УДК 553.064.32(571.63)

ГЕОХИМИЧЕСКИЕ И ИЗОТОПНЫЕ «МЕТКИ» ДРЕВНИХ ГАББРОИДОВ В ТРИАСОВЫХ МЕТАМОРФИЗОВАННЫХ МЕТАЛЛОНОСНЫХ ОСАДКАХ, СКАРНАХ И РУДАХ СКАРНОВЫХ МЕСТОРОЖДЕНИЙ СИХОТЭ-АЛИНЯ

В. Т. Казаченко, Е. В. Перевозникова, С. Н. Лаврик

Дальневосточный геологический институт ДВО РАН

Аннотация

По геологическим, геохимическим и изотопным данным, триасовые метаморфизованные металлоносные осадки (марганцево-силикатные породы, силикатно-магнетитовые руды и др.) и скарны Сихотэ-Алиня изначально являлись продуктами размыва (поздний анизий — конец триаса) латеритной коры выветривания островов и окраины Ханкайского массива. Свинец руд скарновых и жильных месторождений Сихотэ-Алиня по изотопным отношениям сопоставим со Pb слагавших острова габброидов сергеевского, владимиро-александровского и калиновского комплексов.

Ключевые слова:

габброиды, скарны, месторождения, метаморфизованные металлоносные осадки, геохимия, изотопные отношения, триас, Сихотэ-Алинь.

GEOCHEMICAL AND ISOTOPIC "MARKERS" OF THE OLD GABBROIDS IN THE TRIASSIC METAMORPHOSED METALLIFEROUS SEDIMENTS, SKARNS AND ORES OF THE SKARN DEPOSITS IN THE SIKHOTE-ALIN

Valentin T. Kazachenko, Elena V. Perevoznikova, Sergei N. Lavrik

Far East Geological Institute of the Far-Eastern Branch of the RAS

Abstract

In skarns, in the Triassic metamorphosed metal-bearing sediments, and in ores of skarn and lode deposits of the Sikhote-Alin there are fixed the geochemical and isotopic "marks" of gabbroids of Sergeevsky, Vladimir-Aleksandrovsky and Kalinovsky complexes. The gabbroids have a common mantle source (BSE), and resulted from the interaction of a plume with the sedimentary rocks of the oceanic crust at the basement of the island arc (Sergeevsky and Vladimir-Aleksandrovsky complexes) or oceanic plateaus (Kalinovsky complex). Since the Middle Devonian to the Late Triassic, these structures in the form of chains of islands were located near the margin of Khanka massif. The metamorphosed metal-bearing sediments and skarns of the Sikhote-Alin were primarily the products of the wash-out of the laterite crust of weathering (Late Anisian-Late Triassic) of the islands and margin of Khanka massif that were accumulated in lagoons and in the water areas adjacent to the islands. Lead of ores of skarn and lode deposits is comparable in isotope ratios with Pb of the gabbroids.

Keywords:

gabbroids, skarns, deposits, metamorphosed metalliferous sediments, geochemistry, isotope ratios, Triassic, the Sikhote-Alin.

Введение

В Дальнегорском и Ольгинском рудных районах Таухинского террейна (рис. 1) известны обогащенные Mn скарновые месторождения позднемелового-палеогенового возраста с полиметаллическими, железными и борными рудами, приуроченные к фрагментам карбонпермских и триасовых рифов. В Самаркинском и его аналоге — Наданьхада-Бикинском, террейнах присутствуют скарново-вольфрамовые месторождения и рудопроявления, размещение которых контролируется позднетриасовой (карний — норий) [1] пачкой переслаивающихся кремней и карбонатных пород [2]. Скарны полиметаллических месторождений Дальнегорского района содержат в среднем 4.67 мас. % МnО и сложены мангангеденбергитом, гранатом и другими минералами. На Дальнегорском боросиликатном месторождении распространены бороносные пироксеновые, гранатовые и бустамитовые [3] скарны со средним содержанием MnO 3.15 мас. %. Белогорское скарново-магнетитовое месторождение Ольгинского района состоит из залежей, сложенных гранатом, магнетитом, небольшим количеством пироксена, бустамита, родонита и других минералов или бустамитом, со средним содержанием MnO в скарнах 4.13 и 12.27 мас. % соответственно. Скарны Дальнегорского и Ольгинского районов обогащены Au (до 1.40 г/т), Pt (1.71) и Pd (5.34) и содержат минералы этих металлов [4].

Рис. 1. Положение изученных объектов в Сихотэ-Алине. Тектоническая основа по А.И. Ханчуку [6] с небольшими изменениями:

1 — Ханкайский массив (ХН), Буреинский массив (БР); 2 — юрские террейны (фрагменты аккреционных призм): Самаркинский (СМ), Наданьхада-Бикинский (НБ); 3 — калиновские габброиды (девон?); 4 — Окраинско-Сергеевский террейн (СР) и его фрагменты, включенные в структуры юрской аккреционной призмы и испытавшие вместе с ними цикл син- и постаккреционных преобразований; 5–8 — раннемеловые террейны-фрагменты: 5 — неокомовской аккреционной призмы (Таухинский (ТУ)); 6 — приконтинентального спредингового турбидитового бассейна (Журавлевско-Амурский(ЖР)); 7 — баррем-альбской островодужной системы (Кемский (КМ)); 8 — альбской аккреционной призмы (Киселевско-Маноминский(КС)); 9 — левые сдвиги, в том числе: Куканский (КК), Арсеньевский (АР), Мишань-Фушуньский (Алчанский) (МФА), Центральный Сихотэ-Алинский (ЦСА), Фурмановский (ФР); 10 — надвиги; 11 — изученные площади с выходами триасовых контактово-метаморфизованных металлоносных осадков и месторождения: 1 — Широкопаднинская площадь и Белогорское скарново-магнетитовое месторождение, 2 — Мокрушинская площадь, 3 — Высокогорская площадь, 4 — Садовая площадь и месторождения Дальнегорской группы (скарново-полиметаллические и боросиликатное), 5 — Горная площадь

Металлогенической особенностью Сихотэ-Алиня являются также многочисленные оловянные, оловянно-полиметаллические (с Ag) и серебро-свинцово-цинковые (с Sn и Au) жильные месторождения

позднемелового-палеогенового возраста, размещенные в перекрывающих Таухинский террейн вулканитах Восточно-Сихотэ-Алинского вулканоплутонического пояса и в флишевых отложениях Журавлевского террейна. Многие из них (Южное, Арсеньевское, Темногорское, Красногорское, Ново-Черемуховое и др.) обогащены Мп и содержат разнообразные минералы этого элемента — родонит, пироксмангит, спессартин, тефроит, кнебелит, бустамит, пирофанит, манганаксинит, алабандин, марганцовистые карбонаты, марганцовистые разновидности амфиболов тремолит-ферроактинолитового и куммингтонит-грюнеритового ряда и др. [5].

В фрагментах триасовой кремневой формации Сихотэ-Алиня, присутствующих в меланжевых комплексах аккреционных призм Таухинского и Самаркинского террейнов, распространены обогащенные Au, Pt, Pd и другими металлами контактово-метаморфизованные металлоносные осадки — марганцево-силикатные породы и кремни с дисперсным родохрозитом, тальк-, тальк-хлорит- и актинолит-магнетитовые руды и яшмы [7]. Они известны в Ольгинском, Кавалеровском, Дальнегорском (Таухинский) и Малиновском (Самаркинский террейн) рудных районах (см. рис. 1). Марганцево-силикатные породы сложены родонитом, пироксмангитом, спессартином, тефроитом, Ва-содержащим флогопитом, гиалофаном, цельзианом и другими минералами [5, 8]. Они содержат до 47 мас. % МпО, до нескольких десятков граммов на тоннуАu, 106 г/т Ag, 11.27 г/т Pt и 5.333 г/т Pd, а также разнообразные минералы этих металлов. Силикатно-магнетитовые руды имеют тальк-магнетитовый (с обильными кристаллами касситерита и шеелита), манганактинолит-магнетитовый и хлорит-магнетитовый состав. Они содержат 49.26–91.37 мас. % (FeO + Fe₂O₃), обогащены MnO (до 0.82 мас. %), SnO₂ (до 0.65), Au (до 2.534 г/т), Pt (4.47) и Pd (0.18) [7].

В изучение месторождений Дальнегорского и Ольгинского рудных районов, традиционно относимых к скарновой формации, заметный вклад внесли многие геологи. К настоящему времени усилиями геологов производственных и научных организаций (В. А. Баскиной, Н. С. Благодаревой, И. С. Бурдюговым, Г. П. Василенко, Г. П. Воларович, И. Н. Говоровым, Т. Я. Гуляевой, М. П. Добровольской, Б. В. Кузнецовым, Г. М. Лобановой, Е. А. Радкевич, В. В. Раткиным, Л. И. Рогулиной, Ф. И. Ростовским, А. Н. Свешниковой, Л. Ф. Симаненко, С. С. Смирнова, И. Н. Томсона, Л. Н. Хетчикова и многих других) накоплен бесценный материал по геологическим условиям их залегания, минералогии, физико-химическим условиям образования, а также по геологии и магматизму Дальнегорского и Ольгинского рудных районов. Вместе с тем, генезис этих месторождений до последнего времени рассматривался, главным образом, в рамках классической теории скарнообразования.

Остались без внимания присутствие в Самаркинском и Таухинском террейнахаллахтонов габброидов калиновского, владимиро-александровского и сергеевского комплексов, а на площадях месторождений — геохимически родственных марганцовистым скарнам (в статье используется традиционное название этих пород, несмотря на то, что изложенный ниже материал противоречит генетическому содержанию термина) более древних метаморфизованных богатых Mn и Fe осадков триасовой кремневой формации. К ним относятся яшмы и стратифицированные силикатномагнетитовые руды, а также кремнисто-родохрозитовые и марганцево-силикатные породы, распространение которых, как правило, контролируется офиолитами [9]. В этой связи не было проведено геохимическое сопоставление метаморфизованных металлоносных осадков, скарнов и магматических пород основного и ультраосновного состава. Кроме того, не учитывались существовавшие в триасе климатические условия и, как следствие, возможность образования залежей с характерными для скарнов ассоциациями, горизонтов яшм, силикатно-магнетитовых руд, кремнисто-родохрозитовых и марганцево-силикатных пород в результате метаморфизма и частичной регенерации богатых Мn и Fe осадков, накапливавшихся в результате размыва латеритной коры выветривания габброидов. Без внимания осталась последовательность геологических событий в триасе, обусловившая смену характера осадконакопления к позднему анизию (резкое уменьшение в кремнистых осадках количества углеродистого и глинистого материала), появление яшм и глубоководных богатых Mn и Fe осадков (в нынешнем виде, кремней с дисперсным родохрозитом, марганцево-силикатных пород и силикатно-магнетитовых руд) и последующее (карний норий) образование рифовых массивов Дальнегорского района (рис. 2).

			моде	ельный в	озраст св	инца	r e	ологические	событи	я
			р скар	уды Новых ожлений	метамор- физован- ные ме-	руды жиль- ных мес-	морск	ие условия	континен усло	гальные зия
5	9	H.	meerop	олдонии	носные	торожде- ний	1		терр	ейны
исери	ЭПО)	возрас млн. л	[‱] Pb/ [∞] Pb	[≫] Pb/ [≫] Pb	[∞] Pb/ [∞] Pb	[∞] Pb/ [∞] Pb	острова	акватории	Самаркин- ский	Таухинский
1	2	3	4	5	6	7	8	9	10	11
	Ε,	23,5						Гранитоидный магматизм,		
E	E ₂	- 33,/-			нет			ных фаций акваторий и		
E	E	- 53 -			данных			лагун с ооразованием яшм, марганцевосили-		-
		- 65 -						катных пород, силикатно- магнетитовых руд,		
	ĸ							скарновых и жильных месторождений		
ĸ	- N,	- 96 -					Погружение островов			
	К,						коры выветривания,		\mathbf{X}	
	1	- 135 —					лоносных осадков		CMONS VODORT	
	U 3	- 154 —					формирование	Смена характера осадконакопления.	накопления и	аза умень-
	J₂	475					Дальнегрского	отложение глинистых осадков юры	Накоппение	бедных гли-
J		- 1/5 -				×	/		веществом и	фемнистых
		- 203 —				v			металлонос	ных осадков
	Та	000					×	-	коры ныне	тринания
т	T,	- 230 -	<u>_0</u>			Trugo		•		
'	-	- 240 —	▼ ∆			\diamond	Накоплание свиниа		Отложени	е богатых
	14	- 250		-			и других металлов в зонах сероводород-	Осадки отсутствуют	веще коемнисты	ТВОМ х осадков.
	P ₂	272	**	${\leftrightarrow}$			ного заражения лагун	Накопление свинца и других металлов в зонах		
Р	P,	212-	VÂ.	7				сероводородного зара- жения акваторий.		
	C,	295 -	20	Wo		□ +• 0		Отложение богатых органикой и глинистым		
C	C.	- 320	**	-		0		веществом кремнистых осадков		
	•	- 355 -	0,-	0						
	D ₂	376	Δ	Ŕ						
D	D,	510	0	000						
	D.	- 400 —		-			У	словные обозн	начения	
		- 410 —		- 1			o 1	x 8 □ 14 ∧ 20	♦ 2.6 🔲	32
	S,	- 425		শ্য			▼ 2	 9	û 27 û	33
S	S,	100		Ò				o 10 + 16 ■ 22	O 28 🗖	34
	\$,	- 430 -		0			□ 5	▼ 11 ☆ 17 - 23	▼ 29 0	35
	0,	- 433 -	0	ΔO			☆ 6	△ 12 x 18 ★ 24	▲ 30 ₩	36
0		- 455 —					a 7	 ● 13 ● 19 ◆ 25 	Ø 31 ¥	37
Ĩ	02	- 465 —		0						_
	0,	-								
£	÷,	- 500		0						

