УДК 550.42

РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ В ТУРМАЛИНЕ И ХЛОРИТЕ ОЛОВОНОСНЫХ АССОЦИАЦИЙ: ФАКТОРЫ, КОНТРОЛИРУЮЩИЕ ФРАКЦИОНИРОВАНИЕ РЗЭ В ГИДРОТЕРМАЛЬНЫХ СИСТЕМАХ

© 2008 г. Н. С. Бортников*, Н. В. Гореликова*, П. Г. Коростелев**, В. Г. Гоневчук**

*Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН

119017, Москва, Ж-17, Старомонетный пер., 35 **Дальневосточный геологический институт ДВО РАН 690022, Владивосток, просп. 100-летия Владивостоку, 159 Поступила в редакцию 16.07.2008 г.

Исследовано распределение РЗЭ в минералах оловоносных рудно-магматических систем Дальнего Востока в пределах Комсомольского, Хинганского, Баджальского районов Приамурья, Кавалеровского, Лесозаводского, Вознесенского, Фурмановского и других – в Приморье. Основное внимание уделено турмалину и хлориту, дополнительно исследовались сопутствующие минералы – биотит, полевой шпат, апатит, флюорит и карбонаты. Установлено, что основными факторами, влияющими на фракционирование лантаноидов в изученных минералах, являются температура, Ећ и рН минералообразующей среды, кристаллохимический фактор, коэффициент распределения лантаноидов между флюидом и минералом и процессы комплексообразования, нарушающие когерентное поведение лантаноидов. Охарактеризована эволюция флюидного режима на разных этапах развития.

введение

Редкоземельные элементы (РЗЭ), благодаря их уникальным свойствам, широко применяются для моделирования геологических процессов, как в магматических системах, так и в гидротермальных средах. Их можно отнести к важнейшим геохимическим индикаторам. Особенности их поведения в различных породах наряду с изотопными соотношениями используются для решения различных вопросов - источника магм, процессов дифференциации и смешения магм и условий отделения флюидов и их роли в мобилизации и переносе рудных компонентов. Наиболее детально поведение РЗЭ изучено в магматических процессах, в которых поведение лантаноидов связано с их распределением между расплавом, флюидом и кристаллизующимися фазами (Жариков и др., 1993; Расс и др., 2006). Гораздо меньше данных по распределению РЗЭ в водных средах и гидротермальных системах и недостаточно исследованы процессы фракционирования между минералом и гидротермальным раствором. На основании экспериментальных исследований и термодинамических расчетов (Sverjensky, 1984; Brookins, 1983) установлены некоторые общие закономерности, характеризующие поведение лантаноидов в водных системах. Предполагается, что степень подвижности РЗЭ в водных средах зависит от таких факторов как температура, pH и Eh среды минералообразования, а также процессов комплексообразования. Эффект РЗЭ-содержащего флюида на неизмененную породу определяется кинетикой процессов фракционирования флюид-порода и кристаллохимией минералов (Brookins, 1989). Ряд публикаций посвящен изучению гидротермальных минералов – шеелита, апатита, флюорита, карбонатов, барита, полевых шпатов, турмалина и других (Chaderi et al., 1999; Morgan, Wandless, 1980; Guichard et al., 1979; Bau, 1991; King, Kerrich, 1988; Lottermoser, 1992; Shao-Yong et al., 2004). Установлено, что каждый минерал характеризуется присущим ему спектром и преобладанием легких (LREE) или тяжелых (HREE) в составе лантаноидов. Несмотря на значительное количество публикаций, посвященных разным минералам, до сих пор нет данных, характеризующих роль факторов, определяющих фракционирование РЗЭ в гидротермальных системах.

Настоящая статья посвящена результатам исследований по распределению РЗЭ в минералах различных оловоносных ассоциаций и оловорудных месторождений, сформированных в разных температурных и физико-химических условиях. Рассмотрено поведение лантаноидов в минералах различных пород и руд на разных этапах эволюции рудно-магматических систем Дальнего Востока, начиная от магматической стадии и кончая гидротермальной. Поведение РЗЭ в минералах гидротермально. Поведение РЗЭ в минералах гидротермально их эволюции. Характер фракционирования РЗЭ зависит от многих параметров – состава расплава и флюида, особенно-

Адрес для переписки: Н.С. Бортников. E-mail: bns@igem.ru

стей взаимодействия флюида с вмещающими породами, температуры, кислотности–щелочности и окислительно-восстановительного состояния среды, кристаллохимических свойств минералов и процессов комплексообразования во флюиде. Выявление факторов, контролирующих поведение РЗЭ в системе флюид/минерал, является одной из важных задач при оценке параметров флюидного режима.

ОБЪЕКТЫ ИССЛЕДОВАНИЯ

Основное внимание уделено изучению оловоносных минеральных ассоциаций из рудных районов Дальнего Востока (фиг. 1) главным образом из оловорудных месторождений Приамурья и Приморья. Наиболее детально исследованы турмалины и хлориты, постоянные спутники оловянных руд (табл. 1, 2), из разных ассоциаций, включая граниты, пегматиты, грейзены, скарны и гидротермальные образования (Бортников и др., 2005). Для сравнения приводятся данные изучения некоторых месторождений Забайкалья.

Интерес к турмалину обусловлен следующими причинами.

Турмалин – широко распространенный минерал в оловорудных месторождениях. Он кристаллизуется на всех стадиях их формирования, включая магматическую, грейзеновую и более позднюю гидротермальную, в широком интервале физико-химических параметров. Поэтому возможно проследить поведение лантаноидов в различных средах, характеризующихся различными физико-химическими условиями минералообразования, – от магматической до гидротермальной.

В турмалине проявлен гетеровалентный изоморфизм разнообразных катионов (Mg, Fe²⁺, Fe³⁺, Ca, Al, Mn, Li), размещающихся по двум октаэдрическим позициям. Чтобы выяснить роль кристаллохимического фактора в распределении лантаноидов в кристаллической структуре турмалина, проанализированы различные члены изоморфного ряда минерала – шерлиты – шерлоэльбаиты – дравиты – Са-дравиты – эльбаиты.

Хлориты широко распространены в оловянных рудах Кавалеровского района Приморья и образуются преимущественно на постмагматическом этапе эволюции рудообразующих систем в предрудную – пропилитовую, рудную – касситерит-хлоритовую и позднюю кварц-сульфидную стадии. Эти минералы отличаются высоким содержанием железа, низкой степенью окисленности Fe, по данным Мессбауэровской спектроскопии (Bortnikov, Gorelikova, 2006), и представлены прохлоритом, рипидолитом и тюрингитом.

