DOI:10.24411/2076-6785-2020-1007

Формирование базы геолого-геофизических и геохимических данных для оценки перспектив нефтегазоносности глубокозалегающих отложений Ямальского полуострова

Л.И. Зинатуллина

Институт проблем нефти и газа РАН | Москва Россия zinatullina@ipng.ru

Аннотация

На сегодняшний день актуальной является проблема геолого-геофизического изучения и оценки ресурсов углеводородов (УВ) горизонтов, залегающих на глубинах свыше 4000 м. В статье показан, комплексный подход к изучению нижнеюрских и доюрских отложений на Ямальском полуострове. Данные отложения обладают ресурсным потенциалом и перспективны для открытия месторождений УВ.

Материалы и методы

Данные геологической изученности: стратиграфии, тектоники, нефтегазоносности полуострова Ямал, построение геологического профиля.

Ключевые слова

геология, глубокие горизонты, Западная Сибирь, газ, доюрские отложения, перспективы нефтегазоносности, полуостров Ямал

Для цитирования:

Л.И. Зинатуллина. Формирование базы геолого-геофизических и геохимических данных для оценки перспектив нефтегазоносности глубокозалегающих отложений Ямальского полуострова // Экспозиция Нефть Газ. 2020. №2. С. 10-13. DOI:10.24411/2076-6785-2020-10073.

Поступила в редакцию: 13.02.2020

GEOLOGY

UDC 551 | Original Paper

Formation of a base of geological-geophysical and geochemical data for assessing the prospects of oil and gas potential of deep deposits of the Yamal Peninsula

Liliya I. Zinatullina

Institute of Oil and Gas Problems RAS | Moscow, Russian Federation zinatullina@ipng.ru

Abstract

Today, the problem of geological and geophysical study and assessment of hydrocarbon (HC) resources of horizons lying at depths of more than 4000 m is relevant. The article shows a comprehensive approach to the study of Lower Jurassic and Pre-Jurassic deposits on the Yamal Peninsula. These deposits have resource potential and are promising for the discovery of hydrocarbon deposits.

Kevwords

geology, deep lying formation, Western Siberia, gas, pre-Jurassic deposits, oil and gas prospects, Yamal Peninsula $\,$

Materials and methods

Data of geological knowledge: stratigraphy, tectonics, oil and gas potential of the Yamal Peninsula, the construction of a geological profile.

For citation

Liliya I. Zinatullina. Formation of a base of geological-geophysical and geochemical data for assessing the prospects of oil and gas potential of deep deposits of the Yamal Peninsula // Ekcpozitsiya Net' Gaz = Exposition Oil Gas, 2020, issue 2, pp.10-13. (In Russ.). DOI:10.24411/2076-6785-2020-10073.

Received: 13.02.2020

Введение (актуальность)

Полуостров Ямал является одним из важнейших стратегических центров газоносности Российской Федерации. На сегодняшний день по опубликованным данным ПАО «Газпром», суммарные запасы и ресурсы всех месторождений полуострова Ямал составляют более 26 трлн куб. м газа, 1,6 млрд тонн газового конденсата и порядка 300 млн тонн нефти. Представление о геологическом строении глубоких горизонтов претерпевает кардинальные изменения, в связи с чем традиционные методики прогнозной оценки ресурсов и проведения поисково-разведочных работ становятся малоэффективными.

Проблема освоения углеводородных ресурсов малоизученных глубоких горизонтов Западной Сибири с каждым днем становится все более актуальна. К глубоким горизонтам принято относить отложения, залегающие ниже глубины 4 км. На исследуемой территории, несмотря на большой объем поискового бурения, очень мало скважин, вскрывших доюрский фундамент.

Цель и задачи

Целью исследования является формирование базы геолого-геофизических и геохимических данных с оценкой перспектив нефтегазоносности доюрских комплексов северных районов Западной Сибири.

Фактический материал

На территории Ямало-Ненецкого автономного округа (ЯНАО), включая полуостров Гыдан, Обскую губу и акваторию Карского моря, по состоянию на 01.01.2019 г. выявлено более чем 3000 залежей углеводородного сырья на 228 месторождениях.

На севере Западно-Сибирского НГБ и Западно-Ямальском шельфе Карского моря большинство из более чем 200 месторождений углеводородов открыто в сеноманском, апт-альбском, неокомском и верхнеюрском комплексах [1].

