= геохимия =

УДК 552 2:551.72 (571.5)

ОЧКОВО-ПОРФИРОБЛАСТИЧЕСКИЕ ГРАНИТОИДЫ ЗАПАДНОЙ ЧАСТИ АЛДАНСКОГО ЩИТА: ГЕОХИМИЯ, ВОЗРАСТ И МЕХАНИЗМ ОБРАЗОВАНИЯ

© 2012 г. М. З. Глуховский, академик М. И. Кузьмин, Т. Б. Баянова, П. А. Серов

Поступило 29.11.2011 г.

Западная часть Алданского щита занимает все пространство Олёкмо-Витимской горной страны. Здесь в пределах Чарской кольцевой структуры диаметром 260-280 км [1, 2] развиты практически все структурно-вещественные комплексы раннего докембрия: от кристаллических инфра-и супракрустальных пород палеоархея и мезоархейских метавулканогенно-осадочных образований зеленокаменных шовных структур (трогов) до осадочных пород Удоканского протоплатформенного прогиба. В регионе широко представлены разнообразные магматические и палингеннометасоматические породы архея и палеопротерозоя (рис. 1). Благодаря хорошей обнаженности здесь можно отчетливо наблюдать геологические соотношения между этими полихронными образованиями, возраст которых в большинстве случаев определен U-Pb- и реже Sm-Nd-методами (литературные источники см. [1]).

Однако до сих пор остался нерешенным вопрос о времени и геодинамических условиях формирования очково-порфиробластических гранитоидов, которые относят то к архею, то к палеопротерозою. Они слагают сублинейные протяженные (25—150 км) относительно узкие (10—40 км) тела часто S-образной формы. Трассируя древние зоны разломов, эти гранитоиды обычно занимают пространства между мезоархейскими зеленокаменными трогами в двух гранит-зеленокаменных поясах: Чаро-Олёкминском (субмеридиональном) и Каларо-Нюкжинском в зоне субширотного Станового разлома, подчиняясь в целом конфигурации Чарской кольцевой структуры (рис. 1).

Имеются только три датировки возраста подобных пород: это субщелочные граниты Чарадоканского и Джялтуктинского массивов возрастом

Российской Академии наук, Москва

Институт геохимии им. В.И. Вернадского

Сибирского отделения Российской Академии наук, Иркутск 2510 и 2675 \pm 15 млн лет соответственно [3, 4] (U–Pb-метод по цирконам) и метасоматические порфиробластические альбитизированные, окварцованные и амазонитизированные граносиениты ничатского комплекса вблизи мезоархейского Мельчикитского трога [5]. Их возраст — 1790 млн лет (Rb–Sr-метод) [3], скорее всего, отражает время наложенных процессов.

Целью настоящего исследования является установление времени и механизма образования очково-порфиробластических гранитоидов путем анализа впервые полученных данных по геохимии, U-Pb-датированию цирконов и Sm-Ndсистематике пород Камкандинского массива (№ 6 на рис. 1), который располагается между Олондинским и Итчилякским зеленокаменными трогами и является типичным представителем рассматриваемой группы гранитоидов. Общая протяженность массива, разделенного кайнозойской Токинской котловиной, — ~130 км, ширина от 20 км до полного выклинивания. Массив контролируется широкой полосой катаклазированных и милонитизированных гранитогнейсов вмещающей рамы, которые протягиваются вдоль его контактов и встречаются внутри гранитоидов.

Массив имеет зональное строение. В зоне экзоконтакта (первые десятки метров) по милонитизированным гранитогнейсам развиваются крупные ксенобластовые выделения альбита, который замещается микроклином в виде линзовидных агрегатов и крупных очковых порфиробластов. В эндоконтакте зерна позднего груборешетчатого микроклина содержат многочисленные реликты агрегатов раннего плагиоклаза (№ 20-27), тонкорешетчатого микроклина, биотита, амфибола и кварца. В наиболее широкой центральной зоне массива содержание порфиробластов позднего микроклина достигает 65%. Интерстиции между ними сложены плагиоклазом на 10-30%, кварцем – на 10-25%, биотитом - на 10-20% и амфиболом до 10%. Акцессорные минералы (до 1%) представлены сфеном, лейкоксеном, монацитом, ортитом, цирконом, эвксенитом, магнетитом, ильменитом, флюоритом, апатитом и торитом. Текстуры – очково-порфиробластические, порфиробластические,

Геологический институт

Геологический институт Кольского научного центра Российской Академии наук, Апатиты

Рис. 1. Схема геологического строения западной части Алданского щита с указанием среднего значения возраста структурно-вещественных комплексов и отдельных массивов, включая предполагаемые интервалы формирования (*в мард лет*).

