В.М. Троицкий, А.Ф. Соколов, В.А. Истомин, С.Г. Рассохин, В.П. Ваньков, А.В. Мизин, А.Е. Алеманов

Физическое моделирование процессов гидратообразования в режиме фильтрации природного газа в поровой среде Чаяндинского нефтегазоконденсатного месторождения

Хорошо известно, что минерализация воды затрудняет процессы гидратообразования как в объеме, так и в пористой среде [1]. Минерализация пластовой воды Чаяндинского нефтегазоконденсатного месторождения (НГКМ) составляет 397 г/дм³, что является достаточной гарантией отсутствия гидратообразования даже в аномально низких термобарических пластовых условиях, а именно при пластовом давлении $P_{nn} = 13,2$ МПа, горном давлении $P_{zop} = 35$ МПа и пластовой температуре $t_{nn} = 11$ °C. Разработка и эксплуатация проблемного месторождения, каким является Чаяндинское НГКМ, потребует новых технологических подходов и решений. Одной из таких инноваций может стать технология водогазового воздействия [2]. В случае принятия решения об использовании указанной технологии важно заранее знать минимально необходимый уровень минерализации закачиваемой в пласт воды, исключающий в дальнейшем развитие процессов гидратообразования в пористой среде месторождения.

Методика проведения эксперимента

Экспериментально доказано, что при попеременной закачке газа сепарации и пластовой воды в модели пласта при пластовых условиях Чаяндинского НГКМ и 100%-ной нефтенасыщенности (ботуобинский горизонт) гидратообразования не обнаруживается [3–4]. Предполагается, что процессы гидратообразования в этом случае затруднены из-за сильной минерализации пластовой воды, и, значит, высокая минерализация пластовой воды играет положительную роль при водогазовом воздействии на нефтяной пласт ботуобинского горизонта Чаяндинского НГКМ. Проблема, однако, заключается в наличии крайне незначительных объемов пластовой воды на месторождении. Применение же подтоварной или пресной (речной) воды для поддержания пластового давления и вытеснения нефти может привести к гидратообразованию и блокированию фильтрационных каналов.

С целью установления предельного уровня минерализации закачиваемой в пласт воды, гарантирующего отсутствие гидратообразования при сочетанном воздействии газа сепарации и воды, проведены исследования возможности гидратообразования в тонких трубках при совместной фильтрации газа и пластовой воды различной минерализации. В качестве газа использовались метан и газ сепарации, а в качестве пластовой воды – растворы хлорида натрия NaCl и хлорида кальция CaCl₂ в дистиллированной воде. Содержание натриевых и кальциевых хлоридов выбиралось в пропорции 40:60 весовых частей. Указанная пропорция соответствует содержанию NaCl и CaCl₂ в пластовой воде вендско-нижнекембрийского и вендского терригенного водоносных комплексов Чаяндинского НГКМ [5].

Для изучения процессов гидратообразования при термобарических условиях Чаяндинского НГКМ и совместной фильтрации воды и газа создан экспериментальный стенд – установка двухфазной фильтрации на основе гидравлической схемы (рис. 1). Эксперимент состоит в фильтрации двухфазного потока газа и воды с малой скоростью в тонкой стальной трубке при $P_{n_3} = 13,2$ МПа и $t_{n_3} = 11$ °С (пластовые условия Чаяндинского НГКМ). В условиях малых скоростей закачки флюидов

Ключевые слова:

гидраты метана, фильтрация, гидратообразование, гидраторазложение, капилляр, пористая среда, минерализация воды.

Keywords:

methane hydrates, filtering, formation of hydrates, decomposition of hydrates, capillary, porous medium, water salinity.

