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Abstract

An improved method for short-term rainfall prediction is presented. A previously proposed deterministic rainfall prediction
method for real-time hydrologic applications is extended to a stochastic method. This method mainly consists of a physically
based conceptual rainfall model that includes water balance and thermodynamics. The important element in this method is the
translation of radar data to the model parameter of the conceptual model, which is incorporated into the numerical scheme of the
mesoscale model. The extended Kalman filter is used as a state estimator to update the model parameter of the conceptual model
with new radar data and with forecasts from a numerical weather prediction model. The performance of the stochastic method is
examined for a radar observation area that includes a mountainous region with a rainfall event that occurred along a front. The
stochastic method performed better than the deterministic method.q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Quantitative rainfall prediction provides valuable
information for preventing or mitigating flash flood-
ing. Predicting rainfall hours in advance, correspond-
ing to the time lag of basin response, is a particularly
important to avoid flood danger. This demonstrates
the great importance of a reliable short-term rainfall
prediction method.

The rainfall prediction method used in this work is a
physically based, short-term rainfall prediction method
developedbyNakakita etal. (1996).Themethodutilizes
three-dimensional information routinely obtained from
three sources: a conventional volume-scanning C-band
radar, ground station data from the Automated Meteor-
ological Data Acquisition System (AMeDAS), and grid
point values (GPV) froma numerical weather prediction
(NWP) model called the Japan Spectral Model (JSM).
AMeDAS and JSM are managed and developed by the
Japan Meteorological Agency (JMA). This methoddoes
not use the GPV of rainfall because the horizontal and
temporal resolution of GPV data is sparse compared to
that of radar data. The additional utilization of radar
information allows this method to predict the GPV
subgrid variability of rainfall.
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The previous prediction method, however, was
deterministic in the primary stages of study. In the
present method, the conversion rate of water vapor
(CRWV) is retrieved from radar information using
the conservation equation of liquid water content as
proposed by Nakakita et al. (1990, 1991, 1996). Then
the model parameter of the conceptual rainfall model
proposed by Nakakita et al. (1990, 1991, 1996,
1998a), which defines the amount of water vapor
converted to liquid water, can be identified using prin-
ciples of water balance and thermodynamics. Rainfall
is simulated and predicted by extrapolating the model
parameter along the advection vector calculated by
Takasao and Shiiba (1985) assuming simple advec-
tion. This method extrapolates the model parameter,
not the pattern of movement of the horizontal rainfall
distribution.

The conceptual rainfall model assumes that an
interaction between the movement of the model para-
meter and the water vapor field under the influence of
topography can predict heavy rainfall in mountainous
regions. As a result of using the deterministic method,
a radically changing rainfall distribution that is influ-

enced by complex terrain can be predicted qualita-
tively. Features such as generation, growth, decay,
and persistence of rainfall areas cannot be predicted
by any method that is based on an extrapolation of
rainfall distribution itself. At present, the determinis-
tic method is used at the Ministry of Construction of
Japan and our research has entered upon the second
phase of the feasibility study.

The main objective of this work is to introduce a
stochastic concept into the deterministic method
proposed by Nakakita et al. (1996). This extended
method provides a means of considering uncertainties
due to model formulation errors and observation errors.
To take uncertainties into account, this work formulates
the conceptual rainfall model in state–space mathema-
tical formsuitable for the designofa state estimatorsuch
as the extended Kalman filter. In general, the algorithm
that uses the extended Kalman filter allows automatic
and recursive updates of the model states from routinely
available observations. In this work, the model para-
meter of the conceptual rainfall model is updated by
using the radar reflectivity to estimate the mixing ratio
of precipitation particles once per hour.
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Nomenclature

h terrain height (m)
L latent heat of condensation (J/kg)
ml mixing ratio of precipitation particles (kg/kg)
mv mixing ratio of water vapor (kg/kg)
ms saturation mixing ratio (kg/kg)
Q conversion rate of water vapor (CRWV) (kg/(m3 s))
r rainfall intensity (m/s)
Rd individual gas constant for dry air (287 J/(kg K))
Rv gas constant for water vapor (461 J/(kg K))
(u,v) horizontal wind velocity (m/s)
w vertical wind velocity (m/s)
Wt relative fall velocity of precipitation particles (m/s)
z vertical coordinate in Cartesian coordinates (m)
s vertical coordinate in thes -coordinate system
a model parameter
p air pressure (hPa)
r air density (kg/m3)
rw density of liquid water (kg/m3)
u potential temperature (K)
T air temperature (K)
(U,V) advection vector of the model parameter (m/s)