В. Г. Казаченко, Е. В. Перевозникова, С. Н. Лаврик

Рис. 2. Модельный возраст свинца галенита из руд скарново-полиметаллических и жильных оловянных, оловянно-полиметаллических (с серебром) и серебро-свинцово-цинковых (с Sn и Au) месторождений Таухинского и Журавлевского террейнов:

1–9 — скарново-полиметаллические месторождения: Николаевское (1), Верхнее (2), Первое Советское (3), Партизанская группа (4), Восточный партизан (5), Второе Советское (6), Садовое (7), залежь Мартовская (8), Бородинское (9); 10–37 — жильные месторождения: Тигриное (10), Таборное (11), Голубое (12), Арминское (13), Дальнетаежное (14), Зимнее (15), Великое (16), Звездное (17), Ветвистое (18), Верхне-Молодежное (19), Ивановское (20), Ноябрьское (21), Смирновское (22), Встречное (23), Дальнее (24), Южное (25), Левицкое (26), Арсеньевское (27), Хрустальное (28), Высокогорское (29), Верхне-Цинковое (30), Силинское (31), Перевальное (32), Лево-Павловское (33), Нижнее (34), Рудное (35), Щербаковское (36), Фасольное (37). Исходные данные заимствованы из сводки Ф. И. Ростовского [10]

Перечисленные выше обстоятельства не позволили найти удовлетворительное объяснение модельному возрасту свинца из руд скарновых и жильных месторождений Таухинского и Журавлевского террейнов, который, согласно Ф. И. Ростовскому [10], оказался гораздо более

древним, чем возраст содержащих его рудных тел (см. рис. 2), а также некоторых других важных в генетическом отношении фактов. К ним относятся, в частности, отсутствие типичной для скарновых залежей метасоматической зональности и текстуры скарнов, которые в большей мере отвечают метаморфизованным и частично регенерированным экзогенным образованиям.

С учетом особенностей геологического строения Сихотэ-Алиня можно предположить, что, по меньшей мере, с девона до конца триаса вблизи окраины Ханкайского массива существовали две цепочки островов, сложенных габброидами калиновского, владимиро-александровского и сергеевского комплексов. Фрагменты островов прослеживаются на современной геологической карте вдоль западной и восточной границ Самаркинского террейна (см. рис. 1), а также присутствуют в Таухинском террейне [11]. Габброиды и прилегавшие к островам акватории служили источниками глинистого и органического вещества, которыми обогащена нижняя часть триасовой кремневой формации Сихотэ-Алиня. С позднего анизия до конца триаса происходило погружение островов, сопровождавшееся интенсивным размывом коры выветривания габброидов, латеритный характер которой согласуется с существовавшим в то время аридным Этот период фиксируется по упомянутой выше смене климатом [12]. характера осадконакопления, по появлению в триасовом разрезе Сихотэ-Алиня горизонтов богатых Mn и Fe осадков (в нынешнем виде, яшм, силикатно-магнетитовых руд и марганцево-силикатных пород) и по образованию рифовых построек Дальнегорского рудного района. Такие же богатые Mn и Fe осадки (в нынешнем виде, скарны) накапливались, очевидно, и в лагунах островов.

Можно предположить, что накопление В и Рb происходило в мелководных (периодически пересыхавших) и в относительно глубоководных (с зонами сероводородного заражения) лагунах островов, соответственно. Предположение об осадочной природе бора Дальнегорского боросиликатного месторождения подтверждается его изотопным составом [13]. Заимствованные из сводки Ф. И. Ростовского [10] значения модельного возраста Pb галенита скарновых месторождений Сихотэ-Алиня, определенные по 206 Pb/ 204 Pb, свидетельствуют о его концентрировании в период от нижней границы карбона примерно до середины среднего триаса (см. рис. 2). Нижний предел не противоречит геологическим данным о возрасте габброидов (см. ниже), а верхний близок ко времени начала погружения островов (поздний анизий) [14]. Модельный возраст, определенный по 208 Pb/ 204 Pb, отличается большим разбросом значений и, очевидно, в меньшей степени соответствует реальному времени накопления этого металла.

Изложенные выше представления, согласующиеся с геологическими данными, в некоторой своей части требуют дополнительного обоснования. Это касается, прежде всего, получения прямых доказательств присутствия вещества габброидов и, возможно, продуктов экзогенного разрушения пород окраины Ханкайского массива в скарнах, силикатно-магнетитовых рудах и марганцево-силикатных породах, а также выяснения источников свинца в скарновых месторождениях Сихотэ-Алиня. В данной статье предпринята попытка решения этих вопросов с использованием геохимических и изотопных характеристик габброидов калиновского, владимиро-александровского и сергеевского комплексов, триасовых метаморфизованных металлоносных осадков Сихотэ-Алиня, а также скарнов Ольгинского и Дальнегорского рудных районов.

Методика исследований

Определение содержаний элементов-примесей в скарнах (табл. 1–3) выполнено в лаборатории аналитической химии ДВГИ ДВО РАН методом масс-спектрометрии с индуктивносвязанной плазмой на спектрометре Agielent 7500 с (Agielent Technologies, США). Особенностью пробоподготовки являлось сплавление навески с метаборатом лития. Определение содержаний элементов-примесей в триасовых металлоносных осадках Сихотэ-Алиня (табл. 4–6) производилось в ХИАЦ ИТИГ методом масс-спектрометрии с индуктивносвязанной плазмой на приборе ICP-MS Elan DRC II Perkin Elmer (США).

Таблица 1

					Проба				
Элемент	Бс-09-1	Бс-09-2	Бс-09-3	Бс-09-4	Бс-09-6	Бс-09-7	Бс-09-8	Бс-09-9	Бс-09-10
	1	2	3	4	5	6	7	8	9
V	9.644	22.219	15.899	12.794	13.264	10.649	8.364	37.034	10.389
Y	2.579	2.485	1.509	2.410	3.783	2.418	1.628	29.558	0.6050
Zr	1.518	6.589	2.367	2.234	8.894	3.880	1.249	0.9105	1.971
Nb	0.2300	0.4329	0.1822	0.1169	0.7913	0.2912	0.1292	0.1182	0.09268
La	0.2825	0.7505	1.622	0.3770	1.087	1.731	1.109	12.211	0.4850
Ce	1.573	2.889	5.299	1.674	2.407	10.449	1.659	26.349	0.7545
Pr	0.2323	0.4075	0.7079	0.2165	0.3837	1.702	0.2548	3.128	0.07043
Nd	0.8742	1.750	2.482	0.7827	1.651	6.325	1.015	11.420	0.1720
Sm	0.1782	0.3187	0.3992	0.2056	0.4699	0.7490	0.3421	3.130	0.03528
Eu	0.3212	0.3504	0.6850	0.3026	0.1937	1.267	0.1502	1.051	0.1140
Gd	0.2914	0.3675	0.2294	0.2118	0.7370	0.7470	0.3372	4.095	0.06896
Tb	0.02856	0.05206	0.03375	0.03191	0.07906	0.04634	0.03640	0.6215	0.00477
Dy	0.2906	0.3190	0.1564	0.2264	0.4411	0.2206	0.2090	4.663	0.03894
Но	0.06282	0.04767	0.02775	0.04977	0.1236	0.06232	0.04757	0.8999	0.01349
Er	0.2534	0.1671	0.1081	0.2019	0.3245	0.1681	0.1262	2.410	0.01257
Tm	0.03343	0.03145	0.03022	0.02126	0.04235	0.02829	0.02281	0.3047	0.00635
Yb	0.1307	0.08790	0.07755	0.1737	0.3142	0.1721	0.1679	2.104	0.01302
Lu	0.02152	0.02775	0.02051	0.02233	0.04182	0.02876	0.02393	0.2127	0.00701
Та	0.01403	0.2602	0.01546	0.01543	0.05158	0.02089	0.01526	0.01285	< 0.01
Th	0.09837	0.4391	0.1287	0.1336	0.5363	0.3618	0.09797	1.054	0.07992
¹⁴⁷ Sm/ ¹⁴⁴ Nd	_	_	_	_	_	0.073576	_	0.153722	—
¹⁴³ Nd/ ¹⁴⁴ Nd	_	_	_	—	_	0.512314	_	0.512269	—
Err	-	-	—	_	-	6	-	7	_
JUNNAUT	Бс-09-11	Бс-09-12	Бс-09-13	Бс-09-14	Бс-09-15	Бс-09-17	Бс-09-18	Бс-09-19	Бс-09-20
Элемент	10	11	12	13	14	15	16	17	18
V	12.379	12.309	27.104	29.414	25.739	32.999	18.034	12.869	17.414
Y	3.513	2.649	11.438	15.388	9.993	12.258	3.506	3.145	1.747
Zr	2.175	0.6660	5.344	11.584	2.933	8.129	1.925	2.010	1.475
Nb	0.1925	0.07548	0.4417	0.8638	0.1699	0.5998	0.1152	0.1103	0.07353
La	0.5710	0.4700	0.2800	1.105	0.4755	1.166	1.025	0.4385	1.821
Ce	1.376	0.8585	0.8720	2.624	1.269	2.476	4.476	2.093	6.559
Pr	0.2104	0.1359	0.1079	0.4025	0.2776	0.3551	0.7039	0.3503	0.8984
Nd	0.9792	0.5692	0.6917	2.044	1.369	1.763	3.025	1.360	3.649
Sm	0.2025	0.1304	0.3568	0.6675	0.4237	0.6505	0.5920	0.3464	0.4480
Eu	0.1062	0.08065	0.1207	0.1784	0.2142	0.09365	0.5085	0.3873	0.7970
Gd	0.2994	0.2524	0.3819	1.051	0.6295	0.7035	0.4915	0.3254	0.2889
Tb	0.03164	0.02669	0.09016	0.1468	0.09121	0.1307	0.07206	0.04609	0.03975
Dy	0.3028	0.2346	0.7363	1.208	0.7838	0.8673	0.3253	0.3270	0.1856
Но	0.04208	0.02707	0.2125	0.2683	0.1788	0.2551	0.08362	0.07917	0.05207
Er	0.1202	0.1514	0.7155	0.9900	0.5350	0.8670	0.2843	0.2333	0.1585
Tm	0.01919	0.01487	0.1044	0.1373	0.07440	0.1410	0.04906	0.04309	0.01900
Yb	0.1677	0.1223	0.6777	1.095	0.5392	1.006	0.2745	0.2070	0.09815
Lu	0.02095	0.01726	0.1005	0.1520	0.1013	0.1747	0.03346	0.03184	0.01557
Та	0.01355	0.01080	0.02846	0.05783	0.01221	0.08128	0.02319	0.02289	0.01697
Th	0.1559	0.04347	0.3955	1.437	0.1692	1.066	0.2115	0.1572	0.1245
¹⁴⁷ Sm/ ¹⁴⁴ Nd	_	_	—	0.059669	_	0.099327	_	_	0.079763
¹⁴³ Nd/ ¹⁴⁴ Nd	_	-	—	0.511918	_	0.512186	_	-	0.512346
Frr	_	_	_	20	_	13	_	_	6

Содержание некоторых второстепенных элементов в скарнах Дальнегорского боросиликатного месторождения, г/т