МЕТОДЫ ИССЛЕДОВАНИЯ РЗЭ

Турмалины, хлориты и другие минералы выделены из пород и руд. Мономинеральные фракции, чистота которых не менее 99%, отобраны под бинокулярным микроскопом. Пробы были протравлены в концентрированной HF, чтобы избавиться от сростков турмалина с кварцем. Методом масс-спектрометрии с индуктивно-связанной плазмой (ICP-MS) проанализировано 30 образцов турмалинов, 40 – хлоритов и около 15 сопутствующих минералов (ИГЕМ РАН). Флюорит, апатит, полевые шпаты, биотит, карбонаты и хлорит разлагались по стандартной методике. Турмалин (навеска 50 мг) разлагался в смеси кислот HF и H_2SO_4 в микроволновой установке фирмы "Milestone" по 4-ступенчатой программе "Turmalin". Для отгонки HF и H₂SO₄ полученный в результате разложения раствор выпаривался, и сухой остаток дважды выпаривался водой для удаления F-иона. Далее 10 мл 26%-го раствора HNO₃ переводили в мерные колбы на 50 мл, добавляли внутренний стандарт и измеряли концентрацию РЗЭ на масс-спектрометре PQ2 фирмы "VG Instruments" (Англия). Минимальный предел обнаружения РЗЭ составляет 10⁻⁹–10⁻¹² г/мл (аналитики С.А. Горбачева, В.Д. Сидельникова, Л.С. Цимлянская, ИГЕМ РАН).

КРАТКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЙ И УСЛОВИЯ НАХОЖДЕНИЯ В НИХ ТУРМАЛИНА И ХЛОРИТА

Оловянные месторождения Комсомольского рудного района (рудно-магматической системы – РМС), часто рассматривающиеся в качестве "типовых" объектов турмалинового типа касситерит-силикатной формации (Радкевич и др., 1971), сформировались в Мяо-Чанской зоне мелового магматизма (Гоневчук, 2002), локализованной в

Фиг. 1. Оловорудные районы юга Дальнего Востока, представленные на схеме тектоно-стратиграфических террейнов (Gonevchuk *et al.*, 1999).

^{1 –} Сибирский кратон; 2–11 – террейны: 2 – Бурея-Ханкайский, 3 – Галамский, 4 – Баджальский, 5 – Джагды-Кербинский, 6 – Самаркинский, 7 – Амурский, 8 – Ульбанский, 9 – Журавлевский, 10 – Гродековский, 11 – Кемский; 12 – Сихотэ-Алинский вулканический пояс; 13 – зоны разломов; 14 – структурные зоны; 15 – рудные районы (цифры в квадратах): 1 – Вознесенский, 2 – Ниманский, 3 – Хингано-Олонойский, 4 – Баджальский, 5 – Дуссе-Алинский, 6 – Эзоп-Ямлинский, 7 – Комсомольский, 8 – Кавалеровский, 9 – Фурмановский, 10 – Арминский, 11 – Сихотэ-Алинский, 12 – Дальнегорский; 16–20 – гранитоиды: 16 – дораннемеловые, 17 – раннемеловые, 18, 19 – среднемеловые, 20 – мел-палеогеновые.

Генетический тип	№ образца	Месторождение (1), рудный район (2) (регион)	Краткая геологическая характеристика	Главные минералы в ассоциации с турмалином	<i>T</i> , °C кристал- лизации турмалина
I. Гранитоиды оловоносных	ЧГ-84	Чалбинское (1), (Хабаровский край)	Гранитовые аплиты с биотитом и турмалином	Кварц, олигоклаз, КПШ, биотит	700–750
ассоциаций	ХБ-4	Биджанское (1), (Хабаровский край)	Двуслюдяные граниты с турмалином	Кварц, КПШ, олигоклаз, муско- вит, биотит	650–700
	ГВ-35	Кавалеровский рай- он (2), (Приморье)	Аплиты в монцонитах березовско-араратско- го комплекса	Кварц, КПШ, олиго- клаз, биотит, муско- вит, хлорит	650–700
	Φ-919	»	Монцониты того же комплекса	Пироксен, биотит, плагиоклаз	≥750
II. Пегматиты	И-34	Куги-Ляль (1), (Памир)	Пегматоидные обособ- ления в мраморах	Олигоклаз, колум- бит, кордиерит	550–600
	8806-AH	Анаджакан (2), (Хабаровский край)	Обособления (<i>d</i> < 30 см) в гранитах	Биотит, ортоклаз, альбит, кварц	600
	1-ДВ	Тургеневское (1), (Приморье)	Редкометальные пегма- титы в экзоконтакте гранитов	Плагиоклаз, биотит, кварц, лепидолит	550–500
	614-3T	Завитинское (1), (Забайкалье)	Редкометальные пегматиты в терриген- ной толще	Микроклин, слюды, сподумен	550–500
	23/C	Солнечное (1), Комсомольский (2), (Хабаровский край)	Гнезда турмалина в мон- цогранитах силинского комплекса	Биотит, кварц, ортоклаз	500-450
	B-1475	Дальнегорский (2), (Приморье)	Обособления в гранитах	Плагиоклаз, кварц	500–450
	B-404	Темногорское (1), Кавалеровский (2), (Приморье)	Шлировидные обособ- ления в гранодиорит- порфирах	Кварц, альбит	500-450
III. Грейзены	СЦ-135	Солнечное (1), Комсомольский (2), (Хабаровский край)	Зоны редкометальных грейзенов в гранитах	Плагиоклаз, флюо- рит, апатит, хлорит, молибденит	500-420
	КП-3425	Солнечное (1), (Хабаровский край)	»	»	500-420
	ЧГ-262	Чалбинское (1), (Хабаровский край)	Жильные тела грейзе- нов в эндоконтакте монцогранитов	Кварц, мусковит, молибденит	Около 500
	ЧГ-207	Чалбинское (1), (Хабаровский край)	»	»	»
	C-488	Чалбинское (1), (Хабаровский край)	»	Кварц, мусковит	
	ПУК-2809	Право-Урмийское (1), Баджал (2), (Хабаровский край)	Грейзены в зонах дробления порфировых риолитов	Сидерофиллит, кварц, топаз, касси- терит	
	УВК-1-2	Высокое (1), Баджал (2), (Хабаровский край)	»	»	
	У-235	»	»	»	
IV. Контакто- во-метасома-	ЧГ-318	Чалбинское (1), (Хабаровский край)	Гнезда в туфах риолитов	Мусковит, ортоклаз, кварц	600
тические образования	ЧГ-15	Чалбинское (1), (Хабаровский край)	Зона альбитизации в монцогранитах	Кварц, альбит	
и синмагмати- ческие брек- чии	ЧМК-1	Марсовое (1), (Хабаровский край)	Брекчия в экзоконтакте штока гранодиритов	Кварц, касситерит, вольфрамит, суль- фиды	360-420

