движений земной коры: мат-лы X научно-координационной сессии по проблеме «Перемещение наносов и формирование толщ прибрежных отложений в условиях вертикальных движений». Таллин: Изд. ВАЛГУС, 1966. С. 178–182.

Бискэ Γ . C., Лак Γ . U. О причинах послеледниковых колебаний береговых уровней на юго-восточной окраине Балтийского щита // Baltica. 1967. Vol. 3. C. 203–213.

Демидов И. Н. О максимальной стадии развития Онежского приледникового озера, изменениях его уровня и гляциоизостатическом поднятии побережий в позднеледниковье // Тр. Кольского науч. центра РАН. 2006. Сер. «Геология и полезные ископаемые Карелии». Вып. 9. С. 171–181.

Сведения об авторе

Чеботарева Виктория Александровна

студентка, СПбГУ, Институт наук о Земле, vika.chebotaryowa@yandex.ru

Chebotareva Viktoria Alexandrovna

Student, SPbSU, Institute of Earth Sciences, vika.chebotaryowa@yandex.ru

DOI: 10.25702/KSC.2307-5252.2019.6.041

УДК 550.93: 553.83

А. В. Чистякова¹, Р. В. Веселовский^{1, 2}, Д. В. Семёнова³, А. М. Фетисова^{1, 2}

- ¹ Московский государственный университет им. М. В. Ломоносова, геологический факультет, Москва, Россия
- ² Институт физики Земли РАН, Москва, Россия
- ³ Институт геологии и минералогии им. В. С. Соболева СО РАН, Новосибирск, Россия

ПЕРВЫЕ РЕЗУЛЬТАТЫ U-РВ ДАТИРОВАНИЯ ДЕТРИТНЫХ ЦИРКОНОВ ИЗ ПЕРМО-ТРИАСОВЫХ КРАСНОЦВЕТОВ РУССКОЙ ПЛИТЫ (РАЗРЕЗЫ ЖУКОВ ОВРАГ И НЕДУБРОВО)

Аннотация

Представлены первые результаты U-Pb LA-ICPMS датирования детритных цирконов из пермо-триасовых красноцветов Московской синеклизы: две пробы представляют пограничный P-T интервал опорного разреза Жуков Овраг, третья проба отобрана из разреза Недуброво, стратиграфическая позиция которого неоднозначна. Полученные результаты свидетельствуют о значимом различии питающих провинций позднепермских и раннетриасовых осадочных бассейнов, что подтверждает перспективность использования метода детритных цирконов для решения вопросов стратиграфии P-T отложений Русской плиты.

Ключевые слова:

детритные (обломочные) цирконы, U–Pb геохронология, пермь, триас, Русская плита.

A. V. Chistyakova¹, R. V. Veselovskiy^{1, 2}, D. V. Semenova³, A. M. Fetisova^{1, 2}

- ¹ Lomonosov Moscow State University, Moscow, Russia
- ² Institute of Physics of the Earth RAS, Moscow, Russia
- ³ Sobolev Institute of Geology and Mineralogy of SB RAS, Novosibirsk, Russia

FIRST DATA ON U-PB DATING OF DETRITAL ZIRCONS FROM THE PERMIANTRIASSIC REDBEDS OF THE RUSSIAN BASIN (THE ZHUKOV RAVINE AND NEDUBROVO OUTCROPS)

Abstract

We present the first results of U–Pb L–ICPMS dating of detrital zircons from the Permian-Triassic redbeds of the Moscow Basin: two samples were taken close to the P–Tr boundary of the Zhukov Ravine reference section; the third sample represents the Nedubrovo outcrop with an uncertain stratigraphic position. The results show a significant difference between the provenance of the Late Permian and Early Triassic sedimentary basins; we use this conclusion to clarify the stratigraphic position of the Nedubrovo sediments.

Keywords:

detrital zircons, U-Pb geochronology, Permian-Triassic boundary, Russian Basin.