На территории севера Западно-Сибирской мегапровинции за последние годы были пробурены параметрические, поисковые и

разведочные скважины различной глубины, вплоть до 8400 м. В поисково-разведочное бурение введены более чем 1000 перспективных площадей — главным образом, положительные (поднятия) и отрицательные (прогибы) структуры (скв. СГ-6 Тюменская и др.) (таб. 1).

Сегодня АО «Росгеология» активно участвует в изучении перспектив нефтегазоносности глубоко залегающих мезозойских отложений и палеозойского комплекса Западно-Сибирской плиты. В последние годы завершена проходка Гыданской-130 и Баженовской-1 параметрических скважин.

Скважина Гыданская-130 расположена в ЯНАО, в Восточной части Ямало-Гыданской синеклизы, на территории Гыданской нефтегазоносной области. Скважина пробурена до глубины 5100 м. Проектная глубина скважины составляет 7150 м.

Скважина Баженовская-1 расположена в Ханты-Мансийском автономном округе (ХМАО) в центральной части Фроловской мегавпадины. Ее бурение АО «Росгеология» завершила в октябре 2018 года, сообщив о достижении проектного забоя 3200 м. По итогам бурения были сделаны выводы о том, что в разрезе баженовской свиты присутствуют пласты, которые предварительно можно отнести к категории «возможный коллектор». Мощность баженовско-абалакского комплекса по скважине Баженовская-1 составила 54 м.

Также АО «Росгеологией» начаты работы по организации бурения Гыданской-118 и Северо-Кетской глубоких скважин. Параметрическая скважина Гыданская-118 заложена в Тазовском районе ЯНАО. Проектная глубина скважины составляет 4500 м. Первый этап бурения скважины (до отметки в 1600 м) АО «Росгеология» начала в январе 2018 года, проектный горизонт — средний-верхний карбон.

Образования доюрского комплекса на Бованенковском месторождении вскрыты шестью скважинами. На Харасавейском и Крузенштернском месторождениях доюрские породы не вскрыты.

В таб. 1 приведены глубокие и сверхглубокие скважины, которые были пробурены на территории севера Западной Сибири.

На Новопортовском месторождении доюрские отложения вскрыты 50 поисковыми и разведочными скважинами. Промышленно газоносными оказались карбонатные отложения палеозойского возраста. В скв. 216, кроме газа, получены притоки нефти (около 2 м³/сут.). В нижнеюрских отложениях Новопортовского месторождения продуктивность связана с пластом Ю1 [3].

Нижние подкомплексы доюрского комплекса нефтегазоносности (складчатое основание и фундамент) остаются практически неизученными поисково-разведочным бурением. Верхняя часть фундамента вскрыта лишь отдельными скважинами.

Характеристика геологического строения

Доюрский комплекс отложений (рис. 1) состоит из трех подкомплексов:

- переходный (верхняя пермь-триас)
- складчатое основание (палеозой)
- фундамент (архейско-протерозойский)

Доюрские образования зоны сильно дислоцированы, причем часть разломов проникает в осадочную толщу до отложений разного возраста. Разломы преимущественно вертикальны или субвертикальны,

преобладают северо-западное и северо-восточное направления. Как следствие, фундамент имеет блоковое строение. В юрских толщах пликативные структуры также могут быть разбиты на блоки [3]. Для оценки нефтегазоносности необходимо исследовать основные геолого-геофизические показатели.

Тектонический анализ

В современном представлении тектонический фактор играет определяющую роль в реализации процессов, составляющих онтогенез нефти и газа.

По соотношениям гравитационного и магнитного полей прослеживаются грабен-рифтовые зоны и валообразные поднятия. В северной части полуострова оси складок имеют северо-восточный (СВ), в южной части северо-западный (СЗ) азимут простирания. В центральной части полуострова, где сформировался крупный тектонический узел в виде вала широтного простирания — Бованенковский мегавал с крупнейшими месторождениями полуострова в меловых, частично юрских отложениях: Бованенковским, Крузенштерновским и Харасавэйским. Эти месторождения контролируются, в основном, валообразными поднятиями фундамента. В южной и северо-западной частях полуострова и на шельфе Карского моря в фундаменте выделяются валообразные поднятия, которые отображаются в осадочном чехле. Гравитационные и магнитные ступени очерчивают выделенные тектонические структуры фундамента. Плотность тектонических нарушений в фундаменте значительно больше, чем в осадочном чехле. что подтверждается схемой тектонического строения (рис. 2) [4].