1, 2 – области развития инфра- и супракрустальных комплексов архея (3.4–3.2), ремобилизованные в палеопротерозое (2.4–1.9): 1 – гранулито-гнейсовые и 2 – амфиболито-гнейсовые; 3 – гранит-зеленокаменные троги мезоархея (3.0–2.9); 4 – нерасчлененные ультрабазиты и метабазиты мезо- и неоархея (2.77–2.72); 5, 6 – палингенно-метасоматические гранитоиды неоархея: 5 – очково-порфиробластические (2.73–2.60) и 6 – чарнокиты и эндербиты (2.67– 2.62); 7–10 – палеопротерозойские образования: 7 – осадочные отложения удоканской серии (2.2–1.9), 8 – анортозиты (1.93), 9 – рапакивиподобные граниты кодарского комплекса (1.86), 10 – анортозит-габбро-норит Чинейского массива (1.85); 11 – нерасчлененные образования фанерозоя; 12 – разломы; 13 – место профиля отбора проб Г-168, Г-131 и Г-122.

Наименования структурно-метаморфических подразделений Алданского щита: Центрально-Алданская (А), Джугджуро-Становая (Б), Чаро-Олёкминская (В) области и зона Станового разлома (Г). Цифры в кружках – наименования объектов, на которые есть ссылки в тексте. Зеленокаменные троги: 1 – Олондинский, 2 – Итчилякский, 3 – Мельчикитский; 4 – дуниты массива Красная Горка; 5 – лампроиты массива Угдуска; 6–10 – массивы гранитоидов: 6 – Камкандинский, 7 – Джялтуктинский, 8 – Чарадоканский, 9 – Алтуаль-Джелуйский, 10 – Ничатский; 11 – Кодаро-Удоканский прогиб; 12 – Каларский массив анортозитов; 13 – Чинейский массив.

Вверху справа на врезке – положение района в структурах Сибирской платформы.

I – граница платформы, *2* – области развития докембрийского фундамента, *3* – границы Алдано-Станового нуклеара (*a*) и Чарской кольцевой структуры (*б*). *4* – контур основного рисунка.

овоидно-гнейсовидные, массивные. Структуры – бластогранитные, гетеробластовые, порфировидные.

Для проведения геохимических и изотопногеохронологических исследований на участке между Олондинским и Итчилякским зеленокаменными трогами из гранитоидов Камкандинского массива отобраны три штуфные пробы (рис. 1): проба Г-168 характеризует фельдшпатизированные милониты краевой зоны эндоконтакта, проба Г-131 — среднезернистую очковополосчатую разновидность зоны эндоконтакта, проба Г-122 — грубополосчатые очково-порфиробластические гранитоиды центральной части массива.

Определение петрогенных и редких элементов проводили в Институте геохимии им. А.П. Виноградова СО РАН методом ИСП-МС (аналитики Е.В. Смирнова и О.В. Зарубина). Видно (табл. 1), что от эндоконтакта к центру массива увеличивается содержание K_2O и SiO₂, незначительно – содержание Th и ряда редких элементов. Уменьшается содержание общего железа, Al₂O₃, MgO, CaO, Na₂O и P₂O₅, а также Mn, V, Co, Ni, Zn, Ba, Sr, Zr, Nb и элементов редкоземельной (РЗЭ) группы. Для сравнения величин содержания петрогенных элементов приведены данные по гранитоидам Чарадоканского массива [3, 7] и ничатского комплекса [5]. Все гранитоиды относятся к натриевокалиевой субщелочной петрохимической группе и переходят от гранодиоритов (в зоне эндоконтакта) в граниты и граносиениты центральных зон с заметным преобладанием К₂О над Na₂O (табл. 1).