Примечание. Аналитики: Н. В. Зарубина, М. Г. Блохин, Е. В. Еловский

5-79-48 10	10		4.418	8.198	14.666	0.9572	1.150	2.507	0.2489	0.9643	0.2996	0.0771	0.3789	0.0751	0.6212	0.1496	0.4697	0.0702	0.3640	0.0382	0.0668	0.5313		I	1	I I I		- - 5-79-98 20
	b-/9-38	6	5.950	6.278	12.026	0.4238	3.659	8.704	1.025	3.006	0.3187	0.3061	0.6198	0.08145	0.5987	0.1308	0.3579	0.05288	0.3629	0.03296	0.01683	0.3220		I	I T	I I I	– – – Б-79-96	- - - B-79-96 19
	B-79-37	8	24.154	34.928	15.624	0.8828	2.400	3.388	0.3887	1.557	0.3490	0.0797	0.5750	0.2181	2.328	0.9004	4.164	0.8180	6.103	0.8710	0.0539	0.4898	1		I	T. I	– – Б-79-94	
	B-79-33	7	5.839	1.575	5.854	0.2669	1.104	3.842	0.3973	1.202	0.2798	0.07155	0.2462	0.04144	0.1725	0.06347	0.09395	0.02265	0.09140	0.02008	0.03349	0.2319	1		T	I I	– – B-79-92	
I	B-79-32	6	7.609	8.968	11.549	0.5978	3.459	6.329	1.074	4.633	0.5180	0.06150	0.5045	0.06726	0.4329	0.1257	0.4180	0.04907	0.3367	0.04867	0.2580	1.920	0.063517		0.512422	0.512422	0.512422 0.512422 16 B-79-88	0.512422 16 B-79-88 16
IIpo6	B-79-31	5	11.109	4.556	4.629	0.2402	1.418	2.426	0.4368	2.140	0.3223	0.0849	0.3073	0.0542	0.3068	0.0687	0.1805	0.0289	0.1590	0.0226	0.0904	0.9728	1		1	T 1	– – Б-79-85	– – – – – – – – – – – – – – – – – – –
	B-79-28	4	12.204	4.478	8.749	0.3173	3.218	5.154	0.5289	1.690	0.3583	0.1886	0.4199	0.04310	0.3346	0.06603	0.2401	0.03937	0.2724	0.04003	0.02035	0.3530	I		1	1 1	– – – – – – – – – – – – – – – – – – –	– – Б-79-84 14
	B-79-26	e S	2.866	3.199	11.459	0.2157	5.435	5.698	0.4727	1.452	0.1187	0.2354	0.2887	0.03153	0.3185	0.04257	0.1874	0.02665	0.2128	0.02987	0.07463	0.2675	0.033367		0.512478	0.512478	0.512478 19 B-79-62	0.512478 19 B-79-62 13
	B-79-16	2	8.677	1.836	7.775	0.2850	0.3408	0.8480	0.09133	0.2389	0.09758	0.03916	0.1004	0.03192	0.1720	0.04198	0.1083	0.02487	0.1646	0.02765	0.07632	0.1367	1		T	T I	– – Б-79-59	– – Б-79-59 12
	B-79-2	1	2.368	8.512	9.240	0.3729	0.6283	1.008	0.1204	0.5618	0.1857	0.07446	0.3483	0.06912	0.6678	0.1362	0.4638	0.05058	0.3496	0.04653	0.03963	0.5055	1		I	1 1	– – – B-79-55	– – – – – – – – – – – – – – – – – – –
	Элемент	1	V	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Ta	Th	¹⁴⁷ Sm/ ¹⁴⁴ Nd		¹⁴³ Nd/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd Err	Err	¹⁴³ Nd/ ¹⁴⁴ Nd Егг Элемент

Геохимические и изотропные «метки» древних габброидов...

22

Таблица 2

Элемент	B-79-55	B-79-59	B-79-62	Б-79-84	B-79-85	B-79-88	B-79-92	B-79-94	B-79-96	B-79-98
THAMATA	11	12	13	14	15	16	17	18	19	20
Zr	12.978	9.534	18.810	12.639	14.938	13.802	22.510	32.954	1.803	2.314
Nb	0.9186	0.6621	3.997	0.1617	2.276	0.9646	1.157	0.3603	0.2838	0.8486
La	2.353	1.335	1.888	0.4368	1.490	8.463	8.534	5.215	1.723	1.323
Ce	4.818	1.978	9.645	0.6320	2.541	28.733	22.512	10.354	3.318	3.723
Pr	0.7310	0.2298	1.632	0.04884	0.2649	3.785	2.734	1.140	0.4903	0.5730
Nd	2.897	1.016	6.965	0.2012	1.041	12.506	10.572	3.469	1.887	2.066
Sm	0.8939	0.1764	1.937	0.06731	0.3332	1.838	2.326	0.5363	0.5445	0.6313
Eu	0.3284	0.08460	0.1680	0.03712	0.0994	0.1990	0.4858	0.5449	0.1822	0.1436
Gd	1.350	0.3336	1.886	0.09236	0.4288	1.543	2.963	0.6682	0.5990	0.8115
Tb	0.2176	0.07341	0.3195	0.01741	0.09590	0.1987	0.4127	0.1247	0.1117	0.1240
Dy	1.904	0.5238	2.286	0.1065	0.7452	1.282	3.460	0.8920	0.7083	0.8898
Ho	0.4497	0.1356	0.4924	0.02251	0.1958	0.2656	0.6183	0.1916	0.1819	0.2043
Er	1.172	0.3904	1.354	0.1174	0.6191	0.8592	2.009	0.7158	0.5155	0.6701
Tm	0.1798	0.04100	0.2115	0.01797	0.1056	0.1055	0.3160	0.09767	0.06410	0.09570
Yb	0.8609	0.2868	1.410	0.05083	0.6821	0.5084	1.559	0.8032	0.4292	0.6110
Lu	0.1277	0.04172	0.1338	0.01655	0.08408	0.06684	0.1930	0.1009	0.05000	0.05456
Ta	0.1406	0.04422	0.4023	0.01207	0.1244	0.03436	0.08655	0.01425	0.01305	0.01297
Th	0.4629	0.1903	0.6209	0.1163	0.4057	0.7541	1.918	1.203	0.1133	0.1772
¹⁴⁷ Sm/ ¹⁴⁴ Nd	0.176334	1	T	I	I	0.086207	0.151279	ī	I	I
¹⁴³ Nd/ ¹⁴⁴ Nd	0.512560	T	1	I	1	0.512560	0.512572	1	1	T
Err	11	1	1	1	1	11	18	1	I	1
Примечани	е. Аналитики: Н	[. В.Зарубина,]	М. Г. Блохин, Е.	. В. Еловский.						

В. Г. Казаченко, Е. В. Перевозникова, С. Н. Лаврик

Окончание таблицы 2

		-	_		-	-		_	-	-	<u> </u>	<u> </u>	-	<u> </u>		_	_	_		_		_	_		-		
, г/т		H-09-17	14	4.384	2.456	0.5425	0.1131	0.1090	0.2881	0.05383	0.2317	0.08275	0.01900	0.1365	0.01549	0.1648	0.04937	0.1359	0.02601	0.09890	0.02122	0.00998	0.07187	I	I	1	
винэджоф		H-09-16	13	4.072	3.487	2.142	0.1406	0.6280	0.9215	0.2146	0.9307	0.2048	0.03849	0.1896	0.03149	0.2766	0.07707	0.2025	0.02665	0.1488	0.01819	0.00946	0.1559	0.034309	0.512220	17	
сого место		H-09-15	12	44.074	11.878	33.569	3.140	9.726	20.089	2.314	9.040	1.994	0.4670	2.095	0.3225	1.989	0.3481	0.9830	0.1389	0.8287	0.1675	0.2021	2.508	0.124862	0.512266	5	
галличесь		H-09-14	11	6.239	1.209	3.312	0.1604	0.5300	0.7895	0.1149	0.3361	0.1023	0.02091	0.08131	0.01578	0.08939	0.02506	0.09890	0.00890	0.07420	0.01183	0.01258	0.1843	1	1	1	
о полиме		H-09-13	10	3.416	1.852	5.329	0.07423	0.3795	0.6240	0.1076	0.4227	0.1011	0.02075	0.1350	0.01927	0.1644	0.03105	0.09240	0.01772	0.06555	0.01663	<0.01	0.09947	0.058527	0.512201	16	
олаевско		H-09-12	6	5.849	4.463	2.388	0.1175	0.00	0.1769	0.03036	0.2368	0.1116	0.00896	0.07601	0.01663	0.2040	0.08217	0.3647	0.05110	0.2537	0.02859	0.00786	0.04067	1	I	1	
арнах Ник	ooa	H-09-11	8	5.059	2.588	3.112	0.1914	0.7020	1.019	0.1802	0.7417	0.1277	0.02490	0.2137	0.02369	0.1729	0.04610	0.1594	0.01574	0.1262	0.02649	0.02296	0.2228	0.072598	0.512161	18	
HTOB B CK8	цп	H-09-10	7	1.938	1.680	10.550	0.08893	0.3685	0.7750	0.1045	0.3079	0.08195	0.03497	0.1285	0.02525	0.2079	0.03990	0.1177	0.01659	0.06290	0.01067	0.01408	0.07792	I	ī	1	
ых элеме		6-60-H	9	4.314	1.797	9.099	0.06683	0.4130	0.4780	0.07838	0.3222	0.08965	0.02307	0.07076	0.01416	0.0983	0.02360	0.09205	0.02732	0.05950	0.02012	<0.01	0.07437	Т	I	Т	Еловский.
остепенн		8-00-H	5	6.539	1.470	1.319	0.07853	0.1199	0.1680	0.02199	0.1132	0.06220	0.02798	0.09526	0.00810	0.1560	0.02577	0.1209	0.01939	0.09065	0.01047	<0.01	0.1023	Ĩ	I	1	хин, Е. В.
рых втор		7-00-H	4	4.110	2.893	3.834	0.1956	0.6315	0.9390	0.1404	0.6427	0.1027	0.03078	0.2278	0.02728	0.2195	0.05162	0.1929	0.02033	0.1475	0.02197	0.02647	0.1789	1	1	1	, М. Г. Блс
ие некото		9-00-H	3	121.134	26.748	194.314	15.044	35.121	74.999	8.051	30.175	6.420	1.093	5.261	0.8330	4.971	0.9584	2.976	0.4819	2.939	0.4112	0.9780	16.374	0.113457	0.512095	7	В. Зарубина
Содержан		H-09-5	2	17.784	18.478	59.764	6.469	9.536	22.089	2.872	11.415	2.857	0.5525	3.254	0.5735	3.370	0.6889	1.776	0.2740	1.659	0.2378	0.8140	12.009	0.156906	0.512364	7	литики: Н.]
		H-09-1	1	5.629	1.457	4.909	0.1185	0.3105	0.4710	0.06438	0.3090	0.1465	0.02499	0.1414	0.01533	0.07139	0.02073	0.09200	0.01133	0.1241	0.01102	0.02145	0.1468	l	I	1	чание. Ана.
		Элемент		Λ	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Та	Th	147Sm/144Nd	143Nd/144Nd	Err	ЭмидП

Таблица 3 1я, г/т

Геохимические и изотропные «метки» древних габброидов...