Введение

Пермо-триасовый осадочный комплекс занимает значимую позицию в структуре чехла Восточно-Европейской платформы и широко развит в пределах осадочных бассейнов Русской плиты, в частности Московской синеклизы. В его составе отложения верхней перми и нижнего триаса представлены терригенными красноцветами, накопление которых происходило, главным образом, в условиях пересыхающих мелких водоемов и речных долин. Указанные обстановки осадконакопления предопределили стратиграфическую неполноту отдельно взятых разрезов и значительную фациальную изменчивость по латерали, что, наряду с отсутствием региональных литологических маркеров и в ряде случаев ограниченными возможностями использования палеонтологического метода, существенно затрудняет региональную корреляцию пограничных пермотриасовых осадочных толщ. Магнитостратиграфический метод давно и успешно используется для определения и уточнения стратиграфической позиции пермотриасовых разрезов Восточно-Европейской платформы, однако и его возможности нередко ограничены в виду трудности учета стратиграфической неполноты осадочных разрезов. Из всего вышеобозначенного следует, что для дальнейшего решения проблемы внутри- и межбассейновой корреляции терригенных пермо-триасовых толщ Русской плиты необходимо привлекать дополнительные независимые методы.

Метод изучения питающих провинций по минералам тяжелой фракции, в том числе по обломочным (детритным) цирконам, активно развивающийся в последние десятилетия, является мощным и доступным инструментом корреляции терригенных толщ. В недавней работе (Арефьев и др., 2016) впервые были использованы данные о распределении акцессорных минералов тяжёлой фракции пограничных пермо-триасовых пород Русской плиты: авторами сделаны выводы о связи гранат-цирконовой ассоциации, характерной для верхнепермских отложений, с Фенноскандинавской питающей провинцией, а эпидот-цоизитовой, свойственной для нижнетриасовых пород, — с Уральской провинцией. Таким образом, на настоящий момент имеются указания на наличие контрастных питающих провинций для терригенных отложений Русской плиты в пермское

и триасовое время. Дальнейшим развитием в рамках решения проблемы корреляции и стратиграфического расчленения пограничных пермо-триасовых разрезов Русской плиты видится применение метода уран-свинцового (U–Pb) датирования детритных цирконов, ранее не применявшегося для Русского бассейна.

Целью данного исследования является оценка возможностей метода U–Pb LA–ICPMS датирования детритных цирконов в качестве инструмента стратиграфической корреляции и расчленения пермо-триасовых разрезов Русской плиты на примере опорного пограничного P–T разреза Жуков Овраг и разреза Недуброво, стратиграфическая позиция которого на сегодняшний день однозначно не определена (верхняя пермь или нижний триас).

Объекты исследования

В качестве объектов исследования были выбраны: (1) разрез Жуков Овраг, стратиграфическая позиция, равно как и положение границы перми и триаса, в котором надежно определены (Голубев, 2012), что позволяет использовать этот разрез как эталонный, и (2) разрез Недуброво, время накопления которого является предметом продолжительных дискуссий и на настоящий момент не может быть однозначно определено (Лозовский и др., 2016).

Опорный разрез пограничных отложений перми и триаса Жуков Овраг расположен вблизи города Гороховец на востоке Владимирской области (56,188 ° с. ш., 42,649 ° в. д.). Сводный разрез составлен по серии обнажений, расположенных в бортах Жукова Оврага на ЮЗ окраине города Гороховец. За несколько десятилетий детального палеонтологического и литологостратиграфического изучения отложения разреза Жуков Овраг были качественно и разносторонне охарактеризованы. Однако, несмотря на то что ещё с 1960-х гг. разрез утверждён в качестве опорного для центральной части Московской синеклизы (Сенников, Голубев, 2012), детальные палеомагнитные исследования были проведены лишь недавно (Фетисова и др., 2018), а исследования методом датирования детритных цирконов, которые в последние годы являются своего рода стандартом при изучении опорных терригенных разрезов, не проводились вовсе. На сегодняшний день комплексная характеристика по разным группам фауны (остракодам, тетраподам, рыбам) и палеомагнитным данным как пермских, так и триасовых частей разреза полностью обосновывает выбор опорного разреза Жуков Овраг в качестве перспективного объекта исследования методом датирования обломочных цирконов.

Отбор проб проводился в мае 2018 г. в ходе полевых работ. Обнажённость стенок оврага довольно низкая, в связи с чем для отбора проб в нескольких местах по всей длине оврага закладывались шурфы глубиной до 1 м; вскрытые шурфами интервалы сводного разреза надежно сопоставлялись друг с другом. Опробованию подверглись слои мелко-среднезернистых слабосцементированных песчаников, вес проб составлял 2−3 кг. По результатам лабораторной обработки необходимое количество цирконов удалось выделить из двух проб: проба № 11 представляет терминальную пермь (слой № 27 согласно (Голубев, 2012)), проба № 56 — низы триасового интервала (слой № 7 по (Голубев, 2012)).

