УДК 622.02

В.С. Жуков, П.Ю. Иванов

Изменение физических свойств коллектора как результат роста эффективного давления в процессе разработки месторождения (моделирование на примере Южно-Киринского месторождения)

Ключевые слова:

горная порода, эффективное давление, пористость, газопроницаемость, скорость упругих волн, пластовые условия.

Keywords:

rock, effective pressure, porosity, gas permeability, velocity of elastic waves, in-situ conditions. Известно, что разработка месторождений нефти и газа, как правило, сопровождается снижением пластового давления, что в свою очередь изменяет физические свойства коллекторов [1, 2]. Давление вышележащих пород (горное давление) при этом не изменяется, но происходит перераспределение напряжений, т.е. часть нагрузки, которую принимал на себя содержащийся в порах горных пород флюид, начинает воспринимать матрица горной породы. Таким образом, снижение пластового (порового) давления и повышение эффективного давления являются основными причинами изменения физических свойств коллекторов, сопровождающего разработку месторождений углеводородов [3, 4]. Под эффективным давлением в данном случае понимается разница между геостатическим, или всесторонним, давлением P_{ec} и поровым (пластовым) давлением P_{ns} [5]:

$$P_{g\phi} = P_{gc} - kP_{nx}$$

где величина P_{sc} определяется мощностью и плотностью вышележащих горных пород; k – коэффициент, зависящий от свойств скелета породы и слагающих ее минералов (обычно k = 1).

Исследования изменения физических свойств коллектора при моделировании роста $P_{3\phi}$ проводились на образцах горных пород Южно-Киринского нефтегазоконденсатного месторождения (НГКМ). Южно-Киринское НГКМ открыто в 2010 г. в Охотском море на северо-восточном шельфе о. Сахалин на расстоянии 35 км от берега и в 6 км на юго-восток от Киринского месторождения. Глубина моря на месторождении меняется в интервале 110–320 м.

Объектом исследований служила коллекция образцов горных пород дагинской свиты Южно-Киринского НГКМ. Моделировались пластовые условия, и в этих условиях определялись основные физические свойства каждого образца, такие как: пористость, сжимаемость порового пространства, удельное электрическое сопротивление с расчетом параметра пористости, скорость распространения упругих волн с расчетом упругих коэффициентов (коэффициента Пуассона, модулей Юнга, сдвига, объемного сжатия). В общей сложности были исследованы более 170 образцов терригенных отложений дагинской свиты, представленных различными песчаниками и алевролитами, из 6 скважин (глубина отбора 2600–2900 м). Диапазон пористости исследованых образцов горных пород составляет от 2,90–33,4 %, диапазон газопроницаемости – 3–1600 мД в атмосферных условиях.

Исследования изменений физических свойств горных пород проводились с помощью моделирующей пластовые условия установки ПУМА-650. Процесс разработки месторождения моделировался путем повышения $P_{s\phi}$ с 37,0 до 47,0 МПа (такой рост наблюдается при снижении P_{ns} на 10,0 МПа). Данные, полученные при исследовании кернового материала для каждого петрофизического параметра, в процессе обработки были сгруппированы по соответствующим давлениям. Далее из всего массива результатов измерения петрофизических параметров выделялись максимальные, минимальные и рассчитывались средние значения, после чего были построены графики зависимости средних значений исследуемых физических свойств от изменения $P_{3\phi}$ в диапазоне 2–37,0 МПа (см. далее рис. 1–8). $P_{3\phi}$, равное 37,0 МПа, условно принято началом разработки (значения параметров, или физических свойств, при $P_{3\phi} = 37,0$ МПа приняты за 100 %). Затем аппроксимацией зависимости изменения средних значений каждого параметра (физического свойства) от $P_{3\phi}$ получены значения параметров при $P_{3\phi} = 47,0$ МПа, т.е. наглядно отображены их ожидаемые величины при снижении P_{n3} на 10,0 МПа. Несмотря на единый принцип построения всех графиков, полученные зависимости уникальны в отношении каждого петрофизического параметра.