Таблица 4

					Проба				
Элемент	Мт-81-5	Мт-81-6	Мт-81-9	Мт-81-11	M-81-17	P-80-100	К-80-11	К-83-21	Φ-04-1δ
	1	2	3	4	5	6	7	8	9
V	25.066	30.123	26.230	22.745	9.714	117.183	58.881	2.063	35.197
Y	2.506	0.7116	3.925	2.474	3.751	17.845	10.834	3.564	5.258
Zr	14.391	6.893	17.031	11.075	1.411	21.240	13.262	1.710	4.606
Nb	2.738	0.9428	3.432	1.535	0.2361	2.834	1.719	0.07544	0.3132
La	1.695	0.5030	4.965	1.187	0.6672	9.546	2.405	5.676	8.132
Ce	4.513	2.155	3.947	2.917	2.438	24.815	5.478	3.301	17.763
Pr	0.4899	0.1473	1.017	0.4025	0.1653	2.519	0.6565	1.070	2.249
Nd	2.274	0.6411	3.329	1.965	1.301	10.296	3.349	4.396	9.533
Sm	0.5168	0.1606	0.6952	0.5137	0.4036	2.334	1.047	0.7951	1.569
Eu	0.09608	0.06769	0.1110	0.1000	0.1872	0.7788	0.4231	0.9103	0.4328
Gd	0.6659	0.2100	0.8238	0.5947	0.7047	3.455	1.855	0.8834	2.379
Tb	0.07888	0.02628	0.1172	0.07952	0.1078	0.4828	0.2919	0.1130	0.2594
Dy	0.4563	0.1631	0.6861	0.4583	0.7356	3.045	2.263	0.6190	1.707
Но	0.08957	0.02904	0.1383	0.08552	0.1615	0.6109	0.5129	0.1160	0.3521
Er	0.2596	0.08117	0.3959	0.2443	0.4921	1.691	1.473	0.3208	0.9312
Tm	0.04391	0.01147	0.05345	0.03524	0.07561	0.2332	0.2121	0.04507	0.1257
Yb	0.3523	0.07702	0.3347	0.2672	0.5385	1.446	1.340	0.2827	0.7985
Lu	0.06325	0.01110	0.04856	0.04436	0.09201	0.2326	0.2009	0.04186	0.1087
Та	0.1980	-	0.3045	0.1293	0.06041	0.2265	0.1398	-	-
Th	3.159	0.5562	3.470	3.531	0.2663	2.755	1.544	0.2708	0.4697
Drawarr	Ш-86-62	Ш-86-96	Ф-04-3а	Ф-04-5а	Ф-80-2	Ф-80-10	Ф-80-10а	Ф-80-10в	Ш-80-12
. Эпемент								·	
Элемент	10	11	12	13	14	15	16	17	18
V	10 96.105	11 114.606	12 64.623	13 41.153	14 22.749	15 50.884	16 172.713	17 25.544	18 27.418
V Y	10 96.105 8.308	11 114.606 55.245	12 64.623 14.739	13 41.153 5.850	14 22.749 6.287	15 50.884 3.518	16 172.713 53.310	17 25.544 11.495	18 27.418 8.566
V Y Zr	10 96.105 8.308 4.736	11 114.606 55.245 48.561	12 64.623 14.739 10.029	13 41.153 5.850 3.425	14 22.749 6.287 9.125	15 50.884 3.518 5.020	16 172.713 53.310 105.769	17 25.544 11.495 11.925	18 27.418 8.566 5.333
V Y Zr Nb	10 96.105 8.308 4.736 0.3776	11 114.606 55.245 48.561 5.984	12 64.623 14.739 10.029 2.923	13 41.153 5.850 3.425 1.452	14 22.749 6.287 9.125 0.6858	15 50.884 3.518 5.020 0.3521	16 172.713 53.310 105.769 15.273	17 25.544 11.495 11.925 2.063	18 27.418 8.566 5.333 1.083
V Y Zr Nb La	10 96.105 8.308 4.736 0.3776 8.152	11 114.606 55.245 48.561 5.984 18.935	12 64.623 14.739 10.029 2.923 9.379	13 41.153 5.850 3.425 1.452 22.220	14 22.749 6.287 9.125 0.6858 9.317	15 50.884 3.518 5.020 0.3521 12.732	16 172.713 53.310 105.769 15.273 24.043	17 25.544 11.495 11.925 2.063 4.724	18 27.418 8.566 5.333 1.083 25.529
V Y Zr Nb La Ce	10 96.105 8.308 4.736 0.3776 8.152 16.924	11 114.606 55.245 48.561 5.984 18.935 44.534	12 64.623 14.739 10.029 2.923 9.379 22.072	13 41.153 5.850 3.425 1.452 22.220 38.770	14 22.749 6.287 9.125 0.6858 9.317 31.349	15 50.884 3.518 5.020 0.3521 12.732 28.207	16 172.713 53.310 105.769 15.273 24.043 62.318	17 25.544 11.495 11.925 2.063 4.724 3.631	18 27.418 8.566 5.333 1.083 25.529 37.553
V Y Zr Nb La Ce Pr	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391	$ \begin{array}{r} 11 \\ 114.606 \\ 55.245 \\ 48.561 \\ 5.984 \\ 18.935 \\ 44.534 \\ 10.067 \\ 10.172 \\ \end{array} $	12 64.623 14.739 10.029 2.923 9.379 22.072 2.340	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563	15 50.884 3.518 5.020 0.3521 12.732 28.207 2.639	16 172.713 53.310 105.769 15.273 24.043 62.318 6.541 28.250	17 25.544 11.495 11.925 2.063 4.724 3.631 0.9650	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572
V Y Zr Nb La Ce Pr Nd	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747	$ \begin{array}{r} 11 \\ 114.606 \\ 55.245 \\ 48.561 \\ 5.984 \\ 18.935 \\ 44.534 \\ 10.067 \\ 19.173 \\ 10.032 \\ \end{array} $	12 64.623 14.739 10.029 2.923 9.379 22.072 2.340 9.681 2.050	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641 11.611	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165	15 50.884 3.518 5.020 0.3521 12.732 28.207 2.639 9.462	16 172.713 53.310 105.769 15.273 24.043 62.318 6.541 28.259	17 25.544 11.495 11.925 2.063 4.724 3.631 0.9650 4.451	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541
V Y Zr Nb La Ce Pr Nd Sm	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437	$ \begin{array}{r} 11\\ 114.606\\ 55.245\\ 48.561\\ 5.984\\ 18.935\\ 44.534\\ 10.067\\ 19.173\\ 10.032\\ 7.050\end{array} $	12 64.623 14.739 10.029 2.923 9.379 22.072 2.340 9.681 2.059	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641 11.611 1.460	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165 5.073	$ \begin{array}{r} 15\\ 50.884\\ 3.518\\ 5.020\\ 0.3521\\ 12.732\\ 28.207\\ 2.639\\ 9.462\\ 1.452\\ 0.2001 \end{array} $	16 172.713 53.310 105.769 15.273 24.043 62.318 6.541 28.259 6.777	17 25.544 11.495 2.063 4.724 3.631 0.9650 4.451 1.024	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541 1.652
V Y Zr Nb La Ce Pr Nd Sm Eu	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437 0.3966	11 114.606 55.245 48.561 5.984 18.935 44.534 10.067 19.173 10.032 7.959	12 64.623 14.739 10.029 2.923 9.379 22.072 2.340 9.681 2.059 0.4761 2.102	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641 11.611 1.460 0.5778 2.876	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165 5.073 0.7211	15 50.884 3.518 5.020 0.3521 12.732 28.207 2.639 9.462 1.452 0.3991 2.200	16 172.713 53.310 105.769 15.273 24.043 62.318 6.541 28.259 6.777 1.667	17 25.544 11.495 2.063 4.724 3.631 0.9650 4.451 1.024 1.516	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541 1.652 0.3360 2.216
V Y Zr Nb La Ce Pr Nd Sm Eu Gd	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437 0.3966 2.797	11 114.606 55.245 48.561 5.984 18.935 44.534 10.067 19.173 10.032 7.959 12.051 8 105	$\begin{array}{r} 12 \\ 64.623 \\ 14.739 \\ 10.029 \\ 2.923 \\ 9.379 \\ 22.072 \\ 2.340 \\ 9.681 \\ 2.059 \\ 0.4761 \\ 3.193 \\ 0.2705 \end{array}$	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641 11.611 1.460 0.5778 2.876	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165 5.073 0.7211 5.095	$ \begin{array}{r} 15\\ 50.884\\ 3.518\\ 5.020\\ 0.3521\\ 12.732\\ 28.207\\ 2.639\\ 9.462\\ 1.452\\ 0.3991\\ 2.299\\ 0.1726 \end{array} $	$\begin{array}{r} 16\\ 172.713\\ 53.310\\ 105.769\\ 15.273\\ 24.043\\ 62.318\\ 6.541\\ 28.259\\ 6.777\\ 1.667\\ 10.797\\ 1.402\end{array}$	$ \begin{array}{r} 17 \\ 25.544 \\ 11.495 \\ 11.925 \\ 2.063 \\ 4.724 \\ 3.631 \\ 0.9650 \\ 4.451 \\ 1.024 \\ 1.516 \\ 1.605 \\ 0.2373 \\ \end{array} $	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541 1.652 0.3360 3.316
V Y Zr Nb La Ce Pr Nd Sm Eu Gd Tb	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437 0.3966 2.797 0.3729 2.431	11 114.606 55.245 48.561 5.984 18.935 44.534 10.067 19.173 10.032 7.959 12.051 8.195 13.528	$\begin{array}{r} 12 \\ 64.623 \\ 14.739 \\ 10.029 \\ 2.923 \\ 9.379 \\ 22.072 \\ 2.340 \\ 9.681 \\ 2.059 \\ 0.4761 \\ 3.193 \\ 0.3705 \\ 2.434 \end{array}$	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641 11.611 1.460 0.5778 2.876 0.2006	$\begin{array}{r} 14\\ 22.749\\ 6.287\\ 9.125\\ 0.6858\\ 9.317\\ 31.349\\ 4.563\\ 23.165\\ 5.073\\ 0.7211\\ 5.095\\ 0.4306\\ 1.920\end{array}$	$ \begin{array}{r} 15\\ 50.884\\ 3.518\\ 5.020\\ 0.3521\\ 12.732\\ 28.207\\ 2.639\\ 9.462\\ 1.452\\ 0.3991\\ 2.299\\ 0.1726\\ 0.8623\\ \end{array} $	$\begin{array}{r} 16\\ 172.713\\ 53.310\\ 105.769\\ 15.273\\ 24.043\\ 62.318\\ 6.541\\ 28.259\\ 6.777\\ 1.667\\ 10.797\\ 1.492\\ 10.687\end{array}$	$ \begin{array}{r} 17 \\ 25.544 \\ 11.495 \\ 11.925 \\ 2.063 \\ 4.724 \\ 3.631 \\ 0.9650 \\ 4.451 \\ 1.024 \\ 1.516 \\ 1.605 \\ 0.2373 \\ 1.584 \\ $	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541 1.652 0.3360 3.316 0.3006 1.870
V Y Zr Nb La Ce Pr Nd Sm Eu Gd Tb Dy	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437 0.3966 2.797 0.3729 2.431	11 114.606 55.245 48.561 5.984 18.935 44.534 10.067 19.173 10.032 7.959 12.051 8.195 13.528	12 64.623 14.739 10.029 2.923 9.379 22.072 2.340 9.681 2.059 0.4761 3.193 0.3705 2.434	$\begin{array}{c} 13 \\ 41.153 \\ 5.850 \\ 3.425 \\ 1.452 \\ 22.220 \\ 38.770 \\ 3.641 \\ 11.611 \\ 1.460 \\ 0.5778 \\ 2.876 \\ 0.2006 \\ 1.147 \\ 0.2401 \end{array}$	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165 5.073 0.7211 5.095 0.4306 1.920 0.2823	$\begin{array}{r} 15\\ 50.884\\ 3.518\\ 5.020\\ 0.3521\\ 12.732\\ 28.207\\ 2.639\\ 9.462\\ 1.452\\ 0.3991\\ 2.299\\ 0.1726\\ 0.8623\\ 0.1473\end{array}$	16 172.713 53.310 105.769 15.273 24.043 62.318 6.541 28.259 6.777 1.667 10.797 1.492 10.687 2.343	17 25.544 11.495 11.925 2.063 4.724 3.631 0.9650 4.451 1.024 1.516 1.605 0.2373 1.584 0.3323	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541 1.652 0.3360 3.316 0.3006 1.879 0.3271
V Y Zr Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437 0.3966 2.797 0.3729 2.431 0.4691 1.268	$\begin{array}{r} 11\\ 114.606\\ 55.245\\ 48.561\\ 5.984\\ 18.935\\ 44.534\\ 10.067\\ 19.173\\ 10.032\\ 7.959\\ 12.051\\ 8.195\\ 13.528\\ 9.034\\ 11.795\end{array}$	$\begin{array}{r} 12 \\ 64.623 \\ 14.739 \\ 10.029 \\ 2.923 \\ 9.379 \\ 22.072 \\ 2.340 \\ 9.681 \\ 2.059 \\ 0.4761 \\ 3.193 \\ 0.3705 \\ 2.434 \\ 0.5392 \\ 1.616 \end{array}$	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641 11.611 1.460 0.5778 2.876 0.2006 1.147 0.2401 0.7275	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165 5.073 0.7211 5.095 0.4306 1.920 0.2823 0.6719	$\begin{array}{r} 15\\ 50.884\\ 3.518\\ 5.020\\ 0.3521\\ 12.732\\ 28.207\\ 2.639\\ 9.462\\ 1.452\\ 0.3991\\ 2.299\\ 0.1726\\ 0.8623\\ 0.1473\\ 0.4275\end{array}$	$\begin{array}{r} 16\\ 172.713\\ 53.310\\ 105.769\\ 15.273\\ 24.043\\ 62.318\\ 6.541\\ 28.259\\ 6.777\\ 1.667\\ 10.797\\ 1.492\\ 10.687\\ 2.343\\ 6.665\\ \end{array}$	17 25.544 11.495 11.925 2.063 4.724 3.631 0.9650 4.451 1.024 1.516 1.605 0.2373 1.584 0.3323	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541 1.652 0.3360 3.316 0.3006 1.879 0.3971 1.095