В результате, на основе структурных элементов фундамента и тектонических нарушений разного ранга, может быть выполнено районирование территории по перспективам нефтегазоносности, планирование сейсмических и буровых работ.

Литофациальный анализ включает

изучение: 1) песчанистости разреза; 2) расчлененности разреза; 3) средних мощностей прослоев; 4) количества прослоев на 100 м вскрытого разреза.

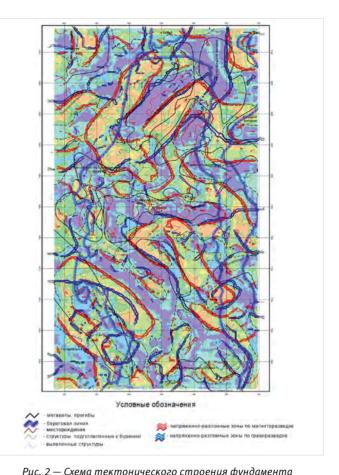
Доюрский комплекс объединяет отложения промежуточного структурного этажа и палеозойского фундамента, представленного осадочными палеозойскими образованиями и отложениями триасового возраста. Образования доюрского возраста в пределах полуострова Ямал вскрыты на Новопортовском, Восточно-Новопортовском, Усть-Юрибейском, Бованенковском месторождениях, а также на Сюнай Салинской, Яр-Салинской, Западно-Яротинской, Восточно-Бованенковской и Верхнереченской площадях [5–7].

Вскрытый разрез доюрских отложений характеризуется разнообразием литологического состава и возраста (таб. 3).

Так как песчаники в разрезе присутствуют как в карбоне, девоне, силуре, так и в ордовике и кембрии (плотность песчаников нижнеордовикского возраста составляет 2,74–2,77 г/см³), можно сделать вывод о наличии в разрезе пород-коллекторов, потенциальных залежей УВ. Зоны развития в разрезе пород-коллекторов перекрыты толщами флюидоупоров.

Анализ **Ф**FC

Высокие значения ФЕС, приводимые многими авторами по результатам исследования керна и интерпретации ГИС, существенно влияют на миграционно-аккумуляционные и консервационные факторы прогноза в связи с фрагментарным бурением закономерности ФЕС глубокозалегающих отложений изучены недостаточно.


ФЕС юрских пород. До глубины 4000–4250 м коллекторы юрского возраста в основном порового типа, ниже вероятно преобладание трещинно-поровых и трещинных разностей. Процессы эпигенеза способствуют снижению проницаемости пород: на Бованенковском месторождении в пластах Ю6-7 — 0,05—0,3 мд. В разрезе юрских отложений лучшие коллекторы установлены в отложениях оксфордского

Таб. 1 — Глубокие и сверхглубокие скважины на территории севера Западной Сибири Tab. 1 — Deep and superdeep wells in the north of Western Siberia

НГО	Площадь	Скважина	Глубина, м	Возраст
Ямальская Новопортовская		216	3200	S-D
	Бованенковская	201	3445	PZ 2-3
	Бованенковская	203	3460	PZ
Бованенковская Арктическая Северо-Тамбейская Матыгинская Ярудейская		N	4008	J1
		11	3120	J1
		18	3544	J1
		33	3756	J1
		38	4429	J2
Гыданская	Гыданская	Гыданская-130	5515	J2- PZ
Гыданская Утренняя		Гыданская-118	4500 (проект)	PZ
		275	3020	J 1-2
	Тазовская	90	3711	J 1-2
Надым-Пурская	Ен-Яхинская	Ен-Яхинская СГ-7	8250	P - T1
	Ен-Яхинская	Ен-Яхинская-501	5500	J1
	Ен-Яхинская	Ево-Яхинская-356	4618	T2-3
	Ен-Яхинская	Ево-Яхинская-358	5300	J1
	Ен-Яхинская	Тюменская СГ-6	7502	P - T