На рис. 1 представлены изменения коэффициента пористости K_n при увеличении $P_{3\phi}$. Показано, что при $P_{3\phi} = 47,0$ МПа среднее ($K_{n,cp}$) значение K_n уменьшится на 0,049 абсолютных процентов, или на 0,24 %, относительно значения K_n при $P_{3\phi} = 37,0$ МПа.

Рассмотрим зависимость изменения объемной плотности ρ от $P_{s\phi}$ (рис. 2). Ожидаемый рост среднего (ρ_{cp}) значения ρ при снижении P_{nn} на 10,0 МПа составил 0,00071 г/см³, а относительное изменение – 0,034 %.

Изменение K_n зависит от сжимаемости порового пространства B_{nop} . Влияние роста $P_{3\phi}$ на B_{nop} представлено на рис. З. Аппроксимация зависимости средних ($B_{nop,cp}$) значений B_{nop} показала, что при снижении P_{nn} на 10,0 МПа можно ожидать снижения $B_{nop.cp}$ с 1,60·10⁻⁴ до 1,43·10⁻⁴ 1/атм, или на 1,67·10⁻⁵ 1/атм, что составляет 10,5 % от значения B_{nop} при начальном $P_{nop} = 37,0$ МПа.

Рассмотрим влияние увеличения $P_{3\phi}$ на удельное электрическое сопротивление (УЭС) (рис. 4), которое имеет важное значение в комплексе стандартных геофизических исследований скважин. Зависимость средних (УЭС_{*cp*}) значений УЭС от $P_{3\phi}$ аппроксимируется экспоненциальной кривой. В результате аппроксимации было установлено, что при снижении $P_{n\pi}$ на 10,0 МПа ожидается увеличение УЭС_{*cp*} с 2,497 Ом[•]м при $P_{3\phi}$ = 37,0 МПа до 2,654 Ом[•]м при $P_{3\phi}$ = 47,0 МПа, или на 0,157 Ом[•]м, что составляет относительный рост на 6,3 %.

Результатом интерпретации данных электрического каротажа является получение зависимости K_n от параметра пористости P_n . Влияние $P_{3\phi}$ на P_n представлено на рис. 5. По зависимости средних значений P_n от $P_{3\phi}$ было получено значение P_n при $P_{3\phi} = 47,0$ МПа как ожидаемое при снижении P_{n3} на 10,0 МПа. Абсолютное увеличение P_n составило 1,264, а относительный рост – 6,4 %.

В составе методов геофизических исследований скважин важное место занимает акустический каротаж, который позволяет определить интервальное время или скорость

*R*² – достоверность аппроксимации данной зависимостью; *n* – число образцов, по которым получены средние значения

Рис. 2. Влияние эффективного давления на объемную плотность

распространения упругих волн. Рассмотрим влияние эффективного давления на скорости распространения продольных (рис. 6) (V_{np}) и поперечных (V_{nn}) (рис. 7) упругих волн. С помощью аппроксимации зависимости средних значений были получены ожидаемые значения V_{np} и V_{nn} при снижении P_{nn} на 10,0 МПа. V_{np} в среднем увеличилась на 0,070 км/с, а относительное изменение составило 2,0 %. V_{nn} в среднем увеличилась на 0,0187 км/с, относительное изменение составило 1,045 %.

По известным значениям скоростей распространения упругих волн в горных поро-

Рис. 5. Зависимость параметра пористости от эффективного давления

Рис. 4. Влияние эффективного давления на удельное электрическое сопротивление

дах и плотности этих пород можно рассчитать значения таких упругих модулей, как модуль Юнга, коэффициент Пуассона, модуль сдвига, модуль объемного сжатия.