V Y Zr Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437 0.3966 2.797 0.3729 2.431 0.4691 1.268 0.1914	$\begin{array}{r} 11\\ 114.606\\ 55.245\\ 48.561\\ 5.984\\ 18.935\\ 44.534\\ 10.067\\ 19.173\\ 10.032\\ 7.959\\ 12.051\\ 8.195\\ 13.528\\ 9.034\\ 11.795\\ 7.906\end{array}$	$\begin{array}{r} 12 \\ 64.623 \\ 14.739 \\ 10.029 \\ 2.923 \\ 9.379 \\ 22.072 \\ 2.340 \\ 9.681 \\ 2.059 \\ 0.4761 \\ 3.193 \\ 0.3705 \\ 2.434 \\ 0.5392 \\ 1.616 \\ 0.2264 \end{array}$	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641 11.611 1.460 0.5778 2.876 0.2006 1.147 0.2401 0.7275 0.09632	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165 5.073 0.7211 5.095 0.4306 1.920 0.2823 0.6719	$\begin{array}{r} 15\\ 50.884\\ 3.518\\ 5.020\\ 0.3521\\ 12.732\\ 28.207\\ 2.639\\ 9.462\\ 1.452\\ 0.3991\\ 2.299\\ 0.1726\\ 0.8623\\ 0.1473\\ 0.4275\\ 0.05813\end{array}$	$\begin{array}{r} 16\\ 172.713\\ 53.310\\ 105.769\\ 15.273\\ 24.043\\ 62.318\\ 6.541\\ 28.259\\ 6.777\\ 1.667\\ 10.797\\ 1.492\\ 10.687\\ 2.343\\ 6.665\\ 0.9391\\ \end{array}$	17 25.544 11.495 11.925 2.063 4.724 3.631 0.9650 4.451 1.024 1.516 1.605 0.2373 1.584 0.3323 0.9364 0.1230	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541 1.652 0.3360 3.316 0.3006 1.879 0.3971 1.095 0.1465
V Y Zr Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Vb	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437 0.3966 2.797 0.3729 2.431 0.4691 1.268 0.1914	11 114.606 55.245 48.561 5.984 18.935 44.534 10.067 19.173 10.032 7.959 12.051 8.195 13.528 9.034 11.795 7.906	$\begin{array}{r} 12 \\ 64.623 \\ 14.739 \\ 10.029 \\ 2.923 \\ 9.379 \\ 22.072 \\ 2.340 \\ 9.681 \\ 2.059 \\ 0.4761 \\ 3.193 \\ 0.3705 \\ 2.434 \\ 0.5392 \\ 1.616 \\ 0.2264 \\ 1.444 \end{array}$	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641 11.611 1.460 0.5778 2.876 0.2006 1.147 0.2401 0.7275 0.09632 0.6112	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165 5.073 0.7211 5.095 0.4306 1.920 0.2823 0.6719 0.07086	15 50.884 3.518 5.020 0.3521 12.732 28.207 2.639 9.462 1.452 0.3991 2.299 0.1726 0.8623 0.1473 0.4275 0.05813 0.4158	$\begin{array}{r} 16\\ 172.713\\ 53.310\\ 105.769\\ 15.273\\ 24.043\\ 62.318\\ 6.541\\ 28.259\\ 6.777\\ 1.667\\ 10.797\\ 1.492\\ 10.687\\ 2.343\\ 6.665\\ 0.9391\\ 6.250\end{array}$	$\begin{array}{c} 17\\ 25.544\\ 11.495\\ 11.925\\ 2.063\\ 4.724\\ 3.631\\ 0.9650\\ 4.451\\ 1.024\\ 1.516\\ 1.605\\ 0.2373\\ 1.584\\ 0.3323\\ 0.9364\\ 0.1230\\ 0.7990\end{array}$	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541 1.652 0.3360 3.316 0.3006 1.879 0.3971 1.095 0.1465
V Y Zr Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437 0.3966 2.797 0.3729 2.431 0.4691 1.268 0.1914 1.417 0.2252	$\begin{array}{c} 11\\ 114.606\\ 55.245\\ 48.561\\ 5.984\\ 18.935\\ 44.534\\ 10.067\\ 19.173\\ 10.032\\ 7.959\\ 12.051\\ 8.195\\ 13.528\\ 9.034\\ 11.795\\ 7.906\\ 10.905\\ 7.452\end{array}$	12 64.623 14.739 10.029 2.923 9.379 22.072 2.340 9.681 2.059 0.4761 3.193 0.3705 2.434 0.5392 1.616 0.2264 1.444 0.2212	$\begin{array}{c} 13\\ 41.153\\ 5.850\\ 3.425\\ 1.452\\ 22.220\\ 38.770\\ 3.641\\ 11.611\\ 1.460\\ 0.5778\\ 2.876\\ 0.2006\\ 1.147\\ 0.2401\\ 0.7275\\ 0.09632\\ 0.6112\\ 0.00160\end{array}$	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165 5.073 0.7211 5.095 0.4306 1.920 0.2823 0.6719 0.07086 0.4551	15 50.884 3.518 5.020 0.3521 12.732 28.207 2.639 9.462 1.452 0.3991 2.299 0.1726 0.8623 0.1473 0.4275 0.05813 0.4158	16 172.713 53.310 105.769 15.273 24.043 62.318 6.541 28.259 6.777 1.667 10.797 1.492 10.687 2.343 6.665 0.9391 6.250	$\begin{array}{c} 17\\ 25.544\\ 11.495\\ 11.925\\ 2.063\\ 4.724\\ 3.631\\ 0.9650\\ 4.451\\ 1.024\\ 1.516\\ 1.605\\ 0.2373\\ 1.584\\ 0.3323\\ 0.9364\\ 0.1230\\ 0.7999\\ 0.1244\end{array}$	$\begin{array}{r} 18\\ 27.418\\ 8.566\\ 5.333\\ 1.083\\ 25.529\\ 37.553\\ 3.572\\ 11.541\\ 1.652\\ 0.3360\\ 3.316\\ 0.3006\\ 1.879\\ 0.3971\\ 1.095\\ 0.1465\\ 0.9269\\ 0.1372\end{array}$
V Y Zr Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ta	$\begin{array}{c} 10\\ 96.105\\ 8.308\\ 4.736\\ 0.3776\\ 8.152\\ 16.924\\ 1.391\\ 5.747\\ 1.437\\ 0.3966\\ 2.797\\ 0.3729\\ 2.431\\ 0.4691\\ 1.268\\ 0.1914\\ 1.417\\ 0.2252\\ \end{array}$	11 114.606 55.245 48.561 5.984 18.935 44.534 10.067 19.173 10.032 7.959 12.051 8.195 13.528 9.034 11.795 7.906 10.905 7.453 1.742	12 64.623 14.739 10.029 2.923 9.379 22.072 2.340 9.681 2.059 0.4761 3.193 0.3705 2.434 0.5392 1.616 0.2264 1.444 0.2213 0.1322	$\begin{array}{c} 13\\ 41.153\\ 5.850\\ 3.425\\ 1.452\\ 22.220\\ 38.770\\ 3.641\\ 11.611\\ 1.460\\ 0.5778\\ 2.876\\ 0.2006\\ 1.147\\ 0.2401\\ 0.7275\\ 0.09632\\ 0.6112\\ 0.09169\\ \end{array}$	$\begin{array}{c} 14\\ 22.749\\ 6.287\\ 9.125\\ 0.6858\\ 9.317\\ 31.349\\ 4.563\\ 23.165\\ 5.073\\ 0.7211\\ 5.095\\ 0.4306\\ 1.920\\ 0.2823\\ 0.6719\\ 0.07086\\ 0.4551\\ 0.05942\\ \end{array}$	15 50.884 3.518 5.020 0.3521 12.732 28.207 2.639 9.462 1.452 0.3991 2.299 0.1726 0.8623 0.1473 0.4275 0.05813 0.4158 0.05880	16 172.713 53.310 105.769 15.273 24.043 62.318 6.541 28.259 6.777 1.667 10.797 1.492 10.687 2.343 6.665 0.9391 6.250 0.9287 1.325	17 25.544 11.495 11.925 2.063 4.724 3.631 0.9650 4.451 1.024 1.516 1.605 0.2373 1.584 0.3323 0.9364 0.1230 0.7999 0.1244	$\begin{array}{r} 18\\ 27.418\\ 8.566\\ 5.333\\ 1.083\\ 25.529\\ 37.553\\ 3.572\\ 11.541\\ 1.652\\ 0.3360\\ 3.316\\ 0.3006\\ 1.879\\ 0.3971\\ 1.095\\ 0.1465\\ 0.9269\\ 0.1373\\ \end{array}$
V Y Zr Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ta Th	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437 0.3966 2.797 0.3729 2.431 0.4691 1.268 0.1914 1.417 0.2252 -	11 114.606 55.245 48.561 5.984 18.935 44.534 10.067 19.173 10.032 7.959 12.051 8.195 13.528 9.034 11.795 7.906 10.905 7.453 1.742 15.534	$\begin{array}{c} 12 \\ 64.623 \\ 14.739 \\ 10.029 \\ 2.923 \\ 9.379 \\ 22.072 \\ 2.340 \\ 9.681 \\ 2.059 \\ 0.4761 \\ 3.193 \\ 0.3705 \\ 2.434 \\ 0.5392 \\ 1.616 \\ 0.2264 \\ 1.444 \\ 0.2213 \\ 0.1322 \\ 2.475 \end{array}$	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641 11.611 1.460 0.5778 2.876 0.2006 1.147 0.2401 0.7275 0.09632 0.6112 0.09169 - 2.592	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165 5.073 0.7211 5.095 0.4306 1.920 0.2823 0.6719 0.07086 0.4551 0.05942 -	15 50.884 3.518 5.020 0.3521 12.732 28.207 2.639 9.462 1.452 0.3991 2.299 0.1726 0.8623 0.1473 0.4275 0.05813 0.4158 0.05880 - 0.3066	$\begin{array}{r} 16\\ 172.713\\ 53.310\\ 105.769\\ 15.273\\ 24.043\\ 62.318\\ 6.541\\ 28.259\\ 6.777\\ 1.667\\ 10.797\\ 1.492\\ 10.687\\ 2.343\\ 6.665\\ 0.9391\\ 6.250\\ 0.9287\\ 1.325\\ 7.125\end{array}$	$\begin{array}{r} 17\\ 25.544\\ 11.495\\ 11.925\\ 2.063\\ 4.724\\ 3.631\\ 0.9650\\ 4.451\\ 1.024\\ 1.516\\ 1.605\\ 0.2373\\ 1.584\\ 0.3323\\ 0.9364\\ 0.1230\\ 0.7999\\ 0.1244\\ 0.02968\\ 1.542\end{array}$	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541 1.652 0.3360 3.316 0.3006 1.879 0.3971 1.095 0.1465 0.9269 0.1373
V Y Zr Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ta Th	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437 0.3966 2.797 0.3729 2.431 0.4691 1.268 0.1914 1.417 0.2252 - 0.3132 0.158921	11 114.606 55.245 48.561 5.984 18.935 44.534 10.067 19.173 10.032 7.959 12.051 8.195 13.528 9.034 11.795 7.906 10.905 7.453 1.742 15.534 0.142987	$\begin{array}{c} 12\\ 64.623\\ 14.739\\ 10.029\\ 2.923\\ 9.379\\ 22.072\\ 2.340\\ 9.681\\ 2.059\\ 0.4761\\ 3.193\\ 0.3705\\ 2.434\\ 0.5392\\ 1.616\\ 0.2264\\ 1.444\\ 0.2213\\ 0.1322\\ 2.475\\ \end{array}$	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641 11.611 1.460 0.5778 2.876 0.2006 1.147 0.2401 0.7275 0.09632 0.6112 0.09169	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165 5.073 0.7211 5.095 0.4306 1.920 0.2823 0.6719 0.07086 0.4551 0.05942 - 0.5108	15 50.884 3.518 5.020 0.3521 12.732 28.207 2.639 9.462 1.452 0.3991 2.299 0.1726 0.8623 0.1473 0.4275 0.05813 0.4158 0.05880 - 0.3066	$\begin{array}{r} 16\\ 172.713\\ 53.310\\ 105.769\\ 15.273\\ 24.043\\ 62.318\\ 6.541\\ 28.259\\ 6.777\\ 1.667\\ 10.797\\ 1.492\\ 10.687\\ 2.343\\ 6.665\\ 0.9391\\ 6.250\\ 0.9287\\ 1.325\\ 7.125\\ \end{array}$	$\begin{array}{c} 17\\ 25.544\\ 11.495\\ 11.925\\ 2.063\\ 4.724\\ 3.631\\ 0.9650\\ 4.451\\ 1.024\\ 1.516\\ 1.605\\ 0.2373\\ 1.584\\ 0.3323\\ 0.9364\\ 0.1230\\ 0.7999\\ 0.1244\\ 0.02968\\ 1.542\\ \end{array}$	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541 1.652 0.3360 3.316 0.3006 1.879 0.3971 1.095 0.1465 0.9269 0.1373 - 0.7303 0.088468
V Y Y Zr Nb La Ce Pr Nd Sm Eu Gd Gd Tb Dy Ho Er Tm Yb Lu Ta Th ¹⁴⁷ Sm/ ¹⁴⁴ Nd	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437 0.3966 2.797 0.3729 2.431 0.4691 1.268 0.1914 1.417 0.252 - 0.3132 0.158921 0 512312	11 114.606 55.245 48.561 5.984 18.935 44.534 10.067 19.173 10.032 7.959 12.051 8.195 13.528 9.034 11.795 7.906 10.905 7.453 1.742 15.534 0.142987 0.512385	12 64.623 14.739 10.029 2.923 9.379 22.072 2.340 9.681 2.059 0.4761 3.193 0.3705 2.434 0.5392 1.616 0.2264 1.444 0.2213 0.1322 2.475 -	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641 11.611 1.460 0.5778 2.876 0.2006 1.147 0.2401 0.7275 0.09632 0.6112 0.09169 - 2.592	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165 5.073 0.7211 5.095 0.4306 1.920 0.2823 0.6719 0.07086 0.4551 0.05942 - 0.5108 -	15 50.884 3.518 5.020 0.3521 12.732 28.207 2.639 9.462 1.452 0.3991 2.299 0.1726 0.8623 0.1473 0.4275 0.05813 0.4158 0.05880 - 0.3066 -	16 172.713 53.310 105.769 15.273 24.043 62.318 6.541 28.259 6.777 1.667 10.797 1.492 10.687 2.343 6.665 0.9391 6.250 0.9287 1.325 7.125	17 25.544 11.495 11.925 2.063 4.724 3.631 0.9650 4.451 1.024 1.516 1.605 0.2373 1.584 0.3323 0.9364 0.1230 0.7999 0.1244 0.02968 1.542 -	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541 1.652 0.3360 3.316 0.3006 1.879 0.3971 1.095 0.1465 0.9269 0.1373 - 0.7303 0.088468 0.512311
V Y Y Zr Nb La Ce Pr Nd Sm Eu Gd Gd Tb Dy Ho Er Tm Yb Lu Ta Th ¹⁴⁷ Sm/ ¹⁴⁴ Nd Frr	10 96.105 8.308 4.736 0.3776 8.152 16.924 1.391 5.747 1.437 0.3966 2.797 0.3729 2.431 0.4691 1.268 0.1914 1.417 0.2252 - 0.3132 0.512312	11 114.606 55.245 48.561 5.984 18.935 44.534 10.067 19.173 10.032 7.959 12.051 8.195 13.528 9.034 11.795 7.906 10.905 7.453 1.742 15.534 0.142987 0.512385 7	12 64.623 14.739 10.029 2.923 9.379 22.072 2.340 9.681 2.059 0.4761 3.193 0.3705 2.434 0.5392 1.616 0.2264 1.444 0.2213 0.1322 2.475 -	13 41.153 5.850 3.425 1.452 22.220 38.770 3.641 11.611 1.460 0.5778 2.876 0.2006 1.147 0.2401 0.7275 0.09632 0.6112 0.09169 - - - - -	14 22.749 6.287 9.125 0.6858 9.317 31.349 4.563 23.165 5.073 0.7211 5.095 0.4306 1.920 0.2823 0.6719 0.07086 0.4551 0.05942 - 0.5108 - -	15 50.884 3.518 5.020 0.3521 12.732 28.207 2.639 9.462 1.452 0.3991 2.299 0.1726 0.8623 0.1473 0.4275 0.05813 0.4158 0.05880 - 0.3066 - -	16 172.713 53.310 105.769 15.273 24.043 62.318 6.541 28.259 6.777 1.667 10.797 1.492 10.687 2.343 6.665 0.9391 6.250 0.9287 1.325 7.125	17 25.544 11.495 11.925 2.063 4.724 3.631 0.9650 4.451 1.024 1.516 1.605 0.2373 1.584 0.3323 0.9364 0.1230 0.7999 0.1244 0.02968 1.542 -	18 27.418 8.566 5.333 1.083 25.529 37.553 3.572 11.541 1.652 0.3360 3.316 0.3006 1.879 0.3971 1.095 0.1465 0.9269 0.1373 - 0.7303 0.088468 0.512311

