——— ГЕОЛОГИЯ —

УДК 551.71+553.615+552.525(571.5)

# ВОЗРАСТНЫЕ РУБЕЖИ ПРОЯВЛЕНИЯ МЕТАМОРФИЗМА НА КИТОЙСКОМ СИЛЛИМАНИТОВОМ МЕСТОРОЖДЕНИИ (ЮГО-ВОСТОЧНОЕ ПРИСАЯНЬЕ)

## © 2011 г. Член-корреспондент РАН В. А. Глебовицкий, О. А. Левченков, В. И. Левицкий, Н. Г. Ризванова, Л. К. Левский, Е. С. Богомолов, И. В. Левицкий

Поступило 23.08.2010 г.

Иркутный блок, сложенный главным образом породами шарыжалгайской серии, и Китойский блок, представленный в основном китойской серией, являются главными структурами Присаянского краевого выступа фундамента Сибирской платформы. Породы шарыжалгайской серии метаморфизованы в условиях гранулитовой фации и геохронологически изучены [1, 2 и др]. В породах китойской серии отмечается метаморфизм как гранулитовой (бассейн среднего течения рек Китой, Онот, Малая Белая), так и амфиболитовой (район верхнего течения р. Китой) фаций, для которых геохронологические данные крайне ограничены [3, 4]. Считается, что образования китойской серии залегают на породах шарыжалгайской серии [5].

Для гранулитовых комплексов Иркутного [1, 2] и Китойского [3, 4] блоков U–Pb-методами TIMS [1, 2, 4] и SHRIMP [3] по цирконам устанавливаются два метаморфических этапа – неоархейский (2.6–2.7 млрд. лет) и палеопротерозойский (1.85– 1.87 млрд. лет). Для амфиболитовой фации китойской серии методом TIMS по цирконам пока получено только одно значение – для гранатовых ортотектитов Китойского силлиманитового месторождения – 2483 ± 4 млн. лет [6].

Китойское месторождение силлиманита находится на левом борту р. Китой, вблизи вершины горы Уныман-Барон в китойской серии Юго-Восточного Присаянья (рис. 1). На основании геохимических исследований и реконструкции первичной природы протолита оно может быть отнесено к древним метаморфизованным латеритным корам выветривания [6]. Месторождение сложено силлиманитовыми, андалузит-силлиманитовыми, гранат-силлиманитовыми сланцами и гнейсами, которые переслаиваются с кварцитами, амфиболитами, мраморами. Эти породы подверглись интенсивным ультраметаморфическим преобразованиям, которые выразились в формировании силлиманит- и гранатсодержащих плагиоклазовых и калишпатовых мигматитов, а также автохтонных и аллохтонных гранитов, сиенитов, гранит-пегматитов.

В метаморфических породах Китойского месторождения устанавливается сложная последовательность минеральных ассоциаций. Ранние метаморфические парагенезисы представлены тонкокристаллическими выделениями андалузита, граната, рутила и графита. На более поздних стадиях метаморфических преобразований возникали мелко- и среднезернистые выделения этих же минералов. При последующих преобразованиях графит исчезал, андалузит замещался силлиманитом с появлением его сплошных масс, затем призматических пойкиллобласт, а еще позже - крупных удлиненных кристаллов; тонкокристаллические агрегаты граната и рутила укрупнялись с образованием мономинеральных зон и участков. Появились монацит, плагиоклаз, калиевый полевой шпат вследствие перехода неизменных сланцев и гнейсов к мигматитам и гранитам. В связи с этим формирование мономинеральных силлиманитовых руд можно рассматривать как проявление кислотных метасоматитов.