и при достаточной длине трубки газ и минерализованная вода успевают охладиться до температуры гидратообразования. Прецизионные насосы 1 осуществляют вытеснение газа и пластовой воды из соответствующих аккумуляторов 2. Давление на выходе аккумуляторов (на входе трубки) Р_{вх} соответствует Р_{пл} и измеряется датчиками давления 3. Через клапаны 4 и трехходовой вентиль 5 двухфазный поток проходит по трубке 6 до регулятора давления 7, поддерживающего в трубке пластовое давление на уровне 13,2 МПа. Регулятор 7 расположен вне зоны термостатирования модели при комнатной температуре. Тем самым исключается возможность образования гидратов в самом регуляторе. После регулятора 7 профильтрованные флюиды подаются на сепаратор 8 низкого (атмосферного) давления. Подаваемые в трубку 6 флюиды и сама трубка тщательно термостатируются при температуре 11 °С.

В процессе фильтрации флюидов в случае образования газовых гидратов в трубке 6 при неизменной скорости фильтрации начинается рост P_{ex} , обусловленный блокировкой капиллярной трубки 6 гидратами, что и фиксируется датчиками давления 3. При превышении P_{ex} определенной величины (давления «закупорки») срабатывает специальная автоматиче-

ская защита, останавливающая насосы. Таким образом, по резкому росту давления на входе трубки и остановке насосов легко установить факт образования газовых гидратов. Если фильтрация флюидов при заданной минерализации пластовой воды не прекращается и входное давление в процессе эксперимента не изменяется, то делается вывод об отсутствии гидратообразования при данном уровне минерализации пластовой воды.

В качестве тонкой трубки, выполняющей, по существу, роль смесителя потоков газа и пластовой воды, выбрана стальная трубка с внутренним диаметром 1 мм и длиной 2,0 м. Общая объемная скорость фильтрации – 0,1 см³/мин. Выбранное соотношение газообразной и жидкой фаз в потоке равно 3:1. Данные условия остаются неизменными на протяжении всех опытов по фильтрации газообразных флюидов и пластовой воды различной минерализации.

Для проведения экспериментов были приготовлены соответствующие флюиды. Газ метан использовался согласно ТУ 51-841-87 [6]. Состав модельного газа сепарации выбран по результатам исследования пробы оригинального газа Чаяндинского НГКМ (табл. 1).

В ходе эксперимента получены качественные оценки наличия или отсутствия газовых

Рис. 1. Гидравлическая схема установки для исследования образования газовых гидратов при двухфазном водогазовом потоке в тонкой трубке: 1 – измерительные насосы фильтрации; 2 – аккумуляторы с газом (метан или газ сепарации); 3 – датчики входного давления; 4 – клапаны; 5 – трехходовой вентиль; 6 – тонкая стальная трубка – смеситель потоков; 7 – регулятор давления; 8 – сепаратор – сборная емкость

гидратов при фильтрации газа и пластовой воды различной минерализации (табл. 2).

На рис. 2 представлены графики изменения P_{ex} в процессе фильтрации газа сепарации и пластовой воды при различных уровнях минерализации последней. Видно, что критическое значение уровня минерализации пластовой воды M_{xp} в случае совместной фильтрации с газом сепарации находится в интервале

$$200 < M_{\kappa p} < 300 \ г/дм^3.$$
 (1)

Аналогичные зависимости получены для случая фильтрации чистого метана и пластовой воды. На рис. 3 показаны характерные зависимости *P*_{ex} от времени при фильтрации метана и пластовой воды различной минерализации.

Таблица 1
Состав модельного газа сепарации
Чаяндинского НГКМ

Компонент	Содержание, % мольн.
CH ₄	82,284
C_2H_6	9,706
C ₃ H ₈	2,656
iC_4H_{10}	0
nC_4H_{10}	0,737
$neoC_5 + iC_5H_{12}$	0
nC ₅ H ₁₂	0,166
C ₆ H ₁₄	0,059
C ₇ H ₁₆	0,022
C ₈ H ₁₈	0,008
C ₉ H ₂₀	0,011
He	0
H ₂	0
N ₂	4,351
CO ₂	0
Всего	100

Таблица 2

Результаты исследования образования газовых гидратов в тонкой трубке при различных уровнях минерализации пластовой воды

