metasomatism: Evolution of crust-mantle relationships beneath NW Spitsbergen / W.L.Griffin, N.Nikolic, S.Y.O'Reilly, N.J.Pearson // LITHOS. 2012. Vol. 149. P. 115-135.

11. Gasser D. Caledonian terrane amalgamation in Svalbard: Detrital zircon provenance of Mesoproterozoic to Carboniferous strata from Oscar II Land, western Spitsbergen / D.Gasser, A.Andresen // Geophysical Research Abstracts. 2012. Vol. 14. P. 41-42.

12. Harland W.B. An outline structural history of Spitsbergen // Geol. Arctic. 1961. Vol. 1. P. 34-42.

13. Provenance and tectonic implications of Palaeoproterozoic (c. 1740 Ma) quartz porphyry clasts in the basal Old Red Sandstone (Lilljeborgfjellet Conglomerate Formation) of northwestern Svalbard's Caledonides / F.J.Hellmann, D.G.Gee, T.Gjelsvik, A.M.Tebenkov // Geol. Mag. 1998. Vol. 135 (6). P. 755-768.

14. Williams I.S. U-Th-Pb geochronology by ion microprobe // Rev. in Econom. Geol. 1998. N 7. P. 1-35.

Авторы: А.Н.Сироткин, д-р геол.-минерал. наук, главн. геолог, sirfamily@front.ru (Полярная морская геологоразведочная экспедиция (ФГУП ПМГРЭ), г. Ломоносов, Россия), А.Н.Евдокимов, д-р геол.-минерал. наук, профессор, evdokimov48@list.ru (Санкт-Петербургский горный университет, Санкт-Петербург, Россия).

Статья принята к публикации 27.09.2016.