Таблица 1. Объекты исследования турмалинов

Таблица 1. Окончание

Генетический тип	№ образца	Месторождение (1), рудный район (2) (регион)	Краткая геологическая характеристика	Главные минералы в ассоциации с турмалином	<i>T</i> , °C кристал- лизации турмалина
V. Постмагма- тические гид- ротермалиты:	ЧЗК-51	Чалбинское (1), (Хабаровский край)	Кварц-полевошпатовые жилы в экзоконтакте гранитов	Кварц, ортоклаз, альбит, сфен	>450
метасоматиче- ские и жиль- ные тела	ЧОК-221	Чалбинское (1), (Хабаровский край)	Жильные тела в зоне дробления ороговикован- ных терригенных пород	Кварц, серицит, кас- ситерит, сульфиды	Около 500
	CK-522	Солнечное (1), (Хабаровский край)	Гидротермальные жилы в зонах дробления в терригенной толще	Кварц, касситерит, сульфиды	380–350
	CK-543	Солнечное (1), (Хабаровский край)	»	»	380–350
	СШС-7	Солнечное (1), (Хабаровский край)	»	»	380–350
	905-С-Ю	Солнечное (1), (Хабаровский край)	»	»	380–350
	ФК-960	Фестивальное (1), (Хабаровский край)	»	»	380–350
	Луч-12	Лучистое (1), Фурмановский (2), (Приморье)	»	Кварц, касситерит	350–340
	9-93-BC	Высокогорское (1), (Приморье)	Гидротермально-экспло- зивная брекчия в терригенной толще	Кварц, касситерит	360–380
	29-Яр	Ярославское (1), Вознесенский (2), (Приморье)	Гидротермальные жилы в грейзенах и известняках	Кварц, мусковит флюорит	390–360
	12-П	Пограничное (1), (Приморье)	Гидротермальные про- жилки в известняках	Кварц, карбонат	180–220

террейне юрской аккреционной призмы на удалении 250 км к востоку от восточной окраины Буреинского массива. В магматической ассоциации зоны выделены пурильский, силинский и чалбинский комплексы, образующие Мяо-Чанскую серию. Промышленную оловянную минерализацию (месторождения Солнечное, Фестивальное, Перевальное, Придорожное и др.) болышинство исследователей связывает с силинским вулкано-плутоническим комплексом, представленным дифференцированными массивами монцонитоидов и покровами андезитов. Их возраст, по изотопным данным, – 100–80 млн. лет, а оруденения – 85–80 млн. лет.

Наиболее детально исследованы турмалины из оловянных месторождений Солнечное, Чалбинское, Марсовое, Фестивальное Комсомольского рудного района Хабаровского края (25 образцов). Для сравнения приводятся данные по турмалинам из различных ассоциаций других месторождений и рудопроявлений (15 образцов).

Месторождение Солнечное представляет линейную жильно-штокверковую зону в толще терригенных пород над гребневидным выступом интрузива гранитоидов (Коростелев и др., 2001). Месторождение образовалось в два этапа: 1) ранний – молибденовый, генетически связанный с монцогранитами силинского комплекса, в течение которого образовались кварц-полевошпатмолибденовые рудные тела и редкометальные грейзены, и 2) главный оловорудный, продукты которого представлены кварц-турмалин-касситерит-сульфидными рудами. В главный продуктивный этап отложение турмалина началось в раннюю предрудную стадию с образованием кварцтурмалиновых метасоматитов, позднее продолжалось вместе с касситеритом и затем в кварцсульфидную стадию совместно с сульфидами (Гореликова, 1988) (фиг. 2).

В пределах Чалбинского месторождения исследованы турмалины из высокотемпературных позднемагматических образований – аплитов и шлировых пегматоидных обособлений в лейкократовых гранитах чалбинского комплекса, зон грейзенизации и кварц-полевошпатовых жил, а также кварц-турмалиновых брекчий зоны Марсовой.

2008

БОРТНИКОВ и др.

№ образца	Месторождение (1), зона (2), район	Тип оруденения	Морфология рудных тел, вмещающие породы	Главные минералы в ассоциации с хлоритом
Apc-X-50	Арсеньевское, Двойная (2), (Приморье)	Касситерит-кварц-кар- бонат-хлоритовая жила	Линейная зона дроб- ления по дайкам пор- фиритов	Кварц, касситерит, турмалин, сульфиды
Φ-736/4	Арсеньевское (1), Южная (2), (Приморье)	Касситерит-кварц-флю- орит-хлоритовая жила с сульфидами	Линейная зона дроб- ления в терригенной толще	Кварц, касситерит, турмалин, сульфиды
Apc-VII-юг	»	»	»	Кварц, касситерит, турмалин, сульфиды
Apc-VII-6	»	Касситерит-кварц-флю- орит-хлоритовая жила с сульфидами	»	Кварц, касситерит, флюорит, сульфиды
535-11	»	»	»	Кварц, касситерит, флюорит, сульфиды
Φ-89-4	Верхнее (1), (Приморье)	Касситерит-хлоритовая жила	Минерализованная зона дробления во флишоидной толще	Кварц, касситерит, карбонаты
Φ-106-1	»	Кварц-хлоритовая жила	»	»
Φ-279-2	»	Адуляр-кальцит-хлори- товая жила с касситери- том	Минерализованная зона дробления в терригенной толще	Кальцит, адуляр, касситерит
Φ-289-4	»	Кварц-эпидот-хлорито- вая порода со сфалери- том и касситеритом	Зона пропилитиза- ции в песчаниках	Кварц, эпидот, кальцит, сфалерит
Φ-289-12	»	Адуляр-эпидот-кальцит- хлоритовый прожилок	Прожилки в алевро- литах	Кварц, адуляр, эпидот, кальцит
Φ-390-2	»	Хлорит-эпидотовые прожилки	Прожилки в пропи- литизированных песчаниках	Эпидот, кварц
Φ-75-5	Хрустальное (1), Вол- ковская (2), (Приморье)	Кварц-касситерит-хло- ритовая жила	Минерализация в трещинах скола в терригенной толще	Кварц, касситерит
Φ-40-2	Хрустальное (1), жила № 36 (2), (Приморье)	Хлорит-арсенопирито- вая жила	»	Кварц, касситерит, арсенопирит
692-Сил	Силинское (1), Дорож- ная (2), (Приморье)	Прожилки галенита с хлоритом	Тонкие прожилки в алевролите	Кварц, галенит
704-Сил	Силинское (1), Ано- мальная (2), (Приморье)	Хлорит-сульфидная жила	Кулисообразные жи- лы в осадочно-вулка- ногенной толще	Хлорит, пирротин, халькопирит, сфалерит
740-ВЦ	Верхне-Цинковое (1), Первая (2), (Приморье)	Кварц-хлорит-сфалери- товая жила	Зона дробления в терригенной толще	Кварц, хлорит, сфалерит
148-Д	Дубровское (1), Ноябрь- ская (2), (Приморье)	Кварц-касситерит-тур- малин-хлорит-сульфид- ные жилы	Жилы в терригенной толще	Кварц, турмалин, касситерит, пирротин, арсенопирит.
473-13-T	Дубровское (1), Оловян- ная (2), (Приморье)	Кварц-касситерит-тур- малин-хлорит-сульфид- ные жилы	Пластообразные тела и прожилково- вкрапленные зоны в терригенной толще	Кварц, турмалин, касситерит, сульфиды
1386-Н	Нижнее (1), (Приморье)	Кварц-хлорит-турмалин- полиметаллическая зона с касситеритом	Метасоматические зоны и брекчии в ту- фах порфиритов и терригенной толще	Кварц, турмалин, касситерит, пирротин, арсенопирит, галенит, станнин, сфалерит