Previous models that forecast precipitation using
stochastic–dynamical methods have performed well.
Georgakakos and Bras (1984a,b) developed a
spatially lumped model using microphysical parame-
terizations for short-term prediction of rainfall on
hydrologic scales. Lee and Georgakakos (1990)
extended the formulation to two dimensions. These
models include the following: raingauge data,
theory-based parameterization of water vapor conden-
sation, precipitation, evaporation of precipitation
hydrometeors, and a state estimator for real-time
updating of liquid water equivalent average mass
condensed in a cloud column from local rainfall
data. Lee and Georgakakos (1996) introduced an addi-
tional dynamics equation for the advection of convec-
tive regions by estimating the degree of updraft
strength from convective available potential energy
(CAPE). Consequently, it became possible to produce
higher-resolution precipitation forecasts, even if the
model performance is sensitive to the performance
of the NWP model that is used. The first three models
also showed that stochastic models perform better
than deterministic ones. It was found that rainfall
rates transformed from reflectivity factors greatly
improves the model performance. Georgakakos and
Krajewski (1991) also studied the value of radar
data in rainfall forecasting.

The other pertinent works to stochastic–dynamical
modeling and forecasting can be found in French and
Krajewski (1994) and French et al. (1994). They used
microphysical parameterizations similar to Georgaka-
kos and Bras (1984a) and rainfall dynamics based on
Seo and Smith (1992), which considered mass balan-
cing of vertically integrated liquid water content
(VIL) estimated from radar reflectivity. It is important
that they developed a spatially distributed model that
can utilize radar data. In their stochastic framework,
the system state is a vector of VIL that defines the
evolution of the system. The results from an applica-
tion of their stochastic model to the Plains region of
the United States demonstrated better performance
than persistence or advection methods. Andrieu et
al. (1996) presented an approach for incorporating
orographic rainfall enhancement into the model of
French and Krajewski (1994): the moisture source
parameterization was modified to explicitly account
for the mesoscale rain system and orographic
influences. The results showed that the source term

representing the moisture input to the atmospheric
column is important, which is significantly influenced
by the estimated mesoscale updraft velocity.

It should be emphasized that our approach is similar
to the aforementioned studies in that we use a concep-
tual rainfall model based on simplified thermody-
namics and microphysics. Nakakita et al. (1996)
classified operational short-term rainfall prediction
methods into three categories: (1) those that extrapo-
late the movement pattern of a horizontal rainfall
distribution (Wilk and Gray, 1970; Austin and Bellon,
1974; Bellon and Austin, 1978; Takasao and Shiiba,
1985; Bellon and Zawadzki, 1994); (2) those that use
the principles of water balance and thermodynamics
with a conceptual rainfall model; and (3) those that
either use the full set of conservation equations at the
mesoscale (Pielke, 1984) or use a method that reduces
the grid size of NWP (Ninomiya et al., 1984). Geor-
gakakos and Hudlow (1984), Georgakakos and
Kavvas (1987), and Browning and Collier (1989)
reviewed operational rainfall prediction procedures
in detail.

The third category of method seems to be most
accurate, but we believe that such methods would be
difficult to implement for a real-time operational
prediction method because of three difficulties. First,
large computational resources are required. Second,
data input and surface boundary information with
sufficiently high-resolution in space and time are not
available from routine observations and this method
tends to amplify small initial perturbations in the
atmospheric fields. Third, sufficiently accurate cloud
model parameterizations have not yet been estab-
lished.

On the other hand, the first category of method is
used in nowcasting, but the effect of topography
cannot be incorporated physically into a rainfall
model. So, it appears that this approach works well
for widespread rainfall over lowland areas, but not for
convective and orographic rainfall. Conversely,
Oriville (1965), Colton (1976), Bradlay (1984), and
Yoshizaki and Ogura (1988) could simulate
orographic precipitation processes. These studies
suggest that some features of rainfall phenomena are
associated with orographic influences. Therefore, we
propose a stochastic rainfall prediction method by
extending the prediction method proposed by Naka-
kita et al. (1996) belonging to the second category.
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This paper is organized in the following manner.
Section 2 outlines the deterministic method developed
by Nakakita et al. (1996). In Sections 3 and 4, an
extension to a stochastic method is proposed and
applied. These sections include results and discussion.
We close with Section 5 in which conclusions and
recommended topics for future study are discussed.