	73	
Уровень минерализации	Наличие г	идратов
модельной пластовой воды,	газ	MOTOH
<u>г/дм</u> ³	сепарации	мстан
397,0 (пластовая вода)	Нет	Нет
300	Нет	Нет
200	Есть	Нет
100	Есть	Есть
50	Есть	Есть
0 (дистиллированная вода)	Есть	Есть

№ 4 (24) / 2015

Видно, что в случае фильтрации метана гидраты образуются при меньших уровнях минерализации пластовой воды. Действительно, при минерализации пластовой воды на уровнях 200 и 300 г/дм³ давление на входе трубки остается стабильным во времени. По характеру поведения представленных зависимостей можно заключить, что критический уровень минерализации в случае фильтрации метана лежит в интервале концентраций

$$150 < M_{\mu p} < 200 \, \Gamma/дм^3.$$
 (2)

Согласно рис. 2–3 и соотношениям (1)–(2) метан в случае водогазового воздействия является более предпочтительным агентом в плане отсутствия рисков гидратообразования.

В работе [4] показано, что поровая среда оказывает влияние на процессы гидратообразования: начало этих процессов сдвигается в область более низких температур при неизменном пластовом давлении. Следовательно, в случае фильтрации двухфазных потоков через пористую среду при использовании технологии водогазового воздействия риски гидратообразования будут еще меньше, чем для описанных выше экспериментов по фильтрации газов и воды в тонких трубках. Таким образом, соотношения (1)–(2) могут измениться только в сторону уменьшения значений M_{vp} .

Для изучения процессов гидратообразования при фильтрации метана в пористой среде эксперименты выполнены на керновых моделях пласта Чаяндинского НГКМ. Образование газогидратов в пористой среде качественно можно определить по снижению проницаемости по газу модели пласта по отношению к ее проницаемости в безгидратной области, поскольку газогидраты уменьшают пористость модели и характеризуются полной непроницаемостью для воды и газа.

Предварительными экспериментами была установлена зависимость проницаемости по азоту от водонасыщенности для единичного образца керна при атмосферных условиях и температуре +23 °C. По результатам эксперимента определено значение остаточной водонасыщенности, выше которой проницаемость по азоту начинает резко снижаться. Это значение водонасыщенности можно назвать критической водонасыщенностью $S_{e.\kappa}$. При искусственно созданной и поддерживаемой $S_{e.\kappa}$ удобно контролировать процессы гидратообразования

Рис. 2. Зависимости *Р_{ех}* от времени при совместной фильтрации газа сепарации и пластовой воды различной минерализации

Рис. 3. Зависимости *Р_{вх}* от времени при совместной фильтрации метана и пластовой воды различной минерализации

в модели пласта в условиях фильтрации через нее метана и непрерывного уменьшения температуры. Действительно, во-первых, при этой водонасыщенности имеется достаточное количество воды для образования гидратов. Вовторых, если при фильтрации метана через поровую среду последняя будет терять влагу из-за выноса воды и осушки модели, это сразу же будет зафиксировано аппаратурой по увеличению проницаемости модели. (Напомним, что при гидратообразовании, наоборот, проницаемость модели должна резко падать.)

Для определения S_{в.к} эксперимент проводился на единичном цилиндрическом образце керна хамакинского горизонта Чаяндинского НГКМ. Образец представлен крупнозернистым кварцевым песчаником, содержание галита менее 1 %. Характеристики сухого образца представлены в табл. 3. Результаты измерений проницаемости единичного образца керна по азоту при различной водонасыщенности и комнатных условиях представлены на рис. 4. Видно, что значение остаточной водонасыщенности, выше которой проницаемость керна по азоту резко снижается, соответствует ~64 %. Данное значение остаточной водонасыщенности $S_{a.x}$ использовалось в дальнейшем как наиболее чувствительное при исследованиях Проницаемость, мД Объем пор, см³

Лаб. номер

0.01

0,1 0,2 0,3 0,4 0,5

Рис. 4. Зависимость проницаемости

единичного образца керна Чаяндинского

НГКМ по азоту от водонасыщенности

при атмосферных условиях

гидратообразования в керновых моделях пла-

вания при фильтрации сухого метана через со-

ставную керновую модель пласта с остаточной

водонасыщенностью 64 % и изменении темпе-

ратуры использовались образцы керна из разре-

за талахского горизонта Чаяндинского НГКМ.