Изотопно-геохронологические исследования проводили в Геологическом институте КНЦ РАН. При изучении цирконов использовали смешанный U–Pb-трассер ²⁰⁸Pb, а их морфологию и внутреннее строение наблюдали в спирте, в об-

ратно-отраженных электронах и в катодолюминесцентном изображении (табл. 2 и 3, рис. 2).

Из пробы Г-168 выделили три разновидности циркона (табл. 2, № 1-3). Первая – светло-розовые прозрачные длиннопризматические кристаллы гиацинтового типа размером 0.175×0.09 мм, $K_{\rm v} = 1.9$; масса среднего кристалла 5.6 · 10⁻⁶ г; зональность отсутствует. Вторая разновидность прозрачные длиннопризматические игольчатые кристаллы циркониевого типа с минеральными и газовыми микровключениями; средний размер 0.280×0.06 мм, $K_v = 4.6$; масса среднего кристалла 4 · 10⁻⁶ г; зональность отсутствует. Третья разновидность - полупрозрачные призматические кристаллы гиацинтового типа с корродированной поверхностью; средний размер 0.245×0.10 мм, $K_y = 2.5$; масса среднего кристалла 9.8 · 10⁻⁶ г; характеризуется тонкой зональностью, а также развитием поперечных трещин и минеральных включений. Изохронный возраст цирконов в верхнем пересечении конкордии и дискордии -2727 ± 8 млн лет, в нижнем — 1291 ± 28 млн лет.

Из пробы Г-131 выделили четыре разновидности цирконов (табл. 2, № 1-4). Первые две представлены обломками светло-коричневых прозрачных призматических кристаллов циркониевого типа с корродированной поверхностью граней; средние размеры 0.210×0.105 мм, $K_v = 2$; масса среднего кристалла 9 · 10⁻⁶ г. В одной разновидности кристаллы слабозональны, трещиноваты и содержат минеральные включения; в другой – отмечается тонкая ритмичная зональность. Третья разновидность – светло-желтые прозрачные призматические кристаллы; средние размеры 0.175×0.085 мм, $K_v = 2$; масса среднего кристалла 5 · 10⁻⁶ г; отмечаются тонкая ритмичная зональность и газовые включения. Четвертая разновидность объединила бледно-желтые прозрачные

Kontonent	Порода									
KOMHOHEHT	1	2	3	4	5	6	7	8		
SiO ₂	41.5	42.29	66.79	69.74	74.83	66.23	75.84	75.00		
TiO ₂	0.07	0.69	0.58	0.82	0.32	0.49	0.05	0.08		
Al_2O_3	1.25	5.57	14.43	12.58	11.77	14.73	12.88	13.25		
FeO	*10.2	4.30				2.68	0.51	0.01		
Fe ₂ O ₃		5.85	6.01	*5.66	*3.14	1.88	0.34	0.83		
MnO	0.18	0.15	0.11	0.06	0.03	0.07	След.	0.01		
MgO	46.3	27.66	0.52	1.09	0.33	2.01	0.12	0.30		
CaO	0.48	6.16	1.89	2.03	0.60	2.78	0.63	0.99		
Na ₂ O	0.01	0.30	4.10	2.82	2.43	3.20	1.96	2.05		
K ₂ O	0.002	3.97	3.76	3.62	5.14	3.93	6.50	5.85		
P_2O_5	0.09	0.09	0.13	0.22	0.05	0.27	0.08			
П.п.п.	7.66	2.40	1.50	1.40	1.27	1.81	0.76			
Сумма	100.08	97.72	99.82	99.82	99.91	100.08	99.67	98.37		
Be		1	4.0	2.08	1.90					
V	62	93	8.0	41	59					
Cr	5676	910		45	52					
Со	148	110	3.4	7.6	1.83					
Ni	2762	1200		27	18					
Cu		33	11	12.9	12.3					
Zn		65	160	83	54					
Ga			31	20	23					
Ge			1.6	1.78	1.61					
Rb	<1	180	101	81	112					
Sr	<1		181	169	61					
Y	<1.5	3.6	100	45	34					
Zr	2	150	1096	691	589					
Nb	<1	3	83	22	27					
Мо			1.8	3.01	2.53					
Sn		1	4.3	4.1	2.3					
Ba			2482	1417	748					
La	0.184	5.5	105	76	51					
Ce	0.458	19	273	170	143					
Pr			28	18	12					
Nd	0.266	14	122	73	45					
Sm	0.071	3.5	23	12.4	7.7					
Eu	0.017	0.70	3.4	2.15	0.71					
Gd	0.093	2.3	17	11.7	7.5					
Tb			3.2	1.69	1.23					
Dy	0.121	1	16	9.8	7.8					
Но		0.20	4.0	1.99	1.69					
Er	0.096	0.40	10	5.7	5.2					