2. Outline of the deterministic physically based
rainfall prediction method

The basic equations used in the physically based
method are sets of partial differential equations for
conservation of liquid water, heat, and water vapor
at the mesoscale, and an equation for estimating the
rainfall intensity. These equations are written as
(following the notation of Nakakita et al. (1996)):
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wherex, y, andz define Cartesian coordinates in the
two horizontal directions and the vertical, respec-
tively; u, v, andw are velocities of the air in thex-,
y-, andz-Cartesian directions in m/s;ml is the mixing
ratio of precipitation particles in kg/kg;mv is the
mixing ratio of water vapor in kg/kg;u is the potential
temperature in K;Q is the conversion rate of water
vapor (CRWV) in kg/m3/s; r is the rainfall intensity in
m/s;L is the latent heat of vaporization in J/kg;Cp is
the specific heat at constant pressure in J/K/kg;Rd

is the individual gas constant for dry air in J/K/kg;p is
the air pressure in hectopascals;Wt is the relative fall
velocity of water particles in m/s; andr andrw are the
density of air and liquid water in kg/m3, respectively.
The CRWV is defined as the amount of water vapor
converted to precipitation particles per unit time and
unit volume. There is no provision for cloud particles
because they cannot be detected by conventional
radar. The terminal velocityWt is from Ogura and
Takahashi (1971); it relates the water content of the
air to the mean volume-weighted terminal velocity.

These basic equations are transformed from the
Cartesian coordinates (x,y,z) into a terrain-following
coordinate system (x,y,s) according to Colton (1976).
The transformation can be written as

s� z2 h�x; y�
H 2 h�x; y� ; �5�

whereH is the elevation of the top grid point in the
model�� 11 000 m� andh(x,y) is the terrain elevation.
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Fig. 1. Schematic representation of the rainfall prediction method.



GPV data with meso-a -scale resolution are used to
estimate the three-dimensional wind vector (u,v,w),
the air temperature, air pressure, and water vapor
field (Nakakita et al., 1996). The estimated wind and
pressure fields are assumed to be constant during the
prediction procedure and are used as initial values.
Using Marshall and Palmer’s (1948) drop size distri-
bution for rain and Gunn and Marshall’s (1958) for
snow, the past and current three-dimensional distribu-
tions of the rainfall intensityr and the mixing ratio of
precipitation particlesml are estimated from the three-
dimensional distribution of the radar reflectivity factor
(Nakakita et al., 1990, 1991, 1996).

A schematic of the rainfall prediction method
developed by Nakakita et al. (1996) is given in Fig.
1. The method involves several steps that are
presented in more detail in Nakakita et al. (1996).
Here, an important part of their method is estimating
the three-dimensional distribution of the CRWVQ on
the meso-b scale using Eq. (1) based on the retrieval
method proposed by Nakakita et al. (1990, 1991,
1996). Additionally, the three-dimensional distribu-
tions of u and mv at the scale ofQ are retrieved
with identifying the model parameter using the
conservation equations and both the CRWV and the
wind-vector distributions.

The CRWV can be estimated using Eq. (1) because
(u,v,w), ml, and r have been already estimated. In
other words, the past and current CRWV distributions
can be estimated using the past and current radar-
reflectivity distributions. Therefore, the CRWV can
be retrieved only in the domain of existing radar
echo. IfQ , 0; precipitation particles must evaporate.

The method used to retrieveu andmv and to iden-
tify the model parameter will be described later with
the integration procedure of the governing equations
(1)–(3).

2.1. Original concept of rainfall model

We outline here the rainfall model originally
proposed by Nakakita et al. (1990, 1991, 1996,
1998a). It consists of two important steps.

In one of the steps,u and mv are retrieved in a
warm-up run for 2 h. The warm-up run was based
on the water balance and thermodynamics described
in the Appendix A and on fixed known distributions of
Q, p, and (u,v,w). For this warm-up run, the distribu-

tions of u and mv already estimated on the meso-a
scale from GPV data are used as initial distributions.
In this stage,dm in Eq. (A2) is not estimated by Eqs.
(A1) and (A2), but computed usingQ:

dm� Dt
Q
r
; �6�

whereDt is the temporal increment of the finite differ-
ence: This is because the model parameter is not yet
identified whereas Eqs. (A1) and (A2) are only applic-
able after the model parameter is identified. The
purpose of these retrievals is to reduce the difference
between the spatial resolutions ofu and mv (i.e. the
resolution of GPV data) and that ofQ (i.e. the resolu-
tion of radar information).