Известно, что керновый материал Чаяндинского

Для исследования условий гидратообразо-

ста Чаяндинского НГКМ.

001	лазца					
126	50/13	218,0)	1,77		3,00
1000 Шроницаемость, мд 100 Проницаемость, мд 10 Проницаемость, мд					НГК в пр меня обра мож эксп вани ле э ванн	М содер оцессе ф ются фи зцов (по ет приве еримента ю. В это ксперимо ой водой Данные п ояние об
				1 1	~	

0,6

0,7 0,8 0,9

Водонасыщенность, %

1.0

Характеристики единичного образца керна Чаяндинского НГКМ (хамакинский горизонт)

Длина, см

НГКМ содержит галит, который растворяется в процессе фильтрации воды [7]. При этом изменяются фильтрационно-емкостные свойства образцов (пористость и проницаемость), что может привести к ошибочной интерпретации экспериментальных данных по гидратообразованию. В этой связи все образцы керна в начале эксперимента были промыты дистиллированной водой.

Диаметр, см

2.955

Данные в табл. 4 и 5 отражают начальное состояние образцов до и после отмывки от солей соответственно. Процесс отмывки проводился помещением всех образцов в кернодержатель, подключением последнего в гидравлическую схему с выходом в атмосферу и прокачиванием через сформированную модель около 500 см³ дистиллированной воды при комнатной температуре.

Сравнение параметров образцов до и после отмывки от солей дистиллированной водой (см. табл. 4 и 5) показало, что после отмывки абсолютная проницаемость по газу изменилась почти у всех образцов, при этом диапазон изменений весьма широк. Около половины (45 % от общего количества) образцов продемонстрировали незначительное изменение проницаемости в пределах 1,0–1,4 раза. Еще столько же показали изменения в пределах 2,2–11,5 раза. Один из образцов увеличил свою проницаемость более чем в 42 раза. Пористость образцов увеличилась в 1,2–2,43 раза. Причина

Таблица 4

	oroopannink din cosdanna modelin ninacra, do ormininka or costen								
Номер образца	Лаб. номер	Длина, мм	Диаметр, мм	Пористость по газу, %	Объем пор, см ³	Проницаемость, мД			
1	554/13	30,01	29,48	13,01	2,67	24,00			
2	556/13	30,03	29,50	8,83	1,81	33,00			
3	564/13	30,02	29,58	10,23	2,11	36,00			
4	565/13	30,02	29,56	9,61	1,98	16,00			
5	568/13	30,04	29,57	3,94	0,81	28,00			
6	573/13	30,00	29,53	11,89	2,44	1,30			
7	560/13	30,01	29,50	12,50	2,56	14,00			
8	569/13	30,02	29,56	14,94	3,08	26,00			
9	575/13	30,04	29,54	11,90	2,45	44,00			

Характеристики образцов Чаяндинского НГКМ, отобранных для создания модели пласта, до отмывки от солей

Таблица 3

Пористость

по газу, %

8.6

отооранных для создания модели пласта, после отмывки от солеи								
Номер образца	Лаб. номер	Длина, мм	Диаметр, мм	Пористость по газу, %	Объем пор, см ³	Проницаемость, мД		
1	554/13	30,01	29,48	15,90	3,265	29,40		
2	556/13	30,03	29,50	12,20	2,514	46,30		
3	564/13	30,02	29,58	13,30	2,758	35,40		
4	565/13	30,02	29,56	15,60	3,447	183,30		
5	568/13	30,04	29,57	9,60	1,990	175,00		
6	573/13	30,00	29,53	16,20	3,357	2,90		
7	560/13	30,01	29,50	14,90	3,100	16,10		
8	569/13	30,02	29,56	18,40	3,822	75,20		
9	575/13	30,04	29,54	21,20	4,413	1856,50		

Таблица 5

X	арактеристики	образцов	Чаянд	инского	нгкм,	
отоблании	и пла создания	молели п	паста	после от	MLIDUH	от соле

изменения структуры порового пространства – растворение дистиллированной водой галита, входящего в состав кернового материала.