Таблица 2. Характеристика изученных оловорудных месторождений хлоритового типа

512

Таблица 2. Окончание

№ образца	Месторождение (1), зона (2), район	Тип оруденения	Морфология рудных тел, вмещающие породы	Главные минералы в ассоциации с хлоритом
9-175C	Солнечное (1), (Хабаровский край)	Кварц-касситерит-тур- малин-хлоритовая зона	Пологопадающие зоны в гранитах	Кварц, турмалин, анкерит, касситерит, пирротин
CK-500-1	Солнечное (1), Запад- ная (2), (Приморье)	Кварц-хлорит-карбо- натная зона	Зона дробления в терригенной толще	Кварц, карбонат, сульфиды
CK-543-50	Солнечное (1), Главная (2), (Хабаровский край)	Кварц-турмалин-касси- терит-сульфидная зона	Зона дробления в терригенной толще	Кварц, касситерит, сульфиды
СК-534-22	»	»	Зона дробления в терригенной толще	Кварц, турмалин, касситерит, сульфиды
CM-136	Фестивальное (1), Ягодная (2), (Хабаров- ский край)	»	Зона дробления в кислых вулканитах	»
ПШТ-50-9	Перевальное (1), Северная (2), (Хабаровский край)	»	Зона дробления в вулканитах	»
CAK-350	Перевальное (1), Саврасова (2), (Хабаровский край)	Кварц-хлорит-суль- фидная жила	Зона дробления в терригенной толще	Кварц, сульфиды
Ол-12	Чалбинское (1), Олимпийская (2), (Хабаровский край)	Зоны турмалинизации и кварц-хлорит-поли- металлические жилы	Зона дробления в алевролитах	Кварц, турмалин, галенит, арсено- и халькопирит

Кроме того, на территории Хабаровского края в Анаджаканском рудном районе (Гоневчук, Гоневчук, 2008) изучались пегматоидные граниты с турмалином, в Баджальском – турмалин-сидерофиллитовые грейзены (месторождения Право-Урмийское и Высокое), в Хинганском – турмалин-содержащие граниты Верхне-Биджанского массива.

В рудных районах Приморья изучены турмалины из высокотемпературных ассоциаций – монцонитов и аплитов березовско-араратского комплекса (Гоневчук, 2002), гранитов Темногорского массива, шлировых пегматитов и грейзенов, а также из касситерит-турмалиновых руд (месторождения Высокогорское и Дубровское в Кавалеровском, Лучистое в Фурмановском и Ярославское и Пограничное в Вознесенском рудных районах) (фиг. 3).

Температуры кристаллизации турмалина в разных ассоциациях варьируют от 700 до 550°С в гранитах, аплитах и пегматитах, 520–460°С в грейзенах и 380–260°С в гидротермальных обра-

Фиг. 2. Рудная зона Главная (в центре) (а) в карьере и кварц-турмалиновая брекчия (б). Месторождение Солнечное, Хабаровский край.

БОРТНИКОВ и др.

Фиг. 3. Кварц-касситерит-турмалиновые брекчии, в которых касситерит-кварцевые прожилки (светлое) цементируют обломки турмалинитов (темное) (а) и окварцованных пород (белое) (б). Месторождение Высокогорское, Приморье.

Фиг. 4. Кварц-касситерит-хлоритовые (а) и кварц-хлорит-сульфидные (б) руды с ферберитом (Ф). Месторождение Арсеньевское.

зованиях. Температуры кристаллизации турмалина грейзеновых и гидротермальных ассоциаций определены на основании данных температур гомогенизации газо-жидких включений турмалина и сопутствующих минералов (Бортников и др., 2005) и изменяются от 460°C в редкометальных грейзенах до 330°C в турмалине касситерит-кварцевой стадии и до 270°C в кварц-сульфидных ассоциациях.

Оловянные месторождения хлоритового типа Приморья развиты преимущественно в Кавалеровском рудном районе, где их формирование связано с эволюцией Кавалеровской РМС – главной оловоносной системы Сихотэ-Алиня. Ее формирование охватывает длительный период от 45 до 195 млн. лет. В пределах этой системы выделяется два основных оловоносных вулканоплутонических комплекса – березовско-араратский и угловской, с которыми предположительно связывается оловянная касситерит-хлорит-сульфидная минерализация ряда крупных месторождений: Арсеньевское, Высокогорское, Дубровское, Хрустальное, Силинское, Верхнее, Юбилейное, Нижнее и др. Нами изучены хлориты из касситерит-хлоритовых руд месторождений: Арсеньевское, Верхнее, Хрустальное, Силинское, Дубровское, Верхне-Цинковое, Нижнее.

Эти месторождения представляют собой мощные линейные зоны дробления в терригенных породах мезозоя, в которых рудная минерализация сформировалась в касситерит-кварц-хлоритовую, кварц-флюорит-сульфидную и кварц-карбонатносульфидную стадии (фиг. 4). Хлорит кристаллизовался на протяжении всего рудного процесса, начиная с ранней дорудной стадии и кончая пострудной. В статье приведены данные по РЗЭ в хлоритах ранней генерации, ассоциирующих с ранним касситеритом и характеризующих условия отложения касситерита продуктивной стадии, и более поздних хлоритах кварц-сульфидной стадии.

Кроме того, исследовались хлориты из месторождений и рудопроявлений Комсомольского района (Солнечное, Фестивальное, Перевальное и др.).

На основании результатов изучения флюидных включений в ассоциирующем кварце (Бортников и др., 2005) и хлоритового геотермометра, основанного на зависимости соотношения Al^{IV}/Al^{VI} от температуры (Cathelineau, 1988), установлено, что температурный диапазон кристаллизации хлоритов из разных ассоциаций составляет от 220 до

Фиг. 5. Хондрит-нормализованные спектры турмалинов из оловоносных ассоциаций Приамурья и Приморья. 1 (ЧГ-318) – гнезда турмалина с мусковитом в туфах; 2 (СЦ-135с) – шлиры турмалина в диоритах; 3 (КП-3425) – грейзены Мо-этапа; 4 (СК-543-200), 5 (СК-522-11) – кварц-турмалин-касситеритовые руды месторождения Солнечное; 6 (9-93/ВС) – кварц-турмалиновые жилы месторождения Высокогорское; 7 (ПУК-2809) – грейзены Право-Урмийского месторождения; 8 (ГВ-35) – аплиты Араратского массива.

410°С. Наиболее высокотемпературные из них наблюдаются в зонах, развивающихся по дайкам диоритовых порфиритов, в которых хлориты выделяются в начале рудной стадии до отложения касситерита.

РАСПРЕДЕЛЕНИЕ РЗЭ В ТУРМАЛИНАХ

Анализ полученных данных РЗЭ в турмалинах из различных оловоносных ассоциаций свидетельствует о значительных вариациях общего содержания лантаноидов и существенных различиях хондрит-нормализованных спектров.