Содержание некоторых второстепенных элементов в марганцево-силикатных породах Широкопаднинской площади (Ольгинский рудный район), г/т

Примечание. Аналитики: Д. В. Авдеев, Л. С. Боковенко.

Элемент	ЭВ-01-58	ЭВ-06-1	3B-06-2	ЭВ-06-3	ЭВ-06-4	IIpo6a 3B-06-5	∂B-06-6	∋B-06-7	3B-06-8	∂B-06-9	JB-06-10
	1	2	3	4	5	9	7	8	6	10	11
V	6.679	52.136	69.219	54.635	42.553	60.002	68.855	50.509	92.554	19.025	43.359
Y	4.560	2.874	3.934	4.474	4.532	1.474	4.464	3.613	4.712	2.865	3.857
Zr	8.762	4.960	7.895	9.683	5.414	2.858	9.947	7.946	7.188	4.799	8.577
Nb	0.7072	0.7915	1.590	0.7853	1.435	0.2484	0.9568	0.7921	1.177	0.5564	0.9132
La	6.298	3.389	4.872	5.545	2.774	2.146	4.777	3.695	3.708	2.889	4.595
Ce	16.183	12.913	19.304	19.131	10.412	7.683	18.582	13.479	17.728	9.333	19.359
Pr	1.809	0.9756	1.692	1.316	0.6221	0.2264	1.021	0.7503	0.8551	0.5420	1.171
Nd	7.783	4.551	6.632	6.740	3.888	2.172	5.476	4.466	5.227	3.586	5.933
Sm	1.647	1.063	1.428	1.464	0.9143	0.4568	1.205	1.026	1.583	0.7721	1.276
Eu	0.3581	0.2382	0.2839	0.3644	0.3312	0.1501	0.3391	0.2551	0.3701	0.1406	0.3298
Gd	1.953	1.320	2.013	1.884	1.284	0.6470	1.765	1.484	2.139	1.057	1.820
Tb	0.1969	0.1676	0.2264	0.2208	0.1641	0.07311	0.1974	0.1749	0.2484	0.1217	0.1950
Dy	0.9556	0.9329	1.250	1.275	0.9659	0.4260	1.090	1.025	1.285	0.6700	1.048
Ho	0.1700	0.1622	0.2292	0.2460	0.1765	0.07936	0.2062	0.1906	0.2115	0.1242	0.1796
Er	0.4572	0.4454	0.6269	0.7040	0.4521	0.2327	0.5842	0.5078	0.5431	0.3308	0.4885
Tm	0.06199	0.05655	0.08995	0.09982	0.05808	0.03577	0.07920	0.06548	0.07362	0.04121	0.06777
Yb	0.4205	0.3871	0.6116	0.6730	0.3666	0.2758	0.5230	0.4031	0.5329	0.2641	0.4886
Lu	0.06571	0.04707	0.08717	0.09540	0.04734	0.04340	0.07013	0.05284	0.08037	0.03605	0.07085
Та	0.04223	0.05801	1.018	0.04900	0.06192	0.00626	0.07278	0.05496	0.06608	0.00704	0.06269
Th	1.601	0.8286	1.582	1.117	0.7882	0.3954	1.230	0.9756	1.214	0.6122	1.247
¹⁴⁷ Sm/ ¹⁴⁴ Nd	1	T	1	I	1	T	0.138279	0.136132	0.190578	I	1
¹⁴³ Nd/ ¹⁴⁴ Nd	ľ	I	ľ,	I	I	I	0.512323	0.512315	0.512371	I	E
Err	Ī	Ι	I	ï	Ĩ	Ĩ	3	5	8	ł	I
THE PARTY OF C	ЭВ-06-11	ЭВ-06-12	ЭВ-06-13	ЭВ-06-14	ЭВ-06-15	ЭВ-06-16	ЭВ-06-17	ЭВ-06-18	ЭВ-06-19	ЭВ-06-20	ЭВ-06-21
THOMOTIC	12	13	14	15	16	17	18	19	20	21	22
V	57.034	54.084	131.793	51.809	24.482	52.802	33.760	39.716	10.807	51.808	37.589
Y	3.602	4.009	7.880	3.450	2.010	3.663	2.462	3.308	0.8968	6.767	1.966
Zr	5.720	7.217	10.541	5.502	4.534	5.629	4.870	6.499	1.323	4.772	4.850
Nb	0.8373	0.8688	2.360	0.5928	0.4103	0.8460	0.6240	0.7999	0.08222	0.4730	0.4505
La	3.166	4.529	7.943	2.313	2.019	3.311	3.448	2.609	1.481	5.645	1.720
Ce	13.332	16.742	27.628	11.189	7.537	12.420	14.065	12.710	3.202	10.897	6.356
Pr	1.007	1.384	2.126	0.8014	0.5990	1.184	0.8693	0.8835	0.3214	1.538	0.5449

Геохимические и изотропные «метки» древних габброидов...

Таблица б Содержание некоторых второстепенных элементов в марганцево-силикатных породах Горной площади (Малиновский рудный район), г/т

										Окончание 1	паблицы б
Эпемент	JB-06-11	3B-06-12	ЭВ-06-13	JB-06-14	3B-06-15	3B-06-16	3B-06-17	JB-06-18	3B-06-19	JB-06-20	JB-06-21
THOMOTO	12	13	14	15	16	17	18	19	20	21	22
PN	4.649	6.310	9.440	3.887	2.802	4.668	3.974	4.265	1.335	6.293	2.290
Sm	1.075	1.426	2.091	0.9973	0.5920	1.061	0.8330	1.029	0.2829	1.310	0.4761
Eu	0.2744	0.3876	0.6878	0.2495	0.1029	0.2051	0.1424	0.2195	0.06025	0.3270	0.08946
Gd	1.442	2.204	3.260	1.263	0.7081	1.326	0.9647	1.546	0.3823	1.833	0.6710
Tb	0.1626	0.2524	0.3576	0.1537	0.08536	0.1684	0.1075	0.1761	0.04502	0.2284	0.07650
Dy	0.9018	1.383	1.965	0.8408	0.4792	0.9978	0.5761	0.9695	0.2623	1.329	0.4432
Ho	0.1576	0.2755	0.3831	0.1463	0.08168	0.1734	0.1017	0.1903	0.05134	0.2596	0.08853
Er	0.4590	0.7906	1.116	0.4046	0.2305	0.4624	0.3117	0.5427	0.1428	0.6857	0.2472
Tm	0.05756	0.1191	0.1606	0.04953	0.02524	0.05742	0.03966	0.07554	0.01959	0.08690	0.03293
Yb	0.4025	0.7918	1.173	0.3637	0.1991	0.4085	0.2921	0.4786	0.1300	0.5661	0.2156
Lu	0.05221	0.1239	0.2118	0.04948	0.02389	0.04982	0.03769	0.06746	0.01710	0.08525	0.02715
Ta	0.1497	0.05371	0.2025	0.06174	0.02294	0.05647	0.1163	0.09810	1	1	0.01175
Th	0.1785	1.041	2.237	0.6406	0.4470	0.7944	0.7290	0.9083	0.07860	0.3905	0.4468
	ЭВ-06-22	ЭВ-06-23	ЭВ-06-24	JB-06-25	ЭВ-06-26	JB-06-27	ЭВ-06-28	JB-06-29	Мп-83-35		
THOMOTIC	23	24	25	26	27	28	29	30	31		
٧	44.966	32.028	32.108	39.721	85.205	40.695	48.845	56.772	58.157		9 10
Υ	2.853	5.410	2.473	2.310	38.713	3.003	6.805	8.627	4.655		
Zr	4.495	8.182	4.857	4.707	51.499	5.416	11.284	13.051	6.517		
qN	0.2227	1.345	0.4848	0.8138	0.6061	0.4892	1.688	2.165	1.032		
La	1.797	6.511	3.053	2.581	9.110	2.935	6.926	8.136	5.016		
Ce	8.250	21.109	11.445	10.105	9.066	10.491	22.784	23.246	12.574		
Pr	0.6353	2.000	0.7456	0.7790	2.600	0.8492	2.180	2.323	1.110		2 X
PN	2.845	8.519	3.501	3.115	12.621	3.520	8.747	9.794	6.036		
Sm	0.7297	1.749	0.7739	0.6639	3.423	0.7731	1.840	2.113	1.263		
Eu	0.2010	0.2401	0.2448	0.1377	0.9329	0.1815	0.4675	0.5138	0.3176		8 - S
Gd	0.9856	2.369	0.9232	0.9100	5.102	1.114	2.543	2.887	1.705		
Tb	0.1247	0.2544	0.1052	0.1109	0.7301	0.1246	0.2886	0.3326	0.2128		
Dy	0.7051	1.477	0.6195	0.6481	4.693	0.7571	1.619	1.903	1.262		
Но	0.1274	0.2754	0.1092	0.1197	1.065	0.1516	0.2873	0.3562	0.2355		
Er	0.3407	0.6779	0.2997	0.3360	3.200	0.4241	0.7676	0.9513	0.6018		
Tm	0.04684	0.08360	0.03475	0.05144	0.4572	0.06255	0.1036	0.1288	0.07771		
Yb	0.3304	0.5288	0.2302	0.3436	3.096	0.4136	0.6977	0.8741	0.5280		
Lu	0.04969	0.07455	0.02657	0.04890	0.4807	0.06048	0.1039	0.1352	0.07283		
Та	1	0.1345	0.02879	0.05696	0.1274	0.03349	0.1374	0.1533	0.07251		
Th	0.4656	1.243	0.5900	0.6414	0.7792	0.5064	1.629	1.925	1.065		
Примеча	ние. Аналитик	и: Д. В. Авдее	в, Л. С. Боков	CHKO.							

ВЕСТНИК Кольского научного центра РАН 4/2016(27)

Пробоподготовка и измерения изотопного состава Nd и Sm в скарнах и триасовых метаморфизованных металлоносных осадках (табл. 1–6) выполнены в Геологическом институте Кольского научного центра PAH. Анализы выполнялись на 7-канальном твердофазном массспектрометре Finnigan-MAT 262 (RPQ) в статическом двухленточном режиме с использованием рениевых и танталовых лент. Среднее значение отношения ¹⁴³Nd/¹⁴⁴Nd в стандарте La Jolla за периоды измерений составило 0.511835 ± 18 (N=15). Ошибка в ¹⁴⁷Sm/¹⁴⁴Nd отношениях составляет 0.3 % (2 σ) — среднее значение из семи измерений в стандарте BCR. Погрешность измерения изотопного состава Nd в индивидуальном анализе не превышала 0.004 %. Холостое внутрилабораторное загрязнение по Nd и Sm составляло 0.3 и 0.06 нг соответственно, а точность определения их концентраций — ± 0.5%. Изотопные отношения нормализованы по ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219 и пересчитаны на принятую величину ¹⁴³Nd/¹⁴⁴Nd в стандарте La Jolla = 0.511860.