Из полученной после отмывки от солей коллекции образцов керна (см. табл. 5) были отобраны 4 образца (рис. 5) с характерной абсолютной проницаемостью порядка 30 мД, из них сформирована модель пласта начальной водонасыщенности ~ 64 % для дальнейших исследований гидратообразования в режиме фильтрации метана (табл. 6).

Исследование процесса гидратообразования в указанной модели пласта проводили в следующей последовательности:

1) создание начальной остаточной водонасыщенности S_{go} ;

 сборка модели пласта из испытуемых образцов в кернодержатель;

 создание термобарических условий в модели пласта и термостатирование метана;

 фильтрация сухого метана через керновую модель при пластовых условиях при одновременном охлаждении модели.

 $S_{a.o}$ модели пласта, равная 63,51 %, создавалась насыщением каждого образца модели дистиллированной водой до значений, указанных в табл. 6. Пластовые условия при фильтрации соответствовали: $P_{nn} = 20$ МПа; $P_{cop} = 35$ МПа. Температура модели пласта плавно умень-

Рис. 5. Образцы керна для формирования модели пласта Чаяндинского НГКМ

шалась от комнатной до 14 °C. Заметим, что в ходе эксперимента устанавливалось давление, несколько превышающее характерное для Чаяндинского НГКМ ($P_{nn} = 13,2$ МПа). Указанный прием использовался для того, чтобы гарантированно наблюдать процессы гидратообразования при фильтрации метана в исследуемом интервале температур.

На рис. 6 представлена схема экспериментальной установки для изучения процессов образования и разложения газовых гидратов при фильтрации метана в пористой среде.

Работа установки при охлаждении модели пласта осуществляется следующим образом. Подающий насос 1 работает в режиме поддержания постоянного расхода метана 0,05 см³/мин, а принимающий насос 2 – в режиме поддержания постоянного порового давления 20 МПа. Метан фильтруется через модель пласта 3. Насос 4 поддерживает постоянное *P*_{гор} = 35 МПа. Дифференциальный манометр 5 измеряет перепад давления на модели пласта при фильтрации газа, а датчик температуры 6температуру модели пласта в процессе охлаждения. Гидродинамический шунт 13 отключен от схемы с помощью запорного вентиля 14 и не участвует в процессе фильтрации метана при охлаждении модели пласта. Ультразвуковой сепаратор высокого давления 16 используется в схеме как индикатор отсутствия вышедшей воды в процессе фильтрации метана через водонасыщенную модель.

На рис. 7 показана динамика изменения перепада давления ΔP при фильтрации сухого метана через модель пласта с остаточной водонасыщенностью 63,51 %, сформированную из кернового материала Чаяндинского НГКМ, и последовательном уменьшении температуры,

	The state of the s			74		
№ образца (в порядке от входного торца модели), модель	Проницаемость, мД	Длина, мм	Диаметр, мм	Пористость по газу, %	Объем пор, см ³	Остаточная водонасыщенность $S_{a,a}$ %
556/13	46,3	30,01	29,63	10,51	2,20438	62,18
564/13	35,4	30,02	29,67	11,67	2,43985	64,14
554/13	29,4	30,0	29,62	14,2	2,95648	64,15
560/13	16,1	30,0	29,65	13,21	2,78059	63,33
Модель	28,6	120,03	29,73	12,40	10,3813	63,51