Таблица 1. Содержание петрогенных (%), РЗЭ и редких элементов (г/т)

ДОКЛАДЫ АКАДЕМИИ НАУК том 443 № 4 2012

Таблица 1. Окончание

Компонент	Порода									
	1	2	3	4	5	6	7	8		
Tm			1.8	0.84	0.74					
Yb	0.120	0.38	11	5.5	4.81					
Lu	0.020	0.04	1.6	0.86	0.73					
Hf			26	13.7	14.3					
Та			3.8	1.45	1.14					
W				1.93	0.58					
Pb			25	16	14.7					
Th			19	18	20					
U			2.8	1.65	2.80					
Na ₂ O/K ₂ O	5	0.076	1.09	0.78	0.47	0.81	0.30	0.35		
$(La/Yb)_N$	0.10	9.66	6.38	9.24	7.09					
Eu/Eu*	0.654	0.76	0.53	0.55	0.29					

Примечания. Величины со звездочкой, соответствующие FeO и Fe₂O₃, представляют собой суммарное содержание, а без звездочки – раздельное содержание этих оксидов. Незаполненные графы означают отсутствие определений. Породы: 1 – дуниты массива Красная Горка [8]; 2 –лампроиты массива Угдуска [9]; 3–5 – гранитоиды Камкандинского массива: пробы Г-168, Г-131 и Г-122 соответственно; 6, 7 – граниты Чарадоканского массива из зоны эндоконтакта (6) и центральной части (7) [7]; 8 – граниты Ничатского комплекса [5].

длиннопризматические кристаллы с корродированной поверхностью; средние размеры 0.175 × $\times 0.06$ мм, $K_y = 2.9$; масса среднего кристалла $2.5 \cdot 10^{-6}$ г; отмечаются ядро, тонкая зональность, а также минеральные и газовые включения, глубокие поперечные трещины. Конкордантный возраст цирконов по трем первым разновидностям в верхнем пересечении равен 2591 ± 7 млн лет, а в нижнем – 275 ± 4 млн лет. Циркон четвертой разновидности попадает на конкордию в точку с возрастом 2.3 млрд лет – время палеопротерозойского термотектогенеза.

Из пробы Г-122 выделили четыре разновидности циркона (табл. 2, № 1-4). Первая представлена темно-коричневыми непрозрачными длиннопризматическими кристаллами циркониевого типа с корродированными гранями и темной краевой каймой; средние размеры 0.175 × 0.07 мм, $K_y = 2.5$; масса среднего кристалла 3.4 · 10⁻⁶ г; отмечаются минеральные и газовые включения, а также глубокие поперечные трещины. Вторая разновидность - светло-желтые прозрачные изометричные зерна с корродированной поверхностью; средние размеры 0.122×0.105 мм, $K_v = 1.2$; масса среднего кристалла 4.6 · 10⁻⁶ г; отмечаются секторная зональность и включения кварца. Третья разновидность – обломки бледно-розовых прозрачных призматических кристаллов циркониевого типа с корродированной поверхностью; средние размеры 0.150×0.07 мм, $K_v = 2.1$; масса среднего кристалла 2.9 · 10⁻⁶ г. Четвертая разновидность представлена светло-коричневыми прозрачными призматическими кристаллами цирконового типа; средние габариты и масса кристаллов аналогичны таковым предыдущей разновидности; кристаллы зональны и трещиноваты; отмечаются включения апатита. Конкордантный возраст цирконов по трем первым разновидностям в верхнем пересечении равен 2735 ± 10 млн лет, а в нижнем — 1241 ± 31 млн лет. Четвертая разновидность цирконов попадает на конкордию в точку с возрастом 2450 ± 10 млн лет и отражает время одного из этапов палеопротерозойской ремобилизации (см. пробу Г-131).