Для геохронологических исследований использованы образцы из керна скважины № 37 типичных пород северной части Китойского месторождения — меланократовых глиноземистых сланцев (интервал 139–140 м) и лейкократовых плагиогнейсов (интервал 71–73 м). Меланократовые графит-андалузит-силлиманит-гранатовые сланцы (обр. Д-16/1) залегают среди андалузит-силлиманитовых и силлиманитовых пород в виде включений размерами от первых сантиметров до 1–2 м в поперечнике. Они сложены гранатом (65–70%), силлиманитом (20–25%), кварцем (7–12%), андалузитом (2–3%), вторичным биотитом

Институт геологии и геохронологии докембрия Российской Академии наук, Санкт-Петербург Институт геохимии им. А.П. Виноградова Сибирского отделения Российской Академии наук, Иркутск

#### ГЛЕБОВИЦКИЙ и др.



Рис. 1. Геологическое положение Китойского месторождения силлиманита. *1* – осадочный чехол Сибирской платформы; *2*–*4* – структуры краевого выступа фундамента платформы: *2* – Урикско-Ийский грабен, *3* – Онотский зеленокаменный пояс, *4* – шарыжалгайский гранулито-гнейсовый комплекс; *5* – террейны Центрально-Азиатского складчатого пояса; *6* – Главный Саянский глубинный разлом; *7* – прочие разломы. Квадрат – Китойское месторождение силлиманитовых сланцев. На врезке – схематическая геологическая карта Китойского месторождения. 1–3 – нижняя подсвита китойской свиты; 1 – силлиманитовые сланцы, *2* – амфиболовые гнейсы и амфиболиты, *3* – теневые мигматиты; 4–7 – верхняя подсвита китойской свиты: 4 – меланократовые биотит-гранатовые породы, *5* – мраморы, *6* – амфиболовые сланцы, *7* – "пепельные" биотитовые плагиогнейсы; *8* – разрывные нарушения. Кружок – скважина № 37.

(4-5%), рутилом (1-2%) и графитом (1-2%); акцессорные минералы представлены цирконом, апатитом и шпинелью. Лейкократовые биотитгранат-силлиманитовые плагиогнейсы (образец Д-12/1) имеют постепенные переходы к биотитовым и гранат-биотитовым плагиогнейсам и состоят из кварца (20-25%), плагиоклаза (30-38%), биотита (10-12%), силлиманита (20-25%), граната (7-15%), мусковита (3-5%) и кордиерита (1-2%). Среди акцессорных минералов присутствуют рутил, циркон, монацит, апатит, графит и пирротин. Содержание петрогенных (SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, FeO, Fe<sub>2</sub>O<sub>3</sub>, MnO, K<sub>2</sub>O, Na<sub>2</sub>O) и редких (Li, Rb, Ba, Sr, B, La, Ce, Nd, Yb, Y, Nb, Zn, V, Co) элементов в исследованных породах меняется. Они характеризуются очень высокими содержаниями как литофильных, так и сидерофильных элементов и реконструируются как алевропелитовые аргиллиты (Д-12/1), карбонатистые и железистые пирофиллиты (Д-16/1) [7].

Для монацита из лейкократового плагиогнейса (Д-12/1) получен конкордантный U–Pb-возраст 2493  $\pm$  1.2 млн. лет (табл. 1, рис. 2а). По фракциям граната (7–10, табл. 1) из этой же пробы рассчитана дискордия, которая на графике Везерилла проходит через начало координат и пересекает конкордию в точке со значением возраста  $2515 \pm 17$  млн. лет (СКВО = 6.0) (рис. 2а). По данным выщелачивания (по [8]) силлиманита из образца Д-12/1 построена эрохрона, наклон которой соответствует формально возрасту  $2536 \pm 27$  млн. лет (СКВО = 32) (табл. 1, рис. 2б). Большое значение СКВО, по-видимому, объясняется присутствием в шлифах четырех морфологических генераций силлиманита.

По фракциям граната и породе в целом Sm– Nd-методом получен возраст 2456  $\pm$  50 млн. лет,  $\varepsilon_{Nd} = -6.1$  (табл. 2). Возраст замещающего гранат биотита из этого образца, определенный Rb–Srметодом, составляет 1728  $\pm$  9 млн. лет (табл. 2).