	Возраст		аст	Состав	Мощность	Свита, литологичское описание
Мезозой			титон		до 10м	Баженовская св. аргиллиты
			Кел-окс -киммер		до 82м	Абалакская св. аргиллиты
			бат		∼70 м	Малышевская свита. Песчаники, Алевролиты, реже аргиллиты
	рфон		байокс		до 110 м	Леонтьевская свита. Аргиллиты
		ижняя - средняя юра	середина -верхи аалена		до 220 м	Вымкая свита. Песчаники и алевролиты
			верхи тоара- -низы аалена		до 220 м	Лайдинская свита. В верхней части преобладают песчаники и алевролиты ниже - аргиллиты
		- ввнжин	верхи плинс- баха - -тоар		до 278 м	Джангодская свита. Песчаники, алевролиты (верхи и нижняя часть), аргиллиты (средняя часть свиты)
			Плинсбах		до 110 м	Левинская свита. Аргиллиты с прослоями алевролитов, песчаников
			Геттанг- -синемюр		0-350 м	Зимняя свита. Песчаники,алевролиты, аргиллиты
		T			до 115 м	Глинисо-кремнистые и карбонатные породы; долерито-базальты
Палеозой	PZ ₂₋₃		> 516м	Песчаники, аргиллиты, эффузивы разного состава, карбонаты, слабо затронутые или не затронутые процессами регионального метаморфизма; габро-диабазы		
	04	PC=-PZ1		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	> 268 м	Туфоалевролиты, содержащие метаморфический биотит

Рис. 1— Литолого-стратиграфический разрез домеловых образований Бованенковско-Харасавейской зоны [2] Fig. 1— Lithologic-stratigraphic section of the Cretaceous formations of the Bovanenkovo-Kharasavey zone [2]

Puc. 2— Схема тектонического строения фуноамента полуострова Ямал с нанесенными гравитационными и магнитными ступенями [4] 2— Diagram of the tectonic structure of the foundation of the Ya

Fig. 2 — Diagram of the tectonic structure of the foundation of the Yamal Peninsula with gravity and magnetic steps applied [4]

и батского (малышевский горизонт) ярусов. Кп от 12 до 28%, проницаемость — $(0,1-18) \cdot 10^{-3}$ мкм². С глубиной ФЕС юрских пород ухудшаются [8].

ФЕС палеозойских пород, по имеющимся данным, не высокие Кп=1–13% составляя в среднем 5–6%, но вполне достаточны для того, чтобы накапливать и отдавать флюиды. В зависимости от преобладания изменивших породы процессов здесь выделяются коллекторы трещинные, порово-трещинные, каверново-поровые, каверново-поровые, каверново-порово-трещинные. Проницаемость, определенная по керну, измеряется первыми миллидарси [9].

Геотермический анализ

Для оценки геотермического фактора используют такие важные параметры как: степень катагенетической преобразованности отложений (R°, %); термоглубинный показатель продуктивности, определяемый как произведение геотемператур и средних глубин погружения пород.

Геохимический анализ

К геохимическим показателям относятся: среднее содержание рассеянного органического вещества (РОВ) (Сорг, %) и тип (состав) рассеянного и концентрированного органического вещества (ОВ).

Характеристика ОВ нижнесреднеюрских отложений по степени генерационных возможностей непосредственно на месторождениях Тарминское, Харасавейское и В. Бованенковское (рис. 4) дает возможность прогнозировать на глубинах до 3750

м обнаружение нефтяных скоплений (пл. Тарминская, отложения верхов тюменской свиты), ниже (около 4000 м) — газоконденсатнонефтяных (низы тюменской свиты В. Бованенковское). Органическое вещество отложений пл. Харасавейская по данным пиролиза преобразовано гораздо существеннее, при увеличениях глубины значения Тмах резко возрастают. Поэтому на этой площади уже с глубин 3700 м и ниже можно ожидать чисто газовые скопления [9].

Итоги

Глубокозалегающие отложения вызывают интерес с точки зрения добычи жидких и газообразных углеводородов. Для оценки перспектив нефтегазоносности полуострова Ямал необходимым условием является создание комплексной модели, включающей каждый из вышеизложенных показателей с последующей разработкой единой концептуальной модели строения и нефтегазоносности полуострова Ямал.

Выводы

По предварительной оценке, глубокозалегающие отложения юры, триаса, осадочных пород палеозоя и фундамента представляются перспективными на поиски нефти, газа и конденсата, а также требуют дальнейшего изучения.