Таким образом, U-Pb-возраст цирконов, а также данные Sm-Nd-систематики (табл. 2 и 3) из разных зон Камкандинского массива свидетельствуют об их формировании в неоархее в течение длительного (2735-2591 млн лет) процесса калиевого метасоматоза и частичного плавления коры (ϵ_{Nd} – от –4.7 до –7.19). Этот процесс с относительно большой коровой предысторией: $T_{\rm Nd}({\rm DM}) = 3825 - 3479$ млн лет, развивался вдоль широкой и протяженной древней тектонической зоны. На севере ее перекрывают платформенные отложения; на юге она контролирует размещение неоархейских граносиенитов Джялтуктинского массива и субщелочных чарнокит-эндербитов Алтуаль-Джелуйского массива, который срезается палеопротерозойскими анортозитами Каларского массива, содержащими захваченные ксеногенные зерна циркона возрастом 2670 и 2620 млн лет [6] (рис. 1).

ГЛУХОВСКИЙ и др.

Разно- видность циркона	Навеска.	Содержание, ррт		Изотопный состав свинца *			Изотопные отношения и возраст, млн лет **			DI	
	МΓ	Pb	U	$\frac{^{206} \mathrm{Pb}}{^{204} \mathrm{Pb}}$	$\frac{\frac{206}{200}}{Pb}$	$\frac{^{206}\mathrm{Pb}}{^{208}\mathrm{Pb}}$	$\frac{\frac{207}{Pb}}{\frac{235}{U}}$	$\frac{\frac{206}{238}}{\text{Pb}}$	$\frac{^{206}\mathrm{Pb}}{^{207}\mathrm{Pb}}$	Kho	
Проба Г-168											
1	0.50	46.7	77.8	2649	5.4621	4.1088	12.1734	0.48540	2689	0.95	
2	0.30	19.6	36.0	1396	5.3699	5.8760	11.2929	0.46166	2629	0.94	
3	0.40	127.4	306.7	2560	6.1395	8.8101	8.18773	0.37603	2434	0.93	
Проба Г-131											
1	0.40	307.9	497.9	490	5.0510	3.3675	11.09770	0.466050	2584	0.99	
2	0.30	31.5	62.1	416	5.0032	3.2957	8.85226	0.377751	2557	0.89	
3	0.20	39.4	314.4	347	4.0754	2.9771	2.00964	0.110090	2920	0.96	
4	0.30	189.4	283.2	134	4.1300	2.3177	8.28739	0.411703	2300	0.68	
Προδα Γ-122											
1	0.30	59.5	107.4	734	5.2921	5.7171	11.4001	0.462214	2577	0.94	
2	0.30	48.2	97.5	1214	5.5405	5.7276	9.82998	0.418744	2560	0.93	
3	0.40	107.0	257.9	3227	6.1366	8.0110	8.16920	0.372551	2445	0.94	
4	0.40	39.3	74.1	1320	5.8160	6.4410	10.2816	0.459151	2481	0.43	

Таблица 2. Изотопные U-Pb-данные для циркона из гранитов Камкандинского массива

* Все отношения скорректированы на холостое загрязнение 0.08 нг для Pb и 0.04 нг для U, а также на масс-дискриминацию $0.12 \pm 0.04\%$.

** Коррекция с учетом примеси обыкновенного свинца определена на возраст по модели Стейси и Крамерса (J.S. Stacey, J.D. Kramers, 1975).