Разрез Недуброво расположен на крутом левом берегу р. Кичменьги, в д. Недуброво Вологодской области (60,04521 ° с. ш., 45,74047 ° в. д.). Выделенная сравнительно недавно недубровская пачка — предмет неутихающих споров

в связи с неопределенностью возраста слагающих ее отложений. Проведенные различными исследователями многочисленные определения фауны и флоры позволяют относить недубровские отложения, с одной стороны, к терминальной перми, с другой — к нижнему триасу. Уникальность недубровской пачки определяется также отсутствием известных возрастных аналогов в пределах Московской синеклизы. Метод обломочных цирконов потенциально может позволить конкретизировать стратиграфическую позицию разреза Недуброво, поэтому из пачки песков в верхней части разреза была отобрана одна проба весом 3 кг для выделения обломочных цирконов.

Методика U-Pb LA-ICPMS датирования детритных цирконов

Выделение и U–Pb датирование обломочных цирконов из трех рассматриваемых проб было выполнено в Аналитическом центре ИГМ СО РАН по стандартной методике. Из пробы № 11 (пермская) для датирования было отобрано 150 зёрен; из пробы № 56 (триасовая) — 76 зёрен, из пробы «Недуброво» — 29 зёрен. Изучение морфологии и внутреннего строения зёрен проводилось по катодолюминесцентным (CL) изображениям и снимкам в отражённых электронах (BSE). Датирование выполнено методом LA–ICPMS с использованием масс-спектрометра Element XR (Thermo Scientific) в лаборатории Института геологии и минералогии СО РАН (Новосибирск).

Обработка данных, в том числе расчет изотопных отношений, проводилась в программе Glitter (Van Achterbergh et al., 2001; Griffin et al., 2008). Расчет средневзвешенных значений возраста по изотопным отношениям выполнен с помощью Microsoft Excel со встроенным пакетом Isoplot (Ludwig, 2008). С использованием этого же программного обеспечения рассчитывались коэффициенты дискордантности (D) и корреляции погрешностей отношений $^{207}{\rm Pb}$ / $^{235}{\rm U}$ и $^{206}{\rm Pb}$ / $^{238}{\rm U}$ (Rho); строились диаграммы с конкордией, гистограммы и кривые функции плотности вероятности. K-S тест и построение кумулятивных кривых возрастов выполнялись с помощью макроса MS Excel, созданного G. Gehrels and J. Guynn (Dep. of Geosciences University of Arizona, Tucson, USA) размещенного для свободного использования сайте sites.google.com/a/laserchron.org/laserchron/home. Погрешности всех единичных анализов (отношения и возраст) учитывались для уровня $\pm 1\sigma$.

Интерпретация и обсуждение результатов

При интерпретации результатов датирования обеих проб разреза Жуков Овраг учитывались только датировки зёрен со значениями дискордантности D < 5. Отметим, что в данном случае использование классического более «мягкого» фильтра D < 10 приводит только к «затушевыванию» общей картины и не позволяет выявить при этом новых характерных пиков. Таким образом, в результате проведённой отбраковки при интерпретации возрастных спектров учитывались значения изотопного возраста, полученные для 108 зёрен из пробы № 11 (терминальная пермь) и 38 зерен из пробы № 56 (нижний триас). В связи с малым общим количеством выделенных цирконов из пробы «Недуброво» анализировались все 29 полученных значений U—Pb возраста.

По возрастам зёрен с приемлемой степенью дискордантности были построены гистограммы и кривые плотности вероятности. Для цирконов, имеющих возраст более 1 млрд лет, принимался возраст, рассчитанный

по изотопному отношению 207 Pb / 206 Pb, а для более молодых, соответственно, рассчитанный по отношению 206 Pb / 238 U. Доверительный интервал учитывался на уровне \pm 1 σ . Характерными считались пики, сформированные тремя и более U–Pb датировками цирконов.