Общее содержание РЗЭ широко варьирует в турмалинах из различных ассоциаций – от 267.14 до 0.28 г/т. В составе лантаноидов преобладают LREE (La/Yb = 37.8–3.21), и большинство турмалинов характеризуется положительной Еи-аномалией и соответственно отрицательной Се-аномалией (фиг. 5, 6). Но некоторые турмалины имеют отрицательную Eu-аномалию и положительную Ceаномалию, либо характеризуются плоскими спектрами. В одном образце турмалина (Высокогорское месторождение) отмечено нехарактерное для этого минерала преобладание HREE, что объясняется присутствием в турмалине фазы тонкокристаллического циркона, по данным сканирующей электронной микроскопии. Присутствие циркона в турмалине, для которого характерно преобладание тяжелых лантаноидов, отразилось на суммарном спектре турмалина (фиг. 5).

Самые высокие содержания лантаноидов (267.14–121.44 г/т) выявлены в турмалине из монцогранитов и турмалиновых гранитов. В минерале из шлиров в диоритовых порфиритах, гранитах и туфах риолитов они снижаются до 67.12–26.92 г/т и в кварц-полевошпатовых жилах составляют 16.87– 14.97 г/т. Еще более низкое содержание РЗЭ: 5.24– 0.28 г/т, обнаружено в турмалине слюдистых пегматитов и грейзенов.

В турмалинах гидротермального этапа оловорудных месторождений концентрация РЗЭ изменяется от 0.35 до 119 г/т, причем самые высокие концентрации (17–119 г/т) выявлены в минерале из касситерит-сульфидных руд.

На большинстве спектров высокотемпературных турмалинов из гранитов, туфов риолитов, редкометальных грейзенов проявлена положительная Еu-аномалия. На спектрах турмалина позднемагматической стадии четко выражена отрицательная Eu-аномалия. Интенсивность этих аномалий различна, что свидетельствует о различных условиях фракционирования лантаноидов при кристаллизации турмалина разных ассоциаций. Турмалины гидротермального этапа отличаются Eu-аномалиями разного знака, но они менее выражены, вследствие низкого общего содержания лантаноидов.

На некоторых спектрах минерала наблюдается интенсивно выраженный тетрад-эффект, который проявляется в нарушении формы спектра и вызван некогерентным поведением некоторых

Фиг. 6. Хондрит-нормализованные спектры РЗЭ турмалинов из оловоносных ассоциаций Дальнего Востока. 1 – турмалиновый гранит; 2 – гранит; 3 – турмалинит по граниту; 4, 5 – шлиры турмалина в граните; 6 – монцодиорит; 7 – кварц-полевошпатовая жила; 8 – плагиоклаз-тремолитовая порода; 9 – метаморфическая порода; 10 – кварц-касситерит-турмалиновая жила; 11 – кварц-сидерофиллитовый грейзен; 12 – кварц-полевошпатовый грейзен; 13 – альбит-турмалиновая зона в гранитах; 14 – кварц-турмалин-мусковитовый грейзен; 15 – турмалиновый метасоматит; 16 – кварц-турмалиновый метасоматит; 17 – кварц-сульфидная руда; 18 – кварц-турмалиновая жила с касситеритом; 19 – пегматит; 20–22 – кварц-касситерит-турмалиновая жила; 23 – кварц-мусковитовый грейзен; 24, 25 – редкометальный пегматит; 26 – прожилки Са-дравита в известняках.

лантаноидов в процессе минералообразования (фиг. 6). Тетрад-эффект проявляется на границе 4-х тетрад-элементов – La-Nd, Sm-Gd, Gd-Ho и Eu-Lu. Считается, что это явление возникает в высокодифференцированных расплавах, богатых летучими – F, Cl, CO₂, H₂O и другими, на заключительной стадии их кристаллизации (Bau, 1993; Irber, 1999; Veksler *et al.*, 2005; Bor-ming Jahn *et al.*, 2001). Когерентность РЗЭ нарушается вследствие образования некоторыми лантаноидами с незаполненной электронной f-оболочкой комплексных соединений с летучими компонентами, вследствие чего распределение РЗЭ не контролируется радиусом иона и его зарядом.

В турмалине из шлиров в силинских гранитах выявлено аномальное содержание Gd, Tb, Dy, Ho и Er. Однако в них с помощью сканирующей электронной микроскопии с энергодисперсионной приставкой "LINK-ISIS" установлены включения фосфатов РЗЭ размером 2–3 мкм (фиг. 7). В то же время СЭМ в турмалине из других ассоциаций не выявил самостоятельных фаз лантаноидов, что подтверждает изоморфное вхождение лантаноидов в его структуру. Тетрад-эффект М-типа и W-типа наиболее ярко проявлен в турмалине из высокотемпературных ассоциаций: из аплитов, гранитов и пегматитов. Меньшие значения он имеет в турмалине из гидротермальных ассоциаций. Четко выраженный тетрад-эффект наблюдается в La-Nd- и Gd-Ho-тетрадах в турмалине из шлиров в биотитовых гранитах месторождения Солнечное и в Gd-Ho-тетраде в турмалине чалбинских гранитов. Тетрад-эффект характерен и для турмалинов из редкометальных грейзенов и гидротермальных руд из месторождений Ярославское, Солнечное и других, но ввиду низких общих содержаний РЗЭ в этих турмалинах он хуже улавливается.

РАСПРЕДЕЛЕНИЕ РЗЭ В ХЛОРИТАХ

Концентрации РЗЭ в хлоритах из разных минеральных ассоциаций варьируют от 55.03 до 0.05 г/т. Все образцы хлоритов обогащены LREE (La/Yb = = 48.28 – 1.1). Максимальное содержание лантаноидов обнаруживается в хлорит-содержащих грейзенах (30.35 г/т), а минимальное – в метасоматитах пропилитовой фации. В ранних хлоритах из

Фиг. 7. Выделение фосфата Y, Gd, U (белое) в турмалине из шлиров в граните (а) и соответствующий спектр (СЭМ) (б).

2008

касситерит-хлоритовых жил общее содержание лантаноидов составляет 55–1.7 г/т, а в хлоритах кварц-сульфидной стадии – 20–23 г/т. Хлориты из низкотемпературных руд месторождений Верхнее, Силинское, Верхне-Цинковое, зон Олимпийской и Саврасовой Комсомольского района имеют низкие концентрации лантаноидов (0.05–6.58 г/т).