Проба	Содержа	ние, ррт	Изо	$T_{\rm c}$ (DM)		
	Sm	Nd	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	$\varepsilon_{\rm Nd}(T)$	¹ Nd(DWI)
Г-168	28.289	123.692	0.138239 ± 5	0.511242 ± 5	-7.19	3825
Γ-131	12.650	66.499	0.114983 ± 6	0.510959 ± 6	-4.7	3361
Γ-122	7.730	41.244	0.113280 ± 18	0.510842 ± 18	-6.41	3479

Таблица 3. Изотопные Sm–Nd-данные для гранитов Камкандинского массива

Возможно, после рифтогенеза и становления мезоархейских зеленокаменных трогов, выполненных породами вулканогенно-терригенной формации, вся область Чарской кольцевой структуры в неоархее продолжала быть ареной импульсивного массового внедрения пород мантийного происхождения (показаны на рис. 1: усл. обозн. 4) и образования гранитоидов корово-мантийной природы. К датированным представителям пород первого импульса относят дуниты массива Красная Горка (2774 ± 86 млн лет) [8], второго – лампроиты массива Угдуска (2732 \pm 11 млн лет), самые древние К-ультраосновные породы в мире [9, 10], и третьего – метасоматические очковопорфиробластические субщелочные гранитоиды и эндербит-чарнокиты (2730-2590 млн лет) Камкандинского и Алтуаль-Джелуйского массивов.

Все эти массивы контрастных по составу пород располагаются в единой S-образной субмеридиональной тектонической зоне (соответственно № 4-6, 9 на рис. 1). Эволюция этого импульсивного процесса видна на диаграмме распределения РЗЭ в ряду: дуниты-лампроиты-гранитоиды (табл. 1, рис. 3). Спектр распределения РЗЭ в дунитах свидетельствует о том, что источником мафических магм были изотопно-однородные долгоживущие мантийные резервуары, обедненные легкими РЗЭ, - следствие удаления материала континентальной коры из недифференцированной мантии [8]. Содержание РЗЭ в дунитах несколько выше, чем в океанических гипербазитах, и приближается к уровню концентрации в океанических базальтах. Изотопные характеристики лампроитов [9, 10] свидетельствуют об обога-

Рис. 2. U–Pb-диаграммы с конкордией для цирконов из гранитоидов Камкандинского массива. Пробы: а) Г-168, б) Г-131, в) Г-122. Описания морфологии и размеров зерен цирконов см. в тексте.

щении мантийных источников несовместимыми элементами (метасоматическая модель мантии [11]). По распределению РЗЭ лампроиты заметно дифференцированы – $(La/Yb)_N = 9.66$, что приближает их к К-гранитоидам, которые кроме высокого отношения $(La/Yb)_N = 9.24-6.38$ отличаются устойчивым наклоном в сторону ТРЗЭ и заметным Еu-минимумом – Eu/Eu* = 0.55–0.29. Это связано с парциальным плавлением корового материала, когда в субстрате остается плагиоклаз и формируется метасоматический микроклин. Доказательством парциального плавления коры является дайка гранитов возрастом 2738 ± 8 млн лет вблизи с одним из зеленокаменных трогов р. Олёкма (в оригинале [12] нет ее точной привязки). Аналогичный спектр нормированных РЗЭ

Рис. 3. Нормированное по хондриту распределение РЗЭ в неоархейских дунитах массива Красная Горка [8], лерцолитах массива Угдуска [9] и гранитоидах Камкандинского массива.

Номера 1-5 соответствуют номерам пород в табл. 1.

свойствен неоархейским (2.8–2.5 млрд лет) К-гранитоидам гранит-зеленокаменных поясов на других щитах, которые формировались в условиях корово-мантийного взаимодействия [13] (рис. 3). Такое же взаимодействие мы предполагаем и для процесса образования гранитоидов Камкандинского массива, для которых типичны Еuминимум, обогащение ТРЗЭ, отрицательные значения ε_{Nd} , а также длительная коровая предыстория (табл. 3).

Это видно и на дискриминантной диаграмме Nb-Y (рис. 4а). Точка состава гранитов приконтактовой зоны раположена на границе области внутриплитных гранитов с полем типов гранитов истощенной континентальной литосферы или аномальных рифтов океанических хребтов, которые связаны с мантийными источниками. В это поле попадают точки составов пород внутренней части массива. Такая же геохимическая особенность массива видна и на спайдердиаграмме (рис. 46). На ней гранитоиды внутренней зоны сопоставимы с трендом гранитов истощенной континентальной коры, для которой высокое содержание Rb и Th относительно Та и Nb характеризует корово-доминантную модель формирования гранитов, в то время как тренд от Та до Yb более типичен для базальтов океанических хребтов [14]. Похожая тенденция распределения с чуть более высоким содержанием элементов присуща и гранитоидам приконтактовой зоны массива.