Обломочные цирконы верхнепермских отложений разреза Жуков Овраг (проба № 11) рассредоточены в пределах широкого возрастного интервала — от 2747,3 \pm 30,96 до 338,2 \pm 5,39 млн лет. Зёрна архейского возраста (6 %) сгруппированы на участке с максимумом 2680 млн лет. Основной объём выборки (79 %) составляют датировки цирконов в диапазоне от 2079,6 \pm 35,11 до 943,1 \pm 14,77 млн лет, формирующие на фоне непрерывного распределения два отчётливых пика — 1776 и 1005 млн лет. Пик с максимумом 1517 млн лет отдельно не выделяется в силу исчезновения его на уровне доверия \pm 2 σ . Около 3 % цирконов — вендские (небольшой пик с максимумом 620 млн лет). Наконец, палеозойские зёрна цирконов (12 %) образуют отчетливо выраженный максимум 358 млн лет.

Цирконы из *нижнетриасового* интервала разреза Жуков Овраг (проба № 56) также охватывают широкий спектр возрастов — от 3219,6 \pm 32,29 до 336,3 \pm 5,37 млн лет. Но значимый пик формирует только палеозойская популяция (39 %) — максимум 348 млн лет. Остальные зёрна образуют маловыразительное плато (наблюдаемые небольшие пики полностью сглаживаются на уровне доверия \pm 2 σ) в интервале 2023,4—922,1 млн лет. Зёрна архейского возраста (5 %) единичны и не формируют характерных пиков.

Для статистической оценки степени различия возрастных спектров обломочных цирконов из проб № 11 и № 56 опорного разреза Жуков Овраг был проведён тест Колмогорова — Смирнова (K–S тест). Тест показал существенные различия пермской и триасовой проб (p=0.025), подтверждая, тем самым, контрастность питающих соответствующие осадочные бассейны провинций. Важно, однако, отметить, что неравноценность объёма сравниваемых выборок (108 и 38 зёрен) может существенно влиять на результат K–S теста.

Спектр U—Рb возрастов цирконов из пробы «Недуброво» имеет два статистически обоснованных пика: максимумы ~ 400 млн лет (сформирован 16 зёрнами) и ~ 1800 млн лет (4 зёрнами). Отсутствие датировок, близких к 1 млрд лет, по аналогии с результатами датирования цирконов из разреза Жуков Овраг, дает возможность предполагать, что источник сноса был схож с таковым для пробы № 56 из нижнетриасового интервала разреза Жуков Овраг, что, в свою очередь, может указывать на триасовый возраст отложений разреза Недуброво. Однако сделанный вывод на данном этапе исследований следует признать весьма предварительным и требующим подтверждения путем датирования более представительной выборки обломочных цирконов из разреза Недуброво.

Заключение

На основании проведённой качественной и количественной интерпретации возрастных спектров детритных цирконов из верхнепермского и нижнетриасового интервалов опорного разреза Жуков Овраг, а также анализа U—Pb датировок обломочных цирконов разреза Недуброво, имеющего дискуссионную стратиграфическую привязку, можно сделать следующие выводы: 1) источники сноса для верхнепермских и нижнетриасовых терригенных пород опорного P—T разреза Жуков Овраг на данном этапе представляются контрастными, что позволяет привлекать детритную геохронологию при решении

задач стратиграфического расчленения пермо-триасовых отложений Русской плиты, при этом сами результаты, полученные по этому разрезу, предлагается использовать в качестве эталонных; 2) по аналогии с возрастными спектрами обломочных цирконов опорного разреза Жуков Овраг, спектр, полученный для спорного разреза Недуброво, позволяет предполагать раннетриасовый возраст накопления недубровской пачки. Однако этот вывод следует считать предварительным и требующим заверки.

Благодарности

Исследования проведены при поддержке гранта РФФИ (18-05-00593), а также НИР в рамках госзадания ИФЗ РАН и геологического факультета МГУ имени М. В. Ломоносова.

Литература

Арефьев М. П., Голубев В. К., Кулешов В. Н. и др. Комплексная палеонтологическая, седиментологическая и геохимическая характеристика терминальных отложений пермской системы северо-восточного борта Московской синеклизы. Статья 1. Бассейн реки Малая Северная Двина // Бюллетень Московского общества испытателей природы. Отдел геологический. 2016. Т. 91, № 1. С. 24–49.