Результаты исследований

Значительную часть Окраинско-Сергеевского террейна слагают крупные плутоны сергеевского гранитогнейсов синкинематических габброидов комплекса и [15]. В габброидахприсутствуют блоки метаморфизованных офиолитов (базальтов, габбро И троктолитов) [11], а в гранитогнейсах — метатерригенных пород. Плутоны интрудированы раннеордовикскими гранитами [15]. На габброидах сергеевского комплекса с осадочным контактом залегают верхнедевонские туфы [16], а на раннеордовикских гранитах — пермские морские, наземные, вулканические и осадочные отложения [15]. На древних породах Окраинско-Сергеевского террейна, как можно полагать, сформировались карбон-пермские рифовые массивы Таухинского террейна, фрагменты которых встречаются в ассоциации с глубокометаморфизованными граносиенитами (со структурой «антирапакиви»), по изотопным и геохимическим особенностям аналогичными габброидам сергеевского комплекса [11]. Габброиды сергеевского комплекса представлены метагаббро по С. В. Коваленко и И. А. Давыдову [17] или амфиболовыми габбро-, диоритогнейсами по А. И. Ханчуку [15]. Габброиды сергеевского комплекса, по мнению С. М. Синицы, имеют додевонский возраст, так как в некоторых местах выступают из-под базальных девонских отложений [16]. На юге Окраинско-Сергеевского террейна присутствуют выходы дунитов, троктолитов и Владимиро-Александровского анортозитов массива И серпентинитового меланжа (бухтыМелководная, Каплунова и др.), а в северной части расположен базит-гипербазитовый массив ключа Кириенкова. По данным Р. А. Октябрьского [18], породы Владимиро-Александровского массива прорывают габброиды сергеевского комплекса. Фрагменты Окраинско-Сергеевского террейна прослеживаются также вдоль Центрального Сихотэ-Алинского разлома. Самый северный из них — Хорский блок [19]. Фрагмент Окраинско-Сергеевского террейна, как отмечалось выше, присутствует и в Таухинском террейне. Аллохтоны относимого к среднему палеозою калиновского комплекса (Самаркинский, Чугуевский, Бреевский и др.) в Самаркинском террейне состоят из сильноизмененных кортландитов, верлитов, вебстеритов, пироксенитов, габбро-норитов, норитов, габбро, дунитов, троктолитов и лерцолитов [18].

Датировки методами абсолютной геохронологии габброидов сергеевского комплекса варьируют от 200 до 2106 млн лет [17, 20]. Имеющиеся датировки калиновских габброидов колеблются от 100 до 410 млн лет [21]. Результаты изучения петрографии, петрохимии и минералогии габброидов калиновского и сергеевского комплексов изложены в работе Р.А. Октябрьского [18]. Дополнительные сведения приведены в работах С. В. Коваленко и И. А. Давыдова [17], С. Н. Синицы [16], А. И. Ханчука и И. В. Панченко [22] и других авторов. Результаты геохимических и изотопных исследований габброидов калиновского, сергеевского и владимиро-александровского комплексов приведены в работе авторов [11].

Габброиды сергеевского и калиновского комплексов, а также породы Владимиро-Александровского массива имеют общий мантийный источник магматического материала примитивную мантию (BSE) — и образовались в результате взаимодействия плюма с осадочными породами океанической коры, предположительно, судя по геохимическим особенностям и изотопному составу свинца, в основании островной дуги (габброиды и гранитогнейсы Окраинско-Сергеевского террейна и его фрагментов и ультрабазиты Владимиро-Александровского массива) или океанических плато (габброиды калиновского комплекса) [11]. Они различаются между собой химическим составом присутствующей в них осадочной компоненты и, вероятно, возрастом.

Рис. 3. Положение точек габброидов и офиолитов (*a*), габброидов, офиолитов, скарнов и триасовых контактовометаморфизованных металлоносных осадков Сихотэ-Алиня (*б*-*г*) на диаграмме Sm/Nd-Sm/Eu. Магматические породы (*1*-*5*): ультрабазиты Владимиро-Александровского массива (*1*) (владимироалександровский комплекс); каменские (Самаркинский террейн, окрестности с. Каменка) и сергеевские (Окраинско-Сергеевский террейн, окрестности с. Сергеевка) габброиды (сергеевский комплекс) (*2*) и офиолиты (*3*), бреевские габброиды (Самаркинский террейн, окрестности с. Верхняя Бреевка) (калиновский комплекс) (*4*). Скарны (*5*-*7*): Белогорского железорудного (*5*), Дальнегорского боросиликатного (*6*) и Николаевского полиметаллического (*7*) месторождений.

Триасовые контактово-метаморфизованные осадки Сихотэ-Алиня (8–10): силикатно-магнетитовые руды (8) и марганцево-силикатные породы (10) Широкопаднинской площади Ольгинского рудного района и марганцево-силикатные породы Горной площади Малиновского рудного района (9).

Тренды (*I–IV*): ультрабазитов Владимиро-Александровского массива (*I*), сергеевских и каменских габброидов с REE-спектрами IAB-типа (*II*) и офиолитов с REE-спектрами MORB-типа (*III*), бреевских габброидов (*IV*). Исходные данные для магматических пород на этом и других (см. ниже) рисунках приведены в работе [11]

На диаграмме Sm/Nd-Sm/Eu (рис. 3, *a*) точки габброидов Окраинско-Сергеевского террейна (включая Владимиро-Александровский массив) и его фрагментов (Каменский аллохтон), а также метаморфизованных офиолитов образуют три тренда. Тренд *I* соответствует

владимиро-александровским ультрабазитам с REE-спектрами IAB-типа. На тренде *II* размещены точки сергеевских и каменских габброидов (сергеевский комплекс) с REE-спектрами IAB-типа. На тренде *III* располагаются точки метаморфизованных офиолитов со спектрами MORB-типа. Точки бреевских габброидов (калиновский комплекс) образуют самостоятельный тренд, располагающийся выше трендов габброидов и офиолитов Окраинско-Сергеевского террейна. Точки скарнов и метаморфизованных металлоносных осадков Сихотэ-Алиня на диаграммах (рис. 3, *б*–*г*) с разбросом группируются вдоль трендов магматических пород Окраинско-Сергеевского террейна.

Из диаграмм (см. рис. 3) следует, что в скарнах и метаморфизованных металлоносных осадках присутствует вещество габброидов и офиолитов Окраинско-Сергеевского террейна и его фрагментов (включая Владимиро-Александровский массив и Каменский аллохтон). Напрашивается также вывод о том, что вещество пород калиновского комплекса в скарнах и контактово-метаморфизованных металлоносных осадках отсутствует. Однако этот вывод не соответствует действительности (см. ниже).

Большинство точек офиолитов на диаграмме Nb/Y–Zr/Y (рис. 4, *a*) размещено вблизи точки верхней деплетированной мантии (в поле N–MORB), что хорошо согласуется с их природой. Точки габброидов сергеевского, владимиро-александровского и калиновского комплексов, в зависимости от состава присутствующей в них осадочной компоненты, образуют несколько трендов, исходящих из точки примитивной мантии [11]. Положение точек скарнов (см. рис. 4, δ) вблизи «островодужного» тренда *I* и в поле N–MORB свидетельствует об определяющем влиянии на Nb–Y и Zr–Y отношения (в соответствующих пробах), также как и на значения Sm/Nd и Sm/Eu (см. выше), продуктов разрушения габброидов и офиолитов Окраинско-Сергеевского террейна и его фрагментов. Однако размещение значительной части точек скарнов всех изученных (различных по составу руд) месторождений на тренде *III* бреевских ультрабазитов указывает на присутствие в соответствующих пробах вещества пород калиновского комплекса. Точки метаморфизованных металлоносных осадков на диаграмме (см. рис. 4, *в*) тоже приурочены к трендам магматических пород.

На диаграмме ¹⁴⁷Sm/¹⁴⁴Nd–Y/Nb (рис. 5, *а*) габброиды и офиолиты образуют единый тренд, в пределах которого ¹⁴⁷Sm/¹⁴⁴Nd изменяется от значений, близких к таковым для PM и DM, до среднего значения (0.12) в коре, что, очевидно, связано с влиянием вещества коровой природы. На диаграмме ¹⁴³Nd/¹⁴⁴Nd-Y/Nb (см. рис. 5, б) точки владимиро-александровских и каменских габброидов располагаются на тренде, начинающемся в точке PM (BSE) и протягивающемся в сторону EM1, а точки сергеевских габброидов занимают близкое к нему положение. С другой стороны, представлению о смешении вещества BSE и EM1 или EM2 в сергеевских, каменских и владимиро-александровских габброидах противоречит положение точек этих пород на диаграммах Nb/Y-Zr/Y (см. рис. 4, a) и Zr/Nb-Nb/Th, которые образуют тренды, протягивающиеся в поля базальтов островных дуг, в том числе и в сторону, противоположную EM1 и EM2 (на диаграмме Zr/Nb–Nb/Th) [11]. Большинство точек сергеевских и каменских офиолитов с некоторым разбросом группируются на диаграмме (см. рис. 5, б) вблизи точки DM, что соответствует их природе. На диаграммах (рис. 5, *a*, *б*) все точки метаморфизованных металлоносных осадков, а также часть точек скарнов Николаевского и Дальнегорского боросиликатного месторождений расположены вблизи точек сергеевских и каменских габброидов или несколько смещены вниз. В этих образцах значения ¹⁴³Nd/¹⁴⁴Nd, ¹⁴⁷Sm/¹⁴⁴Nd и Y/Nb определялись продуктами экзогенного разрушения габброидов Окраинско-Сергеевского террейна (и его фрагментов) и, очевидно, некоторой примесью инородного осадочного вещества, связанного с «фоновым» осадконакоплением. Остальные точки скарнов Николаевского, Дальнегорского боросиликатного и Белогорского месторождений смещены вправо, в сторону более высоких Y-Nb-отношений. На диаграмме (см. рис. 4, б) им соответствуют точки этих же проб, расположенные на тренде бреевских габброидов или вблизи точек офиолитов. Таким образом, в этих пробах Y-Nb-отношения определялись веществом бреевских габброидов, сергеевских или каменских офиолитов (точки которых на рис. 4, а, тяготеют к полю N-MORB, а на рис. 5, *a*, расположены вблизи DM), а величины 143 Nd/ 144 Nd и 147 Sm/ 144 Nd — веществом габброидов Окраинско-Сергеевского террейна и отчасти, вероятно, инородным осадочным материалом.

Рис. 4. Положение точек габброидов (*a*), скарнов (*б*) и метаморфизованных металлоносных осадков (*в*) на диаграмме Zr/Y–Nb/Y [23]

Магматические породы (1-6): сергеевские и каменские офиолиты (1), сергеевские габброиды (сергеевский комплекс) (2) и габброиды владимиро-александровские (3) (владимиро-александровский комплекс), габброиды бреевские (4) и Дальнего Кута (5) (калиновский комплекс), диорит бухты Мелководной (6) (сергеевский комплекс).

Скарны (7-9): Николаевского (7), Дальнегорского боросиликатного (8) и Белогорского (9) месторождений.

Метаморфизованные металлоносные осадки (10–12): силикатно-магнетитовые руды Широкопаднинской площади (10), марганцево-силикатные породы Горной (11) и Широкопаднинской (12) площадей.

Меловые пелагические отложения п-ова Камчатский Мыс по средним содержаниям [24] (13, 14): известняки и кремнистые известняки (13), яшмы и известковистые яшмы (14).

Пунктирными линиями со стрелками показаны тренды состава пород и, одновременно, векторы изменения состава выплавок из РМ в результате контаминации осадочным веществом. Римские цифры соответствуют номерам трендов (см. текст). S1–S4 — осадочные породы разной фациальной принадлежности.

Поля пород и точки составов по К.С. Конди [23]: ОІВ — плюмовые внутриплитные базальты океанических островов, ОРВ — базальты океанических плато, МОRВ — базальты срединно-океанических хребтов, IAB — островодужные базальты, REC — рециклированная компонента, EN — обогащенная компонента, EM1 и EM2 — обогащенная мантия двух типов, HIMU — обогащенная U+Th/Pb мантия; PM — примитивная мантия, DM — верхняя деплетированная мантия, DEP — нижняя деплетированная мантия

Рис. 5. Положение точек габброидов, скарнов и триасовых метаморфизованных металлоносных осадков Сихотэ-Алиня на диаграммах 147 Sm/ 144 Nd-Y/Nb (*a*) и 143 Nd/ 144 Nd-Y/Nb (*b*).

Магматические породы (1-6): каменские (1) и сергеевские (2) габброиды, офиолиты (3), габброиды владимироалександровские (4), бреевские (5) и Дальнего Кута (6).

Скарны (7-9): Николаевского (7), Дальнегорского боросиликатного (8) и Белогорского (9) месторождений.

Контактово-метаморфизованные осадки (10, 11): силикатно-магнетитовые руды Широкопаднинской площади (10) и марганцево-силикатные породы Горной площади (11).

Две точки габброидов Дальнего Кута расположены на тренде *IV* за пределами рис. 5, *а* и б (в области высоких Y–Nb-отношений). Положение точек EM1 и EM2 на диаграмме показано приблизительно, так как, судя по литературным данным, им свойственны значительные пределы колебаний значений, по меньшей мере¹⁴³Nd/¹⁴⁴Nd

На диаграммахTh/Yb–Ta/Yb (рис. 6) поля сергеевских и владимиро-александровских габброидов, одной стороны, и калиновских, с другой, имеют разную ориентацию, что обусловлено разным химическим составом присутствующей в них ассимилированной осадочной компоненты [11]. Положение точек скарнов, марганцево-силикатных пород и силикатномагнетитовых руд Сихотэ-Алиня на этих диаграммах свидетельствует о смешении вещества сергеевских и владимиро-александровских габброидов и вещества континентальной окраины, вероятно, Ханкайского массива. Присутствие вещества калиновских габброидов (см. ниже), очевидно, из-за низкого содержания в них используемых элементов не фиксируется. В случае скарнов наблюдается более значительное влияние на величины Th/Yb и Ta/Yb вещества габброидов (большинство точек скарнов также, как и часть точек сергеевских и владимироалександровских габброидов, расположены в поле базальтов островных дуг) (см. рис. 6, a), а в случае триасовых метаморфизованных осадков прилегавших к островам акваторий — вещества континентальной окраины (см. рис. 6, δ).