Рассматривая геодинамику формирования Камкандинского массива, следует еще раз под-

Рис. 4. Дискриминантная диаграмма Nb–Y (а) и спайдердиаграмма (б) по [14] для неоархейских гранитоидов Камкандинского массива.

а) Поля гранитов: І – островодужных и синколлизионных, ІІ – внутриплитных и ІІІ – океанических хребтов. Штриховая линия – граница для аномальных рифтов океанических хребтов. б) Выделено поле пределов величин содержания элементов гранитов истощенной континентальной литосферы [14]. Условные обозначения см. на рис. 3.

черкнуть, что он пространственно сопряжен с дунитами массива Красная Горка и лампроитами массива Угдуска, связанными с плюмом [9, 10]. Поэтому можно говорить о подъеме в неоархее мантийного плюма, материал которого, судя по геохимическим особенностям Камкандинского массива, взаимодействовал с архейской корой возрастом 3.8—3.4 млрд лет. При этом состав метамор-

физованной мантии был близок к неистощенной мантии типа PREMA. Изогнутая S-образная форма Камкандинского и других подобных ему массивов указывает на их становление в сопряженных условиях сдвига и растяжения, которые компенсировались масштабным сжатием и сдвигом толщ, слагавших смежные зеленокаменные троги. Для всех трогов характерны сдвиги и сжатые килевидные складки. Такие синхронные сопряженно-компенсационные тектонические условия, проявленные в едином концентрическом объеме земной коры, могли быть связаны с импульсивным подъемом мантийного плюма [15] на заключительной стадии неоархейского этапа плюм-тектонического режима. Это гармонирует с представлениями о ведущей роли в тектонической эволюции Алданского щита долгоживущего (архей-палеопротерозой) мантийного мегаплюма, структурным выражением которого являются Алдано-Становое сиалическое ядро (нуклеар) и его сателлит – Чарский гнейсовый овал [1, 6] (рис. 1).

СПИСОК ЛИТЕРАТУРЫ

- 1. Глуховский М.З. // Геотектоника. 2009. № 3. С. 1–28.
- 2. *Салоп Л.И. //* Бюлл. МОИП. Отд. геол. 1971. Т. 46. В. 4. С. 5–30.
- Государственная геологическая карта Российской Федерации. 1:1000000. Новая серия. Лист О-(50), 51.

Алдан. Объяснительная записка / Под ред. Е.П. Миронюка. СПб.: Изд-во ВСЕГЕИ, 1998. 446 с.

- Ризванова Н.Г., Левченков О.А., Богомолов В.С. и др. // Геохимия. 1969. № 7. С. 1076–1087.
- 5. *Архангельская В.В.* // ДАН. 1968. Т. 183. № 5. С. 1166–1169.
- 6. Глуховский М.З., Кузьмин М.И., Баянова Т.Б. и др. // ДАН. 2011. Т. 439. № 5. С. 651–659.
- 7. Миронюк Е.П., Любимов Б.К., Магнушевский Э.Л. Геология западной части Алданского щита. Л.: Недра, 1971. 238 с.
- 8. *Пухтель И.С., Журавлев Д.З. //* Петрология. 1993. Т. 1. № 3. С. 306-344.
- 9. *Владыкин Н.В. //* Геология и геофизика. 1997. Т. 38. № 1. С. 123–135.
- 10. Владыкин Н.В., Лепехина Е.А. // ДАН. 2009. Т. 429. № 6. С. 774–778.
- 11. Hofmann A.W. // Nature. 1997. V. 385. P. 219-229.
- Nutman A.P., Chernyshev I.V., Baadsgaard H., Smelov A.P. // Precambr. Res. 1992. V. 54. № 2/4. P. 195–210.
- 13. *Teylor S.R., McLennan S.M.* The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985. 312 p.
- 14. *Pearce J.A., Harris N.B.W., Tindle A.G.* // J. Petrol. 1984. V. 25. № 4. P. 956–983.
- 15. Морозов Ю.А. // Геотектоника. 2002. № 6. С. 3-24.