Для граната из меланократового сланца (обр. Д-16/1) по выщелокам измерен Pb–Pb-возраст 2502 ± 17 млн. лет, CKBO = 1.2, (табл. 1, рис. 2в). Возможно, что в процессе кислотной обработки граната растворились микровключения монаци-

### ВОЗРАСТНЫЕ РУБЕЖИ ПРОЯВЛЕНИЯ МЕТАМОРФИЗМА

|                   | Pb      | U       | 206 0                                                                                    | 207 6                                                         | 208 6                                                                 | 207                                    | 206                                 |       | Возраст, млн. лет                      |                                        |                                         |                              |                 |
|-------------------|---------|---------|------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|-------------------------------------|-------|----------------------------------------|----------------------------------------|-----------------------------------------|------------------------------|-----------------|
| Номер<br>фракции  | нг/г    |         | $\frac{\frac{206}{204}}{\frac{204}{204}} Pb = \frac{\frac{207}{204}}{\frac{204}{204}} P$ | $\frac{\frac{207}{\text{Pb}^{\circ}}}{\frac{204}{\text{Pb}}}$ | $\frac{10^{7} Pb^{\circ}}{204} Pb = \frac{10^{8} Pb^{\circ}}{204} Pb$ | $\frac{\frac{207}{Pb}}{\frac{235}{U}}$ | $\frac{\frac{208}{238}}{\text{Pb}}$ | Rho   | $\frac{\frac{206}{Pb}}{\frac{238}{U}}$ | $\frac{\frac{207}{Pb}}{\frac{235}{U}}$ | $\frac{\frac{207}{Pb}}{\frac{206}{Pb}}$ | Дискор-<br>дант-<br>ность, % | Примеча-<br>ние |
| Монацит Д-12/1    |         |         |                                                                                          |                                                               |                                                                       |                                        |                                     |       |                                        |                                        |                                         |                              |                 |
| 1                 | Не опр. | Не опр. | 41840                                                                                    | 6858                                                          | 98600                                                                 | 10.68                                  | 0.4735                              | 0.977 | 2498.9                                 | 2495.9                                 | 2493.4                                  | 0.0                          | Валовая         |
| Силлиманит Д-12/1 |         |         |                                                                                          |                                                               |                                                                       |                                        |                                     |       |                                        |                                        |                                         |                              |                 |
| 2                 | То же   | То же   | 21.210                                                                                   | 16.358                                                        | 47.388                                                                | Не опр.                                | Не опр.                             | 0.994 | Не опр.                                | Не опр.                                | Не опр.                                 | Не опр.                      | Выщелок         |
| 3                 | »       | »       | 51.527                                                                                   | 21.721                                                        | 118.04                                                                | То же                                  | То же                               | 0.842 | То же                                  | То же                                  | 2567                                    | То же                        | Выщелок         |
| 4                 | »       | »       | 83.880                                                                                   | 26.719                                                        | 114.58                                                                | »                                      | »                                   | 0.976 | »                                      | »                                      | 2555                                    | »                            | Выщелок         |
| 5                 | »       | »       | 73.918                                                                                   | 25.113                                                        | 43.718                                                                | »                                      | »                                   | 0.949 | »                                      | »                                      | 2469                                    | »                            | Выщелок         |
| 6                 | »       | »       | 22.690                                                                                   | 16.498                                                        | 38.049                                                                | »                                      | »                                   | 0.990 | »                                      | <b>»</b>                               | Не опр.                                 | *                            | Выщелок         |
| Гранат Д-12/1     |         |         |                                                                                          |                                                               |                                                                       |                                        |                                     |       |                                        |                                        |                                         |                              |                 |
| 7                 | 1.48    | 1.51    | 292.84                                                                                   | 61.057                                                        | 313.81                                                                | 10.82                                  | 0.4735                              | 0.958 | 2498                                   | 2507                                   | 2515                                    | 0.82                         | Валовая         |
| 8                 | 1.61    | 1.69    | 314.82                                                                                   | 64.774                                                        | 335.62                                                                | 10.59                                  | 0.4630                              | 0.979 | 2453                                   | 2488                                   | 2517                                    | 2.9                          | Валовая         |
| 9                 | 1.39    | 1.44    | 303.67                                                                                   | 63.030                                                        | 322.55                                                                | 10.72                                  | 0.4677                              | 0.993 | 2473                                   | 2499                                   | 2520                                    | 1.7                          | Валовая         |
| 10                | 1.40    | 1.48    | 298.79                                                                                   | 62.228                                                        | 311.67                                                                | 10.64                                  | 0.4637                              | 0.999 | 2456                                   | 2492                                   | 2521                                    | 2.5                          | Валовая         |
| Гранат Д-16/1     |         |         |                                                                                          |                                                               |                                                                       |                                        |                                     |       |                                        |                                        |                                         |                              |                 |
| 11                | Не опр. | Не опр. | 28.005                                                                                   | 17.378                                                        | 65.716                                                                | Не опр.                                | Не опр.                             | 0.936 | Не опр.                                | Не опр.                                | Не опр.                                 | Не опр.                      | Выщелок         |
| 12                | То же   | То же   | 184.8                                                                                    | 42.92                                                         | 535.9                                                                 | То же                                  | То же                               | 0.970 | То же                                  | То же                                  | 2500                                    | То же                        | Выщелок         |
| 13                | »       | »       | 347.9                                                                                    | 70.16                                                         | 1058                                                                  | »                                      | »                                   | 0.995 | »                                      | »                                      | 2514                                    | »                            | Выщелок         |