В хлоритах отмечается три типа хондрит-нормализованных спектров, два из которых характеризуются выпуклой или вогнутой формой, а один – плоской. На большинстве спектров отмечаются Еu-аномалии с различным знаком (фиг. 8, 9). Как правило, Eu-аномалии являются типичными для хлоритов с высоким содержанием лантаноидов. Хлориты с низкой концентрацией РЗЭ характеризуются плоскими спектрами. Большая часть спектров хлоритов из ранней касситерит-кварцхлоритовой ассоциации рудных зон месторождений Арсеньевское, Хрустальное, Солнечное, имеют отрицательные Eu-аномалии. Спектры некото-

Фиг. 8. Хондрит-нормализованные спектры хлоритов из оловянных руд месторождений Приморья и Приамурья. 1–16 – месторождения: 1 – Арсеньевское, 2–6 – Верхнее, 7, 8 – Хрустальное, 9, 10 – Дубровское, 11 – Силинское, 12–14 – Солнечное, 15 – Фестивальное, 16 – Арсеньевское.

рых хлоритов из рудных зон Двойная Арсеньевского месторождения, сульфидных руд месторождений Нижнее, Перевальное, Хрустальное отличаются положительными Eu-аномалиями.

В большинстве хлоритов наблюдается в различной степени проявленный тетрад-эффект М-и W-типов в разных тетрадах лантаноидов, что позволяет предположить, что процессы комплексообразования происходили и в гидротермальную стадию, но с меньшей интенсивностью, чем в позднемагматическую.

РЗЭ В АССОЦИИРУЮЩИХ МИНЕРАЛАХ

Для выявления роли коэффициента распределения РЗЭ в процессе фракционирования лантаноидов между фазами, образующимися из одного флюида, исследованы минералы редкометальных грейзенов молибденового этапа на месторождении Солнечное, который представлен полевошпат-флюорит-апатит-турмалиновой ассоциацией с молибденитом, арсенопиритом, самородными висмутом и золотом, шеелитом, теллуридами и сульфотеллуридами. Изучено распределение РЗЭ в биотите внешней зоны редкометальных грейзенов, флюорите, плагиоклазе, ортоклазе, апатите, турмалине и карбонате. Кроме того, дополнительно исследовались аналогичные минералы из гидротермальных ассоциаций для оценки влияния температурного фактора. С помощью термобарогеохимического анализа Т.Л. Крыловой проведена оценка температур кристаллизации этих минералов (Бортников и др., 2005), которая соответствует 485-375°С для раннего флюорита, выше 500°С для плагиоклаза, 300-350°С для апатита. Показано, что Са-содержащие минералы: флюорит, апатит, кристаллизующиеся при повышенных (485-350°С) температурах (Бортников и др., 2005), содержат высокие концентрации РЗЭ - 5074-4869 г/т. Биотит и ортоклаз, образующиеся при тех же условиях, характеризуются низким содержанием лантаноидов – 49–2.7 г/т (фиг. 10). В низкотемпературных (200-150°С) Са-содержащих минералах: флюорите и карбонатах, обнаружены низкие концентрации лантаноидов -133-35 г/т.

Фиг. 9. Распределение РЗЭ в хлоритах оловорудных месторождений Приморья и Приамурья. 1–11 – месторождения: 1–4 – Арсеньевское, 5 – Нижнее, 6 – Верхне-Цинковое, 7 – Силинское, 8, 10 – Солнечное, 9 – Перевальное, 11 – Олимпийская зона (Приамурье).

ФАКТОРЫ, КОНТРОЛИРУЮЩИЕ ФРАКЦИОНИРОВАНИЕ РЗЭ

Сравнительный анализ РЗЭ в минералах изученных ассоциаций позволяет наметить основные факторы, влияющие на фракционирование лантаноидов в процессе рудообразования. К наиболее важным факторам можно отнести следующие: температура образования, кислотность-щелочность среды, окислительно-восстановительные условия кристаллизации и кристаллохимический фактор. Так, высокотемпературные турмалины из магматических ассоциаций, пегматитов, скарнов и грейзенов молибденового этапа, образованные в интервале температур 700-550°С, имеют самые высокие содержания РЗЭ, в то время как в минералах гидротермальной стадии, температура кристаллизации которых, по данным гомогенизации включений, составляет 380-320°С, уровень лантаноидов значительно снижается. Это доказывает основную роль температурного фактора в процессе фракционирования РЗЭ из минералообразующего флюида (фиг. 11).

Кроме температуры, существенное влияние на распределение РЗЭ играет кислотность-щелочность среды, из которой происходит кристаллизация минералов. Так, в турмалине из кварц-полевошпатовых жил Чалбинского месторождения (Приамурье), образованных при средних температурах (320-280°С), концентрация лантаноидов значительно повышается по сравнению с аналогичными кварц-турмалиновыми жилами. Повышенная щелочность среды при образовании кварц-полевошпатовых жил способствует повышению концентрации лантаноидов. В то же время в турмалинах из кварц-слюдистых пегматитов и грейзенов Приморья и Забайкалья, невзирая на высокотемпературные условия их образования (550-450°С), отмечается очень низкий уровень содержания лантаноидов, что обусловлено низкой щелочностью среды минералообразования (рН 2–3). Здесь основная роль в распределении РЗЭ принадлежит кислотности-щелочности среды, а не температуре. Эти выводы находятся в соответствии с результатами, полученными Д. Шверженским (Sverjensky, 1984) на основании термодинами-

Фиг. 10. Хондрит-нормализованные спектры в минералах молибденового этапа месторождения Солнечное и в оловянных жилах Арсеньевского, Нижнего и Силинского месторождений.

1 – биотит (КП-3495Б); 2, 3 – полевой шпат (КП-3495П); 4 – апатит (КП-3495А); 5–8 – флюорит (Арс-0-2Ф, О-АрсФ, КП-3495Ф, 1167/4Ф – Нижнее месторождение); 9, 10 – кальцит (Сил-XVII-2К, Сил-XIII-5К – Силинское месторождение).

Фиг. 11. Зависимость общего содержания РЗЭ (г/т) в турмалинах от температуры их кристаллизации.

ческих расчетов Eu²⁺ и Eu³⁺ в водных средах, характеризующих равновесие Eu²⁺/Eu³⁺ как функцию f_{O_2} и pH минералообразующей среды при низких (25°C) и повышенных (250°C) температурах.

Термодинамические расчеты показывают, что при низких температурах в водных средах устойчив Eu^{3+} , а при повышенных (250°С и выше) – Eu^{2+} , при этом значительное влияние на соотношение Eu^{2+}/Eu^{3+} оказывает Еh среды. Роль окислительновосстановительного потенциала проявляется в том, что Eu^{2+} наиболее активен в восстановительной обстановке, а Eu^{3+} – в окислительной. В щелочных средах активность Eu^{2+} усиливается, а в кислых значительно уменышается, и концентрация РЗЭ в минералах, кристаллизующихся в этих средах, значительно уменьшается. Распределение РЗЭ в изученных нами минералах полностью согласуется с этими выводами.