Снижение пластового давления в процессе разработки месторождения приведет не только к уменьшению величины пористости, но и снизит значения проницаемости по газу. Выполненные экспериментальные исследования позволили получить зависимости коэффициента газопроницаемости (K_{np}) от $P_{s\phi}$ (рис. 8). Аппроксимацией зависимости средних значений K_{np} были получены ожидаемые значения

Рис. 6. Изменение скорости продольных волн при росте эффективного давления

газопроницаемости образцов горных пород при снижении пластового давления на 10,0 МПа.

Газопроницаемость исследованных образцов горных пород при моделировании увеличения эффективного давления на 10 МПа в среднем снизилась на 0,242 мД, а относительное изменение составило 0,144 %, т.е. закономерно газопроницаемость снижается на довольно малую величину. Наибольшие абсолютные изменения газопроницаемости происходят в образцах с высокой проницаемостью, но они не превышают 1,0 % величины газопроницаемости при 37 МПа.

В таблице представлена сводка изменений средних значений исследуемых петрофизических параметров при росте эффективного давления на 10 МПа.

Рис. 8. Изменение газопроницаемости при увеличении эффективного давления

В заключение необходимо еще раз подчеркнуть: моделирование процесса разработки месторождения при снижении пластового давления, сопровождаемого ростом эффективного давления на 10,0 МПа, показало, что можно ожидать снижения средней величины K_n на 0,05 абсолютных процентов, или на 0,24 %, и снижения K_{np} на 0,24 мД, или на 0,14 %. Все изменения петрофизических параметров рассчитаны относительно величин этих параметров при $P_{3\phi}$ в пласте 37,0 МПа, значения которых были приняты за 100 %.

Таким образом, данные об изменениях ряда петрофизических параметров проанализированы с точки зрения их зависимости от изменения $P_{3\phi}$ в пласте, получены в первом приближении

при росте $P_{3\phi}$ с 57 до 47 мпа			
Петрофизические параметры	Снижение (↓) / рост (↑)	Абсолютное	Относительное
	параметра	изменение	изменение, 70
$K_n, \%$	\downarrow	0,05	0,24
ρ, г/см ³	1	0,0007	0,03
<i>B_{пор}</i> , 1/атм	\downarrow	1,67.10-5	10,5
УЭС, Ом м	1	0,157	6,3
P_n	1	1,26	6,4
<i>V_{пр}</i> , км/с	1	0,07	2,0
<i>V_{nn}</i> , км/с	1	0,19	1,0
<i>К_{пр},</i> мД	Ļ	0,24	0,14

Абсолютные и относительные изменения петрофизических параметров при росте *P* , с 37 до 47 МПа

оценки этих изменений. Отмечена необходимость дополнительных экспериментальных испытаний образцов в термобарических условиях, моделирующих пластовые, для уточнения этих зависимостей, зачастую отличающихся от линейных. Полученные данные могут быть использованы как для оценки изменений пластовых условий по данным повторных геофизических исследований скважин, так и для оценки степени изменения продуктивных горизонтов в процессе разработки месторождения, сопровождающейся снижением пластового давления.

Список литературы

- Авчян Г.М. Петрофизика осадочных пород в глубинных условиях / Г.М. Авчян, А.А. Матвеенко, З.Б. Стефанкевич. – М.: Недра, 1979. – 224 с.
- Дахнов В.Н. Геофизические методы определения коллекторских свойств и нефтегазонасыщенности горных пород / В.Н. Дахнов. – М.: Недра, 1975. – 334 с.
- Жуков В.С. Лабораторное моделирование снижения пластового давления при разработке месторождений нефти и газа / В.С. Жуков // Бурение и нефть. – 2006. – № 1. – С. 8–9.
- Кузьмин Ю.О. Современная геодинамика и вариации физических свойств горных пород / Ю.О. Кузьмин, В.С. Жуков. – М.: Из-во МГГУ, 2004. – 262 с.
- Добрынин В.М. Деформации и изменения физических свойств коллекторов нефти и газа / В.М. Добрынин. – М.: Недра, 1965. – 163 с.