Таблица 1. Результаты U-Pb-изотопных исследований метаморфогенных минералов

Примечание. <sup>а</sup> – изотопные отношения, скорректированные на фракционирование и лабораторное загрязнение; <sup>6</sup> – изотопные отношения, скорректированные на фракционирование, лабораторное загрязнение и обычный свинец. Для выделения Pb и U использована методика, описанная в работе [9]. Погрешность измерения изотопных отношений <sup>206</sup>Pb/<sup>204</sup>Pb = 0.10, <sup>207</sup>Pb/<sup>204</sup>Pb = 0.12, для фракций 12 и 13 – 3%, <sup>206</sup>Pb/<sup>238</sup>U и <sup>207</sup>Pb/<sup>235</sup>U – 0.5% (2 $\sigma$ ). Погрешность конкордантного возраста рассчитана без учета погрешностей констант радиоактивного распада. Th/U-отношение вычислено по изотопному составу Pb на современное время. *Rho* – коэффициент корреляции погрешностей измерения <sup>206</sup>Pb/<sup>204</sup>Pb и <sup>207</sup>Pb/<sup>204</sup>Pb.

Таблица 2. Pb-Sr- и Sm-Nd-возрасты минералов

| Образец | Фракция | Rb      | Sr      | <sup>87</sup> Rb | <sup>87</sup> Sr | Rb-Sr-     | Sm      | Nd      | <sup>147</sup> Sm | <sup>143</sup> Nd | Sm-Nd-       |
|---------|---------|---------|---------|------------------|------------------|------------|---------|---------|-------------------|-------------------|--------------|
| ооризец | тракция | мкг/г   |         | <sup>86</sup> Sr | <sup>86</sup> Sr | млн лет    | мкг/г   |         | <sup>144</sup> Nd | <sup>144</sup> Nd | млн лет      |
| Д-12/1  | Биотит  | 455.7   | 6.146   | 449.44           | 11.9201          | $1728\pm9$ | Не опр. | Не опр. | Не опр.           | Не опр.           | Не опр.      |
|         | Порода  | 101.4   | 87.70   | 3.3867           | 0.841727         |            | 4.687   | 24.20   | 0.1171            | 0.511034          | $2456\pm50$  |
|         | Гранат  | Не опр. | Не опр. | Не опр.          | Не опр.          | Не опр.    | 4.538   | 16.50   | 0.1663            | 0.511832          |              |
|         | Гранат* | Не опр. | Не опр. | Не опр.          | Не опр.          | Не опр.    | 3.835   | 13.21   | 0.1756            | 0.511980          |              |
| Д-16/1  | Биотит  | 473.9   | 8.598   | 250.76           | 6.56856          | $1619\pm9$ | Не опр. | Не опр. | Не опр.           | Не опр.           | Не опр.      |
|         | Порода  | 12.35   | 24.14   | 1.4879           | 0.770973         |            | 24.06   | 121.7   | 0.1195            | 0.511103          | $2410\pm110$ |
|         | Гранат  | Не опр. | Не опр. | Не опр.          | Не опр.          | Не опр.    | 3.707   | 12.81   | 0.1749            | 0.511982          |              |

Примечание. Для выделения Sm и Nd использована модифицированная методика, описанная в работе [10]. Погрешность определения концентраций Sm, Nd, Rb и Sr 0.5%, изотопных отношений  $^{147}$ Sm/ $^{144}$ Nd,  $^{87}$ Rb/ $^{86}$ Sr 0.5%,  $^{143}$ Nd/ $^{144}$ Nd,  $^{87}$ Sr/ $^{86}$ Sr 0.005 (2 $\sigma$ ). \* – повторный отбор граната.