If the distributions ofu and mv are retrieved, the
model parameter is identified so that the index of
efficiency of converting water vapor to liquid water
precipitation in the precipitation field of interest can
be estimated. The model parameter introduced in the
conceptual rainfall model is defined as follows. The
modified saturation mixing ratiom0s is given by

m0s � �1 2 a�ms; �7�
wherea is the model parameter andms the saturation
mixing ratio. The following empirical formula
(Pielke, 1984) was used forms:

ms � 3:8
p

exp
17:3�T�u; p�2 273:2�

T�u; p�2 35:9

� �
; �8�

where the notationT(u ,p) indicates thatT can be
calculated according to the definition of potential
temperatureu .

In this definition, the difference betweenms andm0s
indicates the degree of shortage of vertical water
vapor flux brought on by the meso-a field. This short-
age is because the moisture field used cannot cause
strong convection at the scale of meso-b ; this defini-
tion serves to make up this shortage. As is mentioned
in Nakakita et al. (1996), this conceptual rainfall
model bridges the gap between radar data and NWP
model scales. This definition implies that heavy rain-
fall is prone to occur where the model parameter is
large.

It can be seen from Eqs. (6), (A1) and (A2) that the
spatial and temporal variation of the three-dimen-
sional CRWV Q is closely related with that of the
model parametera . Substituting Eqs. (6) and (A1)
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into Eq. (A2) yields

a � 1 2
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ms*
mv* 2 Dt

Q
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� �� ��

1 1 Dt
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p

� �2Rd=Cp

" #
;

�9�

where the superscript * denotes the intermediate
values retrieved after the warm-up run. The model
parametera can be estimated only in the domain
where radar echo exists. These identified and retrieved
distributions ofa , u , andmv are used as initial condi-
tions for the rainfall prediction. A rainfall field itself
should have orographic influences. However,a is not
likely to be influenced by the complexity of terrain
because this model represents orographic effects on a
rainfall distribution. Thus, we assume that the struc-
ture of the model parameter does not change during its
movement across the radar observation area in the
prediction procedure.

2.2. Prediction procedure

The three-dimensional distributions ofu , mv, Q,
and ml are integrated as described in the Appendix
A. In the prediction procedure, the three-dimensional
distribution of a is calculated by simple horizontal
advection of the identified distribution ofa . This
assumption is used becausea is not likely to be
affected by complex terrain. That is

2a�x; y; z�
2t

1 U
2a�x; y; z�

2x
1 V

2a�x; y; z�
2y

� 0: �10�

An advection vector (U,V) of the model parameter is
determined using an advection model proposed by
Takasao and Shiiba (1985). The use of (U,V) instead
of (u,v) that is forecasted by NWP is intended for real-
time estimation of the wave velocity that drives the
entire rainfall field.

Then, after basic equations (1)–(4) are integrated
simultaneously, the three-dimensional distribution of
rainfall intensityr can be predicted from Eq. (4) as a
final output. This output is then transformed into
Cartesian coordinates. Model limitations due to
assumptions and simplifications are discussed by
Nakakita et al. (1996).

3. Stochastic framework of rainfall prediction
procedure

Predictions of rainfall intensity are expected to
contain errors because several simplifications are
made to the model physics for the purpose of practical
use. It is thus imperative that new observations (e.g.
radar data) or forecasts (e.g. GPV data) are used in
real time as they become available to update model
state variables and also that the method is capable of
stochastic prediction. A state estimator allows
stochastic prediction and recursive updating of state
variables from current rainfall observations.

The most common optimal filtering technique is
that developed by Kalman (1960) for estimating the
state of a linear system. The Kalman filter defines a
framework for recursive solution to an optimization
problem and the processing of measurement data: it
includes uncertainties in both model and observation.
For a nonlinear system, one practical method is to
apply the Kalman filter to the system linearized by
the Taylor expansion. This method is called the
extended Kalman filter.

The adjoint method (LeDimet and Talagrand,
1986) appears to be considerably less expensive
computationally than the Kalman filter. The Kalman
filter is different from the adjoint technique in that the
adjoint method does not account for model errors:
model dynamics are assumed to accurately represent
atmospheric dynamics. In this section, a state estima-
tor using the extended Kalman filter is designed and
implemented to achieve the goal of providing hydro-
logically useful rainfall predictions.