Литература

1. Выделение и картирование по материалам сейсморазведки 2Д и 3Д нефтегазоперспективных объектов в юрских и доюрских отложениях Бованенковского, Харасавэйского

- месторождений и прилегающих территорий // Отчет ООО «Газпром добыча Надым», Москва, 2009.
- 2. Шустер В.Л., Зинатуллина Л.И. Обоснование перспектив нефтегазоносности нижне-среднеюрских отложений Бованенковско-Харасавейского НГР Западной Сибири // Экспозиция Нефть Газ. 2018. №2. С.18–21.
- 3. Шустер В.Л. Доюрский комплекс Западной Сибири-нижний этаж нефтегазоносности // Состояние, тенденции и проблемы развития нефтегазового потенциала Западной Сибири. Тюмень: ФГУП «ЗапСибНИИГГ». 2008. С. 42–53.
- 4. Цемкало М.Л., Таратын Э.А., Миколаевский Э.Ю., Лувишис М.Г. Шестаков В.И. Технология построения тектонических схем фундамента для целей ранжирования территорий по нефтегазоперспективности // Презентация на конференции «Гальперинские чтения». Москва, 2010. 28 с.
- Самойлова А.В. Особенности строения и нефтегазоносность юрских и доюрских отложений северо-западной части Западной Сибири // Экспозиция Нефть Газ. 2016. №1. С. 10–11.
- Шустер В.Л., Дзюбло А.Д. Геологические предпосылки нефтегазоносности глубокозалегающих юрских и доюрских отложений на севере Западной Сибири // Экспозиция Нефть Газ. 2012. №2. С. 26–29.
- 7. Копеев В.Д., Скоробогатов В.А., Строганов Л.В. Геологическое строение и газонефтеносность Ямала. Москва, 2003. 352 с.
- 8. Никитин Б.А. Дзюбло А.Д., Шустер В.Л.

Геолого-геофизическая оценка перспектив нефтегазоносности глубокозалегающих горизонтов п-ова Ямал и приямальского шельфа Карского моря // Нефтяное хозяйство. 2014. №11. С. 102–106.

9. Шустер В.Л., Дзюбло А.Д., Пунанова С.А., Самойлова А. В. Новые геолого-геохимические данные оценки перспектив нефтегазоносности глубокозалегающих отложений севера Западной Сибири // Живые и биокосные системы. 2015. №14. С. 1–9.

10. Шустер В.Л., Пунанова С.А. Обоснование перспектив нефтегазоносности юрско-палеозойских отложений и образований фундамента Западной Сибири. Георесурсы. 2016. Т.18. №4. Ч.2. С. 337–345.

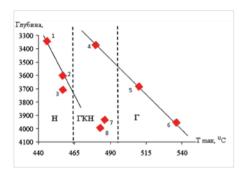


Рис. 3 — Зависимость Т тах от глубины залегания отложений на различных площадях: 1 — Малыгинская (ач.); 2 — Сядорская (ач.); 3 — Тарминская (Л-2); 4-6 — Харасавейская (Л-2) [10] Fig. 3 — Dependence of T max on the depth of deposits in various areas: 1 — Malyginskaya (ach.); 2 — Syadorskaya (ach.); 3 — Tarma (Л-2); 4-6 — Kharasavei (Л-2); 7,8 — E. Bovanenkovskoe (Л-2) [10]

Таб. 2 — Имеющиеся сведения о доюрских породах, вскрытых на площадях Западного
Ямала [1]

Tab. 2 — Available information on pre-Jurassic rocks discovered in the areas of Western Yamal [1]

Nº	Площадь	Nº CKB.	Интервал вскрытия, м.	Мощ- ность, м	Состав	Предполо- жительный возраст
1.	Бованен- ковская	67	3363-3423	60	Глинисто-кремнистые породы Туфоалевролиты метаморфизован. с биотитом Габбро-диабаз Глинистые сланцы Песчан., аргиллиты,	Т
2.		97	3210-3478	268		p€ - - PZ ₁
3.		114	3210-3213	3		PZ ₂₋₃
4.		116	3349-3380	31		PZ ₂₋₃
5.		201	3184-3700	516		PZ ₂₋₃
6.		203	3396-3484	88		PZ ₂₋₃
7.	Восточно- Бованен- ковская	11	3998-4113	115	эффузивы, мраморизов. известняки Песчаники, аргиллиты, конгломераты, доломиты Глинистый мергель, карбонатный аргиллит, долерито-базальт	Т
8.	Усть-Юри- бейская	3			Сланцы	PZ ₂₋₃
9.	Западно-Я- ротинская	300	2550-2590	40	Песчаник слюдистый Сланцы тонкослоистые	
10.		301	2710-2770	60		
11.		302	2573-2690	117		
12.		303	2710-2770	60		
13.		306	2600			
14.	Сюнай-Са-	41	1856		Туфолава средн. состава Туфолава средн. состава	
15.		43	1959			