Параметры модели пласта Чаянлинского НГКМ

Рис. 6. Схема экспериментальной установки для изучения процессов образования и разложения газовых гидратов при фильтрации метана в пористой среде: 1, 2 – подающий и принимающий насосы соответственно; 3 – модель пласта; 4 – насос для создания горного давления; 5 – дифференциальный манометр; 6 – датчик температуры; 7, 8 – входной и выходной датчики давления соответственно; 9 – датчик горного давления; 10–12, 14, 15 – запорные вентили; 13 – гидродинамический шунт; 16 – ультразвуковой сепаратор высокого давления

а на рис. 8 – динамика изменения разности объемов ΔV , накопленных нагнетающим и принимающим метан насосами в ходе этого процесса. Измеренная при температуре t = 23 °C фазовая проницаемость модели пласта по метану оказалась довольно низкой и равной 0,165 мД.

Температура системы понижалась при непрерывной фильтрации метана через пористую среду поэтапно:

• сначала от 24 °С до 17 °С в течение ~15 ч; при этом перепад давления ΔP_{MT} на керновой модели пласта почти сразу снизился до 13 кПа и установился на этом постоянном уровне;

• затем в точке 1–1' (см. рис. 7) началось дальнейшее снижение температуры, и сразу ΔP_{MT} стал уменьшаться до 7,4 кПа, а ΔV – резко возрастать (см. рис. 8); в точке 2 (см. рис. 7), когда t_{MII} достигла 14,8 °C, ΔР_{MII} резко уменьшился до 0.

В дальнейшем в точке 2 (см. рис. 7–8) снижение температуры системы было приостановлено, но температура продолжала по инерции снижаться до значения 14,3 °С (момент времени 3). При этом перепад давления стал плавно нарастать, начиная от момента времени 2 до момента времени 3, что свидетельствовало о растущем сопротивлении потоку метана со стороны пористой среды. При этом величина ΔV также нарастала, подтверждая тем самым уменьшение выхода газа из модели пласта. Логично предположить, что практически весь подаваемый на вход модели пласта газ расходовался при этом на гидратообразование. В результате в момент времени 3 (см. рис. 7–8)

Таблица 6

Рис. 7. Динамика изменения ΔP_{MII} на керновой модели пласта при фильтрации метана через керновую модель пласта в процессе охлаждения системы

Рис. 8. Динамика изменения ΔV в процессе охлаждения системы

произошло перекрытие всех фильтрационных каналов в испытуемой керновой модели пласта, и фильтрация метана через нее прекратилась.

Приведенное описание эксперимента показывает, что по динамике изменений $\Delta P_{M\Pi}$ (см. рис. 7) и ΔV (см. рис. 8) удобно исследовать процессы гидратообразования в пористой среде. В начале гидратообразования происходит уменьшение перепада давления $\Delta P_{M\Pi}$, обусловленное снижением давления на входе модели пласта за счет того, что часть газа идет на гидратообразование. При этом фильтрация метана продолжается, и только при полном перекрытии всех фильтрационных каналов в точке 3 (см. рис. 7) фильтрация прекращается, что и фиксируется резким неограниченным ростом ΔP_{MII} .

Напомним, что явные признаки гидратообразования обнаружены только для модели пласта, не в полной мере отражающей реальное состояние флюидально-коллекторской системы Чаяндинского НГКМ. Действительно, вопервых, начальная водонасыщенность в 64 % не является характерной для Чаяндинского НГКМ, для которого $S_{a,o}$ редко превышает 10 %. Во-вторых, начальная водонасыщенность создавалась насыщением образцов керна дистиллированной водой, в то время как минерализация пластовой воды в условиях Чаяндинского НГКМ составляет 397 г/дм³. В-третьих, керновый материал, образующий модель пласта, был предварительно отмыт от солей и галита с помощью дистиллированной воды, что привело к отсутствию солей в модели пласта и тем самым облегчило начало процессов гидратообразования. В-четвертых, во время эксперимента пластовое давление поддерживалось на уровне $P_{nл.эк} = 20$ МПа, что почти на 70 % выше реального $P_{nл}$ для Чаяндинского НГКМ (при давлении $P_{nл.эк} > P_{nл}$ вероятность образования гидратов метана существенно возрастает [1]).