Рис. 6. Положение точек состава габброидов, скарнов и триасовых метаморфизованных металлоносных осадков на диаграмме Th/Yb–Ta/Yb [25]:

1–3 — габброиды сергеевского (1), калиновского (2) и владимиро-александровского комплексов (3); 4 — офиолиты (блоки в сергеевских габброидах); 5–7: на рис. 6, а — скарны Николаевского (5), Дальнегорского боросиликатного (6) и Белогорского (7); на рис. 6, б — марганцево-силикатные породы Широкопаднинской площади (5) и силикатно-магнетитовые руды (6) Таухинского террейна, марганцевосиликатные породы Горной площади Самаркинского террейна (7).

IA — базальты островных дуг; CAM — базальты активных континентальных окраин; HAW — базальты Гавайских островов; DMS — деплетированная мантия; EMS — обогащенная мантия; MORB + WPB — тренд базальтов несубдукционных обстановок. Справа показаны тренды изменения состава пород за счет субдукционных компонентов (S), контаминации (C), компонентов внутриплитных плюмов (W) и фракционирования (F)

На диаграмме (рис. 7) точки Pb габброидов, руд скарновых и жильных (не вынесены из-за загруженности диаграммы) месторождений Сихотэ-Алиня и Pb островной дуги Хонсю приурочены к общему протяженному тренду, начинающемуся в точки BSE. Исключение составляют точки офиолитов, а также несколько точек сергеевских габброидов, в которых, вероятно, из-за метаморфизма существенно возросли значения ²⁰⁶Pb/²⁰⁴Pb.

Рис. 7. Особенности изменения изотопных отношений Рb габброидов и руд скарновых месторождений Сихотэ-Алиня.

Свинец скарновых месторождений (1–7): Верхнего (1); Николаевского (2); Первого Советского (3); Партизанского (4); Восточный Партизан (5); Второго Советского (6); Садового (7).

Магматические породы (8–11): сергеевские габброиды (8) и офиолиты (9); владимиро-александровские (10) и бреевские (11) габброиды.

Изотопные данные для Pb галенита руд скарновых месторождений заимствованы из сводки Ф. И. Ростовского [10]. Поля на диаграмме показаны по Р. Р. Альмееву [26], BSE по Х. Р. Роллинсону [27]

Накопление Pb скарновых месторождений происходило в лагунах (с начала карбона до позднего анизия) и прекратилось с началом погружения островов (поздний анизий) (см. рис. 2) [14]. Свинец жильных месторождений накапливался в течение двух периодов. Первый, главный период включает начало карбона — конец перми. Этот Pb при образовании жильных месторождений заимствован из литифицированных металлоносных осадков (предположительно, полиметаллических залежей) карбона-перми. Второй период, начавшийся сразу после завершения накопления Pb в лагунах (поздний анизий), соответствует периоду погружения островов, размыва коры выветривания и образования триасовых металлоносных осадков. Этот Pb и другие металлы, по-видимому, заимствованы из триасовых металлоносных отложений.

В последнее время в результате применения изотопных исследований в публикациях стали появляться и другие доказательства осадочной природы вещества некоторых скарновых месторождений Дальнегорского рудного района. К ним относится, в частности, изотопный состав бора и кислорода в рудных залежах Дальнегорского боросиликатного месторождения [13].

Заключение

Таким образом, в скарнах, триасовых контактово-метаморфизованных металлоносных осадках и в рудах скарновых и жильных месторождений Сихотэ-Алиня фиксируются геохимические и изотопные «метки» габброидов сергеевского, калиновского и владимироалександровского комплексов, офиолитов, а также, вероятно, вещества континентальной

окраины, предположительно Ханкайского массива. Габброиды этих комплексов имеют общий мантийный источник магматического материала — примитивную мантию (BSE) и образовались в результате взаимодействия плюма с осадочными породами океанической коры, предположительно, в основании островной дуги (габброиды и гранито-гнейсы Окраинско-Сергеевского террейна и его фрагментов и ультрабазиты Владимиро-Александровского массива) или океанических плато (габброиды калиновского комплекса). Они различаются между собой химическим составом присутствующей в них осадочной компоненты и, вероятно, возрастом. По меньшей мере, с середины девона упомянутые структуры в виде двух цепочек островов располагались вблизи окраины Ханкайского массива. Триасовые метаморфизованные металлоносные осадки и скарны Сихотэ-Алиня изначально являлись продуктами размыва латеритной коры выветривания (поздний анизий — конец триаса) островов, накапливавшимися в лагунах (в нынешнем виде, скарны) и в прилегавших к островам акваториях (метаморфизованные металлоносные осадки).

Свинец руд скарновых и жильных месторождений Сихотэ-Алиня по изотопным отношениям сопоставим со Рb габброидов владимиро-александровского, сергеевского и калиновского комплексов, которые и являлись его источниками.

ЛИТЕРАТУРА

1. Волохин Ю. Г., Михайлик Е. В., Бурий Г. И. Триасовая кремневая формация Сихотэ-Алиня. Владивосток: Дальнаука, 2003. 252 с. 2. Перевозникова Е. В. Марганцево-силикатные породы рудных районов Южного Сихотэ-Алиня: минералогия и генезис: дис. ... канд. геол.-минералог. наук. Владивосток, 2010. 192 с. 3. Казаченко В. Т., Перевозникова Е.В., Нарнов Г.А. Акцессорная минерализация в скарнах Дальнегорского рудного района (Сихотэ-Алинь) // ЗРМО. 2012. № 4. С. 74–96. 4. Золото и платиноиды в скарнах Ольгинского и Дальнегорского рудных районов Приморья и некоторые вопросы металлогении южной части Сихотэ-Алиня / В. Т. Казаченко [и др.] // ДАН. 2007. Т. 414, № 5. С. 667–671. **5**. *Казаченко В. Т.* Петрология и минералогия гидротермальных марганцевых пород Востока России. Владивосток: Дальнаука, 2002. 250 с. 6. Геодинамика, магматизм и металлогения Востока России / под ред. А. И. Ханчука. Владивосток: Дальнаука, 2006. Кн. 1. С. 1–572. 7. Приморье — новый перспективный регион России с золото-палладий-платиновым оруденением нетрадиционного типа / В. Т. Казаченко [и др.] // ДАН. 2009. Т. 425, № 5. С. 651–655. 8. Бериллийсодержащие марганцевые породы Центрального Сихотэ-Алиня / *В. Т. Казаченко* [*u др.*] // ДАН. 2005. Т. 400, № 6. С. 785–788. **9**. *Mottana A*. Blueschist-facies metamorphism of manganiferous cherts: A review of the alpine occurrences. Blueschists and eclogites // Geol. Soc. Amer. Mem. 1986. Vol. 164. Р. 267–299. 10. Ростовский Ф. И. Об изотопных отношениях свинца в галенитах рудных месторождений Востока Азии // Тихоокеанская геология. 2005. Т. 24, № 2. С. 33–45. 11. Габброиды сергеевского и калиновского комплексов Сихотэ-Алиня: геохимия и изотопные отношения самария, неодима, стронция и свинца / В. Т. Казаченко [и др.] // Вестник КНЦ РАН. 2015. 3/(22). С. 21–39. **12**. *Триас* и юра Сихотэ-Алиня: в 2 кн. Кн. 2: Вулканогенно-осадочный комплекс, палеобиогеография / отв. ред. П. В. Маркевич, Ю. Д. Захаров. Владивосток: Дальнаука, 2008. С. 307. 13. Баскина В. А., Дубинина Е. О., Авдеенко А. С. О природе рудоносных флюидов на Дальнегорском боросиликатном месторождении (Приморье) // ДАН. 2011. Т. 436, № 3. С. 363–367. 14. Роль офиолитов в металлогении Сихотэ-Алиня / В. Т. Казаченко [u др.] // ДАН. 2012. Т. 444, № 4. С. 412–416. 15. Ханчук А. И. Палеогеодинамический анализ формирования рудных месторождений Дальнего Востока России. Рудные месторождения континентальных окраин. Владивосток: Дальнаука, 2000. 276 с. 16. Синица С. М. О происхождении гнейсовой фации сергеевских габброидов (Южное Приморье) // Тихоокеанская геология. 2004. Т. 23, № 3. С. 32– 36. **17**. *Коваленко С. В., Давыдов И. А.* Сергеевский выступ — древняя структура Южного Сихотэ-Алиня // ДАН СССР. 1991. Т. 319, № 5. С. 1173–1177. **18**. *Октябрьский Р. А.* Петрология палеозойских интрузивных базитов Южного Приморья: дис. ... канд. геол.-минералог. наук. Владивосток, 1971. 256 с. 19. Ханчук А. И. Геологические строение и развитие континентального обрамления северо-запада Тихого океана: автореферат дис. ... докт. геол.-минералог. наук. М., 1993. 31 с. 20. U-Pb. Нf изотопные и REE систематики цирконов из сергеевского комплекса Сихотэ-Алиня: генезис кристаллов минерала-геохронометра и возраст этапов становления пород / А. А.Аленичева [и др.] // Изотопные системы и время геологических процессов: материалы IV Рос. конф. по изотопной геохронологии. СПб., 2009. Т. 1. С. 26–28. 21. Голозубов В. В., Мельников Н. Г. Тектоника геосинклинальных комплексов Южного Сихотэ-Алиня. Владивосток: ДВНЦ АН СССР, 1986. 128 с. 22. Ханчук А. И., Панченко И. В. Гранатовое габбро в офиолитах Южного Сихотэ-Алиня // ДАН СССР. 1991. Т. 321, № 4. С. 800-803. 23. Condie K. C. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? // Lithos. 2005. Vol. 79. Р. 491-504. 24. Савельева О. Л. Ритмичность осадконакопления и следы аноксических событий в меловых (альб-сеноманских) отложениях Восточной Камчатки: автореферат дис. ... канд. геол.-минералог. наук. М., 2009. 25 с. 25. Pearce J. A. Role of the sub-continental lithosphere in magma genesis at active continental margins // Continental basalts and mantle xenoliths / ed. by C. J. Hawkesworth, M. J. Norry. Nantwich. Cheshire: Shiva Publications, 1983. Р. 230–249. 26. Альмеев Р. Р. Геохимия магматизма вулкана Безымянный: признаки мантийного источника и условия фракционирования исходной магмы: автореферат дис. ... канд. геол.-минералог. наук. М., 2005. 26 с. 27. Rollinson H. R. Using geochemical data: evaluation, presentation, interpretation. Essex: Longman Group UK Ltd., 1993. 352 p.

Сведения об авторах

Казаченко Валентин Тимофеевич — доктор геолого-минералогических наук, заведующий лабораторией Дальневосточного геологического института ДВО РАН

E-mail: vkazachenko@mail.ru

Перевозникова Елена Валериевна — кандидат геолого-минералогических наук, старший научный сотрудник Дальневосточного геологического института ДВО РАН

E-mail: elenavalper@yandex.ru

Лаврик Сергей Николаевич — кандидат геолого-минералогических наук, старший научный сотрудник Дальневосточного геологического института ДВО РАН E-mail: s lavric@mail.ru

Author Affiliation

Valentin T. Kazachenko — Dr. Sci. (Geology and Mineralogy), Head of Laboratory of the Far East Geological Institute of the Far-Eastern Branch of the RAS

E-mail: vkazachenko@mail.ru

Elena V. Perevoznikova — PhD (Geology and Mineralogy), Senior Researcher of the Far East Geological Institute of the Far-Eastern Branch of the RAS

E-mail: elenavalper@yandex.ru

Sergei N. Lavrik — PhD (Geology and Mineralogy), Senior Researcher of the Far East Geological Institute of the Far-Eastern Branch of the RAS

E-mail: s_lavric@mail.ru

Библиографическое описание статьи

Казаченко, В. Т. Геохимические и изотопные «метки» древних габброидов в триасовых метаморфизованных металлоносных осадках, скарнах и рудах скарновых месторождений Сихотэ-Алиня / В. Т. Казаченко, Е. В. Перевозникова, С. Н. Лаврик // Вестник Кольского научного центра РАН. — 2016. — № 4 (27). — С. 16–36.

Reference

Kazachenko Valentin T., Perevoznikova Elena V., Lavrik Sergei N. Geochemical and Isotopic "Markers" of the Old Gabbroids in the Triassic Metamorphosed Metalliferous Sediments, Skarns and Ores of the Skarn Deposits in the Sikhote-Alin. *Herald of the Kola Science Centre of the RAS*, 2016, vol. 4 (27), pp. 16–36. (In Russ.).