ENGLISH

Results

Deep deposits are of interest in terms of the production of liquid and gaseous hydrocarbons. To assess the prospects of oil and gas potential of the Yamal Peninsula, a prerequisite is the creation of a comprehensive model that includes each of the above indicators with the subsequent development of a single conceptual model of the structure and oil and gas potential of the Yamal Peninsula.

References

- Isolation and mapping of 2D and 3D oil and gas prospective objects in the Jurassic and Pre-Jurassic sediments of the Bovanenkovskoye, Kharasaveyskoye fields and adjacent territories based on seismic exploration data 2D // Report of Gazprom dobycha Nadym, Moscow, 2009. (In Russ.).
- Schuster V.L., Zinatullina L.I. Justification of the prospects of oil and gas content of the Lower-Middle Jurassic deposits of the Bovanenkovo-Kharasavey NGR of Western Siberia // Exposition Oil Gas, 2018, issue 2, pp.18–21. (In Russ.).
- Schuster V.L. The pre-Jurassic complex of Western Siberia is the lower floor of oil and gas potential // The State, Trends and Problems of the Development of the Oil and Gas Potential of Western Siberia. Tyumen: FSUE ZapSibNIIIGG, 2008, pp. 42–53. (In

Russ.)

- 4. Tsemkalo M.L., Taratyn E.A., Mikolaevsky E.Yu., Luvishis M.G. Shestakov V.I. The technology for constructing tectonic foundation schemes for ranking territories by oil and gas prospects // Presentation at the Halperin Readings Conference. Moscow, 2010, 28 p. (In Russ.).
- 5. Samoilova A.V. Features of the structure and oil and gas potential of the Jurassic and Pre-Jurassic deposits of the northwestern part of Western Siberia // Exposition Oil Gas, 2016, issue 1, pp. 10–11. (In Russ.).
- 6. Schuster V.L., Dzyublo A.D. Geological preconditions of oil and gas potential in deep Jurassic and pre-Jurassic deposits in the north of Western Siberia // Exposition Oil Gas, 2012, issue 2, pp. 26–29. (In Russ.).
- 7. Kopeev V.D., Skorobogatov V.A., Stroganov L.V. Geological structure and gas and oil

Conclusions

According to preliminary estimates, the deep-seated deposits of the Jurassic, Triassic, Paleozoic sedimentary rocks and the basement seem promising for the search for oil, gas and condensate, and require further study.

- content of Yamal. Moscow, 2003, p. 352. (In Russ.).
- Nikitin B.A. Dzyublo A.D., Schuster V.L. Geological and geophysical assessment of oil and gas prospects of deep-seated horizons of the Yamal Peninsula and the Priamal shelf of the Kara Sea // Oil industry, 2014, issue 11. pp. 102–106. (In Russ.).
- Shuster VL, Dzyublo AD, Punanova SA, Samoilova AV New geological and geochemical data for assessing the prospects of oil and gas potential deep-seated deposits in the north of Western Siberia // Living and biocos systems, 2015, issue 14, pp. 1–9. (In Russ.).
- 10. Schuster V.L., Punanova S.A. Substantiation of oil and gas prospects of the Jurassic-Paleozoic deposits and basement formations of Western Siberia // Georesources, 2016, v.18, issue 4, part 2, pp. 337–345. (In Russ.).

ИНФОРМАЦИЯ ОБ ABTOPE | INFORMATION ABOUT THE AUTHOR

Лилия Ильдаровна Зинатуллина, аспирант Института проблем нефти и газа РАН, Москва, Россия. Для контактов: zinatullina@ipng.ru

Liliya I. Zinatullina — graduate student in Institute of Oil and Gas Problems RAS, Moscow, Russian Federation. Corresponding author: zinatullina@ipng.ru