Таким образом, даже в этих условиях приближенного моделирования флюидальноколлекторной системы Чаяндинского НГКМ, способствующих гидратообразованию, процессы гидратообразования в эксперименте обнаружены при фильтрации метана только при температуре 14 °С. Напомним, что *t*_{лл} продуктивных пластов Чаяндинского НГКМ соответствует значениям 9-13 °С [8]. На основании проведенных экспериментов можно с большой уверенностью говорить о пренебрежимо малой вероятности гидратообразования в реальных пластовых условиях Чаяндинского НГКМ при закачке газа сепарации и пластовой воды.

Режим работы установки при нагревании модели использовался для изучения процессов гидраторазложения (см. рис. 6): модель пласта, находящаяся при температуре 14,3 °C, медленно нагревалась до комнатной температуры. При этом определялось количество метана, появ-

ляющегося при разложении газогидратов. При этом на установке с помощью вентиля 15 отключался дифференциальный манометр 5, с помощью вентиля 12 - ультразвуковой сепаратор 16 и насос 2, а начало модели пласта 3 и ее конец соединялись с помощь вентиля 14 гидродинамическим шунтом 13, представляющим собой отрезок капиллярной трубки. Введение в схему гидродинамического шунта 13 позволяет оперативно регистрировать дополнительные объемы газа, выделяющиеся при разложении газогидратов. Насос *1* работает в режиме поддержания давления $P_{_{nл.э\kappa}} = 20$ МПа, принимая и точно регистрируя количество газа, выделяющегося из гидратов при нагревании модели. При этом к измеренной величине ΔV вводилась поправка, обусловленная расширением газа в «мертвых» объемах гидравлической схемы.

На рис. 9 показаны зависимости температуры модели пласта $t_{M\Pi}$ и объема выделяющегося метана V_{CH_4} при разложении гидратов. Видно, что уже в точке 2 при температуре ~14,7 °С начинается процесс разложения газогидратов, выражающийся в появлении метана при нагревании модели пласта и заканчивающийся при температуре ~20,4 °С (точка 3–3'). В результате разложения газогидратов в исследуемой керновой модели пласта при ее разогреве от 14,3 °С до 20,4 °С выделилось 1,71 см³ метана при давлении 20 МПа. Зная начальную водонасыщенность модели пласта $S_{ao} = 63,51$ %, объем пор модели $V_{nop} = 10,3813$ см³, а также используя известное из научной литературы [1]

Рис. 9. Динамика объема метана, выделяющегося из керновой модели пласта при нагревании

в процессе нагрева модели пласта от 14,7 до 20,4 °С при давлении 20 МПа									
Температура	Объем вещества, выделившийся из газогидратов метан вода			Объем воды в газогидратах	Объем воды в модели	Доля воды в газогидратах относительно общего объема воды в модели			
°C	CM ³	моли	CM ³	моли	CM ³	CM ³	%		
14,7	0	0	0	0	1,789		27,14		
15	0,050	0,000518	0,054	0,003002	1,735		26,32		
16	0,288	0,002970	0,310	0,017227	1,479		22,43		
17	0,806	0,008248	0,862	0,047837	0,927	6 502	14,06		
18	1,478	0,015027	1,571	0,087154	0,218	0,393	3,31		
19	1,636	0,016518	1,728	0,095802	0,062		0,93		
20	1,691	0,016961	1,775	0,098374	0,015		0,22		
20,4	1,709	0,017098	1,789	0,099169	0		0		

Таблица 7

108

Расчетные характеристики объемов метана и воды, выделившихся из газогидратов в процессе нагрева молели пласта от 14.7 ло 20.4 °С при лавлении 20 МПа

соотношение – 1 моль CH₄ приходится на 5,8 молей H₂O, справедливое для газовых гидратов метана, можно рассчитать объем воды, связанной гидратами при различных температурах (табл. 7).