Рис. 2. а – диаграмма с конкордией для монацита (обр. Д-12/1, эллипс 1) и граната (обр. Д-12/1, эллипсы 7–10). б – Рb–Рb-диаграмма для силлиманита (обр. Д-12/1, точки 2–6). в – то же для граната (обр. Д-16/1, точки 11–13). Номера эллипсов и точек соответствуют порядковым номерам фракций в табл. 1.

та. Рутил из этой породы датируется ( $^{207}$ Pb/ $^{206}$ Pb) = = 1900 ± 2 млн. лет.

Sm—Nd-методом по фракция "вал—гранат" определен возраст 2410  $\pm$  110 млн. лет,  $\varepsilon_{Nd} = -6.1$ , а Rb—Sr-возраст биотита этого образца 1619  $\pm$  9 млн. лет (табл. 2).

Более низкие значения Pb—Pb-возраста рутила (1900  $\pm$  2 млн лет) и Rb—Sr-возрасты биотитов, по-видимому, объясняются или их действительно более поздним образованием, или различием в температурах закрытия их изотопных систем при остывании этого участка коры, что более вероятно.

Таким образом, неоархейский (2.6–2.7 млрд. лет) и палеопротерозойский (1.85–1.87 млрд. лет) этапы метаморфизма были проявлены в гранулитовых комплексах Иркутного и Китойского блоков, а в амфиболитовых комплексах этих блоков,

в том числе в породах Китойского месторождения, проявлен метаморфизм только на рубеже архея и протерозоя.

Приведенные выше данные показывают перспективность использования нетрадиционных минералов-геохронометров (граната и силлиманита) для датирования метаморфизма.

Исследования выполнены при поддержке РФФИ (проект 10–05–00855, 09–05–00563) и Программы фундаментальных исследований ОНЗ РАН "Строение и формирование основных типов геологических структур подвижных поясов и платформ".

## СПИСОК ЛИТЕРАТУРЫ

 Aftalion M., Bibikova E.V., Bowes D.R. et al. // J. Geol. 1991. V. 99. P. 851–861.

ДОКЛАДЫ АКАДЕМИИ НАУК том 436 № 3 2011

- 2. *Сальникова Е.Б., Котов А.Б., Левицкий В.И. и др.* // Стратиграфия. Геол. корреляция. 2007. Т. 15. № 4. С. 3–19.
- Гладкочуб Д.П., Донская Т.В., Мазукабзов А.М. и др. // Геология и геофизика. 2005. Т. 46(11). С. 1139–1150.
- 4. Poller U., Gladkochub D.P., Donskaya T.V. et al. // Trans. Roy. Soc. Edinburgh. Earth Sci. 2004. V. 95. P. 215–225.
- Грабкин О.В., Мельников А.И. Структура фундамента Сибирской платформы в зоне краевого шва. Новосибирск: Наука, 1980. 90 с.
- 6. Левицкий В.И., Резницкий Л.З., Сальникова Е.Б. и др. // ДАН. 2010. Т. 431. № 3. С. 386—391.
- Неелов А.Н. Петрохимическая классификация метаморфизованных осадочных и вулканических пород. Л.: Наука, 1980. 100 с.
- Frei R., Kamber B.S. // Earth and Planet. Sci. Lett. 1995. V. 129. P. 261–268.
- 9. *Manhes G., Minster J.E., Allegre C.J.* // Earth and Planet. Sci. Lett. 1978. V. 39. P. 14–24.
- Chao-Feng Li, Fukun Ch., Xiang-Hui Li // Intern. J. Mass Spectrom. 2007. V. 266. P. 34–41.