Голубев В. К. Границы верхнего отдела пермской системы на Восточно-Европейской платформе // Палеозой России: региональная стратиграфия, палеонтология, гео- и биособытия. Материалы III Всероссийского совещания «Верхний палеозой России: региональная стратиграфия, палеонтология, гео- и биособытия». СПб.: ВСЕГЕИ, 2012. С. 68–70.

Лозовский В. Р., Балабанов Ю. П., Карасев Е. В., Новиков И. В., Пономаренко А. Г., Ярошенко О. П. Терминальная пермь европейской России: вязниковский горизонт и недубровская пачка и граница перми и триаса // Стратиграфия. Геологическая корреляция. 2016. Т. 24 (4). С. 38–54.

Сенников А. Г., Голубев В. К. К фаунистическому обоснованию границы перми и триаса в континентальных отложениях Восточной Европы. 1. Гороховец — Жуков овраг // Палеонтологический журнал. 2012. № 3. С. 88–98.

Фетисова А. М., Балабанов Ю. П., Веселовский Р. В., Мамонтов Д. А. Аномальная намагниченность красноцветов недубровской пачки пограничных пермотриасовых отложений Русской плиты // Вестник Санкт-Петербургского университета. Науки о Земле. 2018. Т. 63, № 4. С. 544—560. DOI: 10.21638/spbu07.2018.409

Griffin W. L., Powell W. J., Pearson N. J., O'Reilly S. Y. Glitter: Data reduction software for laser ablation ICP-MS; In Sylvester, P. J. (ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Mineralogical Association of Canada Short Course Series, Short Course 40, Vancouver, B. C., 2008, P. 308–311.

Ludwig K. R. Isoplot/Ex 3.70. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Berkely, Special publication. 2008. № 4. 76 p.

Van Achterbergh E., Ryan C. G., Jackson S. E., Griffin W. L. Data reduction software for LA-ICP-MS: appendix; In Sylvester, P. J. (ed.), Laser Ablation–ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications, Mineralogical Association of Canada Short Course Series, Ottawa, Ontario, Canada. 2001. Vol. 29. P. 239–243.

Сведения об авторах

Чистякова Альвина Владимировна

студентка, МГУ им. М. В. Ломоносова, геологический факультет, sinematografl 1@yandex.ru

Веселовский Роман Витальевич

доктор геолого-минералогических наук, профессор, МГУ им. М. В. Ломоносова, геологический факультет, roman.veselovskiy@ya.ru

Семёнова Дина Валерьевна

кандидат геолого-минералогических наук, научный сотрудник, ИГМ СО РАН, semenovadina@gmail.com

Фетисова Анна Михайловна

кандидат геолого-минералогических наук, доцент, МГУ им. М. В. Ломоносова, геологический факультет, anna-fetis@ya.ru

Chistyakova Alvina Vladimirovna

Student, Lomonosov Moscow State University, Geological Dept., sinematografl 1@yandex.ru Veselovskiy Roman Vitalievich

Doctor of Sciences (Geology & Mineralogy), Professor, Lomonosov Moscow State University, Geological Dept., roman.veselovskiy@ya.ru

Semenova Dina Valerievna

PhD (Geology & Mineralogy), Researcher, IGM SB RAS, semenovadina@gmail.com Fetisova Anna Mikhailovna

PhD (Geology & Mineralogy), Associate Professor, Lomonosov Moscow State University, Geological Dept., anna-fetis@ya.ru

DOI: 10.25702/KSC.2307-5252.2019.6.042

УДК: 551.345 : 551.34 : 551.8

Р. С. Шухвостов

Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

СЛЕДЫ КРИОГЕННЫХ ПРОЦЕССОВ В ПОЗДНЕЛЕДНИКОВЫХ ОТЛОЖЕНИЯХ ЮГО-ВОСТОЧНОГО ПРИЛАДОЖЬЯ

Аннотация

В двух разрезах Юго-Восточного Приладожья путем непрерывного прослеживания геологических тел, структур и текстур, связанных с реликтами криогенных процессов позднеледникового времени, установлено, что их полнота и выраженность контролируется как локальными криофациальными условиями, так и продолжительностью субаэральных условий при снижении уровня Балтийского ледникового озера.

Ключевые слова:

следы криогенных процессов, посткриогенная текстура, криогенез, палеокриология, поздний плейстоцен.