Согласно данным табл. 7 в случае модели пласта Чаяндинского НГКМ с остаточной водонасыщенностью 63,51 % при фильтрации метана и охлаждении модели пласта до температуры 14,7 °С приблизительно 30 % содержащейся в модели воды переходит в газогидратную форму.

Таким образом, разработана методика изучения закономерностей процессов образования и разложения газовых гидратов при фильтрации флюидов в капиллярных трубках и в пористой среде при пластовых термобарических условиях.

Экспериментально показано, что при существующей водонасыщенности (менее 15 %) и минерализации пластов (397 г/дм³), а также при реальных термобарических условиях Чаяндинского НГКМ ($P_{ns} = 13,2$ МПа; $P_{sop} = 35$ МПа и $t_{ns} = 11$ °C)

Список литературы

- Истомин В.А. Газовые гидраты в природных условиях / В.А. Истомин, В.С. Якушев. – М.: Недра, 1992. – 236 с.
- Рассохин С.Г. Моделирование водогазового воздействия на низкопроницаемый нефтяной пласт / С.Г. Рассохин, В.М. Троицкий, А.В. Мизин и др. // Газовая промышленность. – 2009. – № 5 – С. 40–44.

риски гидратообразования при закачке метана, газа сепарации, а также при их совместном воздействии с пластовой водой отсутствуют.

Экспериментально установлены значения критического уровня минерализации пластовой воды $M_{\kappa p}$, при которых отсутствует гидратообразование при фильтрации метана и газа сепарации соответственно. Обнаружено, что применительно к метану гидратообразование наступает при уровне минерализации воды ниже 150 г/дм³, а применительно к газу сепарации – ниже 200 г/дм³.

Выявлены фильтрационные параметры перепада давления ΔP , а также избыточного объема газа ΔV , выделяющегося при разложении гидратов, как наиболее чувствительные к процессам образования и разложения газовых гидратов.

Показано, что при фильтрации метана в модели пласта из кернового материала Чаяндинского НГКМ при $P_{n\pi} = 20$ МПа заметное гидратообразование возможно только при начальной водонасыщенности выше 64 % и пластовой температуре порядка 14 °C. При этом в гидратную форму переходит до 30 % содержащейся в модели пласта воды.

 Troitsky V.M. Justification of the selection of oil displacement agents for development of oil/gas/ condensate fields in Eastern Siberia on the basis of experimental study results / V.M. Troitsky, S.G. Rassokhin, A.F. Sokolov et al. // Book of abstracts of International Gas Union Research Conference (IGRC-2014), September 17–19, 2014. – Copenhagen, Denmark, 2014.

- Троицкий В.М. Образование и разложение газовых гидратов метана при фильтрации газа / В.М. Троицкий, А.Ф. Соколов, В.А. Истомин и др. // Вести газовой науки: Проблемы разработки газовых, газоконденсатных и нефтегазоконденсатных месторождений. – М.: Газпром ВНИИГАЗ, 2014. – № 4 (20). – С. 135–145.
- Изюмченко Д.В. Оценка и совместимость водных ресурсов Чаяндинского НГКМ для технического водоснабжения и заводнения / Д.В. Изюмченко, Г.П. Косачук, С.В. Буракова и др. // Газовая промышленность. – 2009. – № 11. – С. 43–46.
- ТУ 51-841-87 с изм. 1–3. Метан газообразный. Технические условия.
- Ryzhov A.E. Improving fluid filtration to saline reservoir rocks / A.E. Ryzhov, B.A. Grigoriev, D.M. Orlov // Book of abstracts of International Gas Union Research Conference (IGRC-2014), September 17–19, 2014. – Copenhagen, Denmark, 2014.
- Люгай Д.В. Особенности освоения и проектирования разработки Чаяндинского НГКМ / Д.В. Люгай // Газовая промышленность. – 2010. – № 14/654: спец. выпуск. – С. 56–58.