Наличие положительных и отрицательных Еu-аномалий в турмалине, хлорите и других минералах оловянных месторождений свидетельствует о смене окислительно-восстановительного потенциала и кислотности-щелочности среды на протяжении рудного процесса. Так, в позднемагматическую и раннюю автометасоматическую стадии фиксируются восстановительные условия минералообразования, что подтверждается наличием Eu²⁺ в хондрит-нормализованных спектрах минералов. В гидротермальную стадию восстановительный режим характерен для предрудных кварц-турмалиновых метасоматитов, что подтверждается преобладанием СО в газовой фазе флюидных включений. Предрудные пропилиты образованы из окислительного флюида с повышенной щелочностью, на что указывают повышенные концентрации лантаноидов в хлоритах. Ассоциации касситерит-турмалиновой и касситерит-хлоритовой стадии, судя по содержанию РЗЭ и характеру спектров, кристаллизовались в окислительной и нейтральной средах. В сульфидную стадию отмечается повышение щелочности флюида и понижение фугитивности кислорода, что подтверждается повышением общего содержания лантаноидов и появлением Еu-аномалий в спектрах поздних хлоритов.

Влияние кристаллохимического фактора на фракционирование РЗЭ между фазами в минерализующем флюиде прослеживается в Са-содержащих и бескальциевых минералах молибденового этапа, таких, как апатит, флюорит, ортоклаз, биотит, кристаллизовавшихся из одного флюида. Так, самые высокие концентрации лантаноидов отмечаются в апатите и флюорите, а самые низкие – в биотите и ортоклазе. Тем не менее в низкотемпературных поздних кальцитах содержание РЗЭ низкое, и здесь кристаллохимический фактор уступает температурному. Определяющая роль температурного фактора проявляется в том, что низкотемпературные флюориты обеднены лантаноидами по сравнению с высокотемпературными (фиг. 8).

Характер исследованных хондрит-нормализованных спектров минералов свидетельствует о некогерентном поведении некоторых лантаноидов на разных этапах минералообразования, что проявляется в нарушении спектров РЗЭ в La-Nd-, Pm-Gd-, Gd-Ho-, Er-Lu-тетрадах. Выявленный в минералах тетрад-эффект лантаноидов свидетельствует о том, что процесс комплексообразования РЗЭ протекал как в магматической, так и в более поздних стадиях и характеризует различный режим летучих в разные этапы минералообразования.

ПОВЕДЕНИЕ РЗЭ В НЕКОТОРЫХ ОЛОВОНОСНЫХ ГИДРОТЕРМАЛЬНО-МАГМАТИЧЕСКИХ СИСТЕМАХ

Проведенные исследования позволяют проследить поведение РЗЭ в двух типичных оловоносных рудно-магматические системах (РМС), одна из которых (Комсомольская РМС) характеризует процесс формирования оловянных руд турмалинового типа, а другая (Кавалеровская РМС) – оловянных руд касситерит-хлоритового типа.

На фиг. 12, демонстрирующей геохимическую модель Комсомольской РМС, обобщены данные о распределении лантаноидов в минералах из разновозрастных минеральных парагенезисов, что отражает эволюцию флюидов в процессе минералообразования. В поздних дифференциатах оловоносных магматических расплавов – монцогранитах и турмалиновых аплитах силинского (Комсомольский район) и березовско-араратского (Кавалеровский район) комплексов, температура формирования которых составляет 700–600°С, турмалины характеризуются высоким содержанием РЗЭ (267.14–121.44 г/т) и наличием положительных и реже – отрицательных Еu- и Ce-аномалий в зависимости от парагенезиса.

В турмалинах более поздней – ранней автометасоматической стадии (шлиры турмалина в туфах и гранитах, температура образования которых 600–550°С) содержание лантаноидов понижается – 67.12–29.62 г/т, а Еu- и Се- аномалии имеют меньшую амплитуду, чем турмалины гранитов.

Кварц-полевошпатовые жилы продолжают этот ряд, при этом в турмалинах слабооловоносных существенно полевошпатовых зон Чалбинского месторождения (Комсомольский район), обогащенных Mg и Ca, локализованных непосредственно в монцогранитах или в зоне экзоконтакта (температура образования – около 400°С), содержание РЗЭ снижается (16.87–4.97 г/т).

2008

БОРТНИКОВ и др.

Фиг. 12. Обобщенная геохимическая модель Комсомольской РМС и распределение РЗЭ (г/т) в оловоносных ассоциациях.

Еще более низкие содержания РЗЭ выявлены в турмалине слюдистых пегматитов и слюдистых грейзенов. Се- и Еu-аномалии в них четко выраженные, но разные по амплитуде.

В турмалинах гидротермального этапа (оловорудные месторождения Приамурья и Приморья) концентрация лантаноидов широко изменяется, проявлены Се- и Еи-аномалии разного знака. В целом содержание РЗЭ в них значительно ниже, чем в турмалинах магматических ассоциаций. Характер Еu-аномалий в минералах характеризует смену восстановительных флюидов в раннюю высокотемпературную стадию, в процессе которой формировались турмалиновые граниты, аплиты, пегматиты и редкометальные грейзены, окислительными, типичными для более поздней гидротермальной стадии.

Обобщенная геохимическая модель Кавалеровской РМС демонстрирует распределение РЗЭ в хлоритах различных оловоносных ассоциаций и изменение параметров расплава/флюида в процессе минералообразования (фиг. 13). В то время как монцонитоиды березовско-арарартского комплекса характеризуются высокой концентрацией РЗЭ (145–189 г/т), в аплитах содержание их понижается до 65–145 г/т, в грейзенах – до 30.35 г/т, а

Фиг. 13. Обобщенная геохимическая модель Кавалеровской РМС и распределение РЗЭ (г/т) в оловоносных ассоциациях.

в гидротермальных метасоматитах и рудах концентрация лантаноидов составляет 9.34–0.58, причем биотитовые роговики имеют низкое содержание (2.78 г/т), а пропилиты более высокое – 0.58–9.34 г/т. Предрудные пропилиты формировались из окисленного флюида, который в продуктивную касситерит-хлоритовую стадию сменялся более нейтральным и щелочным, а отложение кварц-сульфидных руд происходило из более восстановленного флюида повышенной щелочности. Это подтверждается повышением концентрации лантаноидов в хлоритах сульфидной стадии и появлением выраженных Еu-аномалий в их спектрах.

ЗАКЛЮЧЕНИЕ

Сравнительный анализ распределения РЗЭ в изученных минералах показывает четкую зависимость общего содержания лантаноидов от температуры, Еh и pH минералообразующих флюидов. Самое сильное влияние на состав лантаноидов оказывает температура кристаллизации минералов. Высокотемпературные минералы, образотурными, содержание лантаноидов в которых значительно уменьшается. Характер спектров РЗЭ и наличие Eu- и Ce-аномалий разного знака свидетельствует об эволюции рудно-магматических систем в процессе минералообразования. Наличие Еи-аномалии, которая указывает на присутствие Eu²⁺ во флюиде, свидетельствует о восстановительной обстановке среды. Преобладание Eu³⁺ в минералах поздних стадий доказывает, что их отложение происходит из окисленного флюида. На процессы фракционирования РЗЭ, вероятно, влияло смешение глубинных вод с метеорными водами (Бортников и др., 2005), что создавало благоприятные условия для отложения касситерита (Сущевская, Рыженко, 2002). Предполагается, что метеорный флюид, открытый к атмосфере, играет роль окислительного барьера, нейтрализующего восстановительные свойства магматогенного флюида, переводящего Sn^{2+} в Sn^{4+} с последующим осаждением SnO2. Изменение степени окисленности минералообразующего флюида в процессе рудоотложения подтверждается характе-

вавшиеся при температурах 700-500°С, обогаще-

ны РЗЭ по сравнению со средне- и низкотемпера-

ром спектров РЗЭ и сменой Eu²⁺ – в ранних ассоциациях, Eu³⁺ – в более поздних. Кроме того, в средах, богатых летучими компонентами, значительное влияние на фракционирование лантаноидов оказывают процессы сорбции и комплексообразования РЗЭ, о чем свидетельствует появление тетрад-эффекта в спектрах турмалинов и хлоритов.

Полученные результаты по распределению РЗЭ в минералах оловоносных ассоциаций свидетельствуют о смене параметров минералообразующего флюида на протяжении рудного этапа. Минералы ранней предрудной стадии, характеризующейся восстановительными условиями (высокая доля СО во ФВ), имеют, как правило, положительную Eu-аномалию, которая указывает на присутствие Eu²⁺ во флюиде. В процессе пропилитизации повышается кислотность растворов, что вызывает образование серицита, и среда становится окислительной, что подтверждается преобладанием Eu³⁺. В период формирования продуктивной стадии растворы становятся окислительными, и в минералах преобладает Еи³⁺. Сульфидная стадия характеризуется щелочными условиями, что отражается на увеличении общей концентрации РЗЭ, и растворы становятся восстановительными с преобладанием Eu²⁺ во флюиде. Процесс смешения глубинных флюидов с метеорными окислительными водами происходил, вероятно, на разных глубинах, что обусловило нарушение первичной зональности рудных ассоциаций на разных уровнях оруденения.

Таким образом, РЗЭ в минералах могут быть индикаторами параметров эволюции флюидного режима рудно-магматических систем на разных этапах их развития.

БЛАГОДАРНОСТИ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 08–05–00381а) и Отделения наук о земле РАН (программа ОНЗ-2 "Крупные и суперкрупные рудные месторождения").

СПИСОК ЛИТЕРАТУРЫ

Бортников Н.С., Ханчук А.И., Крылова Т.Л. и др. Геохимия минералообразующих флюидов некоторых оловорудных гидротермальных систем Сихотэ-Алиня (Дальний Восток. Россия) // Геология руд. месторождений. 2005. Т. 47. № 6. С. 537–570.

Гоневчук В.Г. Оловоносные системы Дальнего Востока: магматизм и рудогенез. Владивосток: Дальнаука, 2002.

Гоневчук Г.А., Гоневчук В.Г. Состав и генезис интрузивной ассоциации Маглойского магматического ареала (Центральное Приамурье) // Тихоокеанская геология. 2008. Т. 27. № 1. С. 44–59. Гореликова Н.В. Парагенезисы микроэлементов турмалина оловорудных формаций. Владивосток, 1988.

Жариков В.А., Горбачев Н.С., Дохерти В. и др. Фракционирование редкоземельных элементов и иттрия во флюидно-магматических системах при высоких давлениях (по экспериметальным данным) // Геохимия. 1993. Т. 331. № 1. С. 91–94.

Коростелев П.Г., Гоневчук В.Г., Семеняк Б.И. и др. Месторождение Солнечное (Комсомольский район, Хабаровский край) как типовой объект касситерит-силикатной формации // Рудные месторождения континентальных окраин. Владивосток: Дальнаука, 2001. С. 131–156.

Радкевич Е.А., Асманов В.Я., Бакулин Ю.И. и др. Геология, минералогия и геохимия Комсомольского района. М.: Наука, 1971.

Расс И.Т., Абрамов С.С., Утенков В.А. и др. Роль флюидов в петрогенезисе карбонатитовых и щелочных пород: геохимические индикаторы // Геохимия. 2006. № 7. С. 692–711.

Сущевская Т.М., Рыженко Б.Н. Моделирование смешения флюидов различной природы при осаждении касситерита // Геохимия. 2002. № 2. С. 184–193.

Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium // Chemical Geology. 1991. V. 93. P. 219–230.

Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect – a discussion of the article by M.Bau (1996) // Contrib. Mineral. Petrol. 1997. V. 128. P. 405–408.

Bor-ming J., Wu E., Capdevila R. et al. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe an Baerzhe granites from the Great Xing'an Mountains in NE China // Lithos. 2001. 59. P. 171–198.

Bortnikov N.S., Gorelikova N.V. Trace elements, REE and Fe²⁺/Fe³⁺ distribution in tourmaline, and chlorite from tin deposits on Sikhote-Alin': implication for genesis of tin deposits // Proceed. of 12th IAGOD Symposium. Moscow, 2006.

Brookins D.G. Eh–pH diagrams for the rare earth elements at 25°C and one pressure // Geochem. J. 1983. V. 17. P. 223–229.

Brookins D.G. Aqueous Geochemistry of Rare Earth Elements // Review in Mineralogy of Rare Earth Elements. 1989. V. 21. P. 201–225.

Cathelineau M. Cation site occupancy in chlorites and illites as a function of temperature // Clay Minerals. 1988. V. 23. (4): P. 471–485.

Chaderi M., Palin J.M., Campbell I.H., et al. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman Region, Westren Australia // Econ. Geology. 1999. V. 94. P. 423–438.

Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Y/Ho, and Zr/Hf of evolving perluminous granite suits // Geochim. et Cosmochim. Acta. 1999. V. 63. № 3/4. P. 489–508.

Gonevchuk V.G., Semenjak B.I., Khanchuk A.I. et al. Tin– bearing magmatic complexes of the Russian Far East // Mineral deposits: Processes to processing. Rotterdam: Balkema, 1999. V. I. P. 357–359. *King R.W., Kerrich R.W.* REE distribution in tourmaline: an INAA technique involving pretreatment by B volatilization // Amer. Mineralogist. 1988. V. 73. P. 424–431.

Lottermoser B.G. Rare earth elements and hydrothermal ore formation processes // Ore Geology Reviews. 1992. V. 7. P. 25–41.

Morgan J.W., Wandless G.A. Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control // Geochim. et Cosmochim. Acta. 1980. V. 44. № 7. P. 973–980. *Shao-Yong Jiang, Ji-Min Yu, Jian-Jun Lu*. Trace and rareearth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication for migmatitic-hydrothermal fluid evolution and ore genesis // Chemical Geology. 2004. V. 209. P. 193–213.

Veksler L.V., Dorfman A.M., Kamenetsky M. et al. Partitionating of lantanides and Y between immicible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks // Geochim. et Cosmochim. Acta. 2005. V. 69. № 11. P. 2847–2868.

Sverjensky D.A. Europium redox equilibria in aqueous solutions // Earth and Planet. Sci. Lett. 1984. V. 67. P. 70–78.