3.1. Algorithm using the extended Kalman filter

We briefly review the theory of the discrete
extended Kalman filter. For more detail, see Anderson
and Moore (1979), Gelb (1974), and Jazwinski
(1970).

Suppose the evolution of the true system being
modelled is described by

wt
k � Ak;k21wt

k21 1 bt
k �k � 1;2;…�; �11�

wherewt
k is then-vector true state at timetk, Ak;k21 is

then × n state transition matrix, and then-vectorbt
k is

a random vector that is called the model error. In a
finite-difference model,n is the number of grid points
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times the number of prognostic variables. The model
error is assumed to be white with no time structure
representing imperfections in the prediction method
and with mean zero and covariance matrixQk:

E�bt
k� � 0; �12�

and

E�bt
k�bt

k 0 �T� �
Qk for k � k 0

0 otherwise
;

(
�13�

where E[ ] denotes the expectation operator and
superscript T denotes the transpose of matrix or vector
quantities.

The objective of filtering is to estimate the true
system statewt

k utilizing the new observations.
Suppose that the prediction model is given by

wf
k � Ak;k2lw

a
k2l for k a multiple of l

� Ak;k21Ak21;k22
…Ak2l11;k2lw

a
k2l ;

�14�

wherewa
k2l denotes the a posteriori updated state valid

at the timetk2l based on the a priori information avail-
able at timetk2l andwf

k is the forecasted state at the
time tk. The filtering algorithm provides the error
covariances of analysis and forecast, and the updated
state vector:

Pf ;a
k � E��wf ;a

k 2 wt
k��wf ;a

k 2 wt
k�T�; �15�

wherePf
k is defined as the forecast error covariance

andPa
k as the analysis error covariance.

The propagation equation follows from the above
assumptions:

Pf
k � Ak;k2lP

a
k2lA

T
k;k2l 1

Xl 2 1

j�0

Ak;k2jQk2jA
T
k;k2j : �16�

We assume further that observationswo
k are a

nonlinear combination of elements of the true state
vectorwt

k :

wo
k � hk�wt

k�1 bo
k; �17�

wherewo
k is the p-vector of observations at timetk.

hk(wk) defines the observational scheme and depends
nonlinearly upon both indexk and the state at each
sampling time. The observation errorbo

k is assumed to
be white with mean zero and covariance matrixRk

and to be uncorrelated with the model error:

E�bo
k� � 0; �18�

and

E�bo
k�bo

k 0 �T� �
Rk for k � k 0

0 otherwise
:

(
�19�

The update process combines the latest estimate of
the state with repetitive observations. Given the new
observation at timetk, we expandhk�wt

k� in a Taylor
series about the current estimate of the state vector
wf

k :

hk�wt
k� � hk�wf

k�1 Hk�wt
k 2 wf

k�1 …; �20�
where

Hk � 2hk�w�
2w w�wf

k
:

��� �21�

Truncating the above series after the first two terms,
the extended Kalman filter update equations are
formulated similar to the conventional Kalman filter:

wa
k � wf

k 1 K k�wo
k 2 Hkw

f
k�; �22�

K k � Pf
kH

T
k �HkP

f
kH

T
k 1 Rk�21

; �23�

Pa
k � �I 2 K kHk�Pf

k; �24�
where the last factor in Eq. (23) is the matrix inverse
of the quantity in parenthesis.K k is called the Kalman
gain matrix; it is the weight matrix applied to the
observed-minus-forecast residual in Eq. (22) to yield
the analysis fieldwa

k: The extended Kalman filter is
defined by Eqs. (14), (16), and (22)–(24). The propa-
gation process and the update process are the intensive
algorithms of the Kalman filter. Given the initial
condition for Eqs. (14) and (16), the state vector can
be updated recursively as new observations of the
output of the system become available.

The extended Kalman filter is different from the
conventional Kalman filter as follows: the gain matrix
K k depends upon the estimatewf

k: Hence,K k cannot
be computed before observations are collected, so it
must be computed in real time. The estimation error
covariancePa

k also depends upon the trajectory of the
state variables.

Many other appropriate nonlinear filters are based
on using more terms in the Taylor series expansion or
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iterating the extended Kalman filter in various ways.
Though more complicated filter equations for
nonlinear problems are known, their solutions require
closure or other assumptions (Jazwinski, 1970). For
this reason, the extended Kalman filter is useful and is
one of the first methods to be attempted for most
practical problems.

3.2. Outline of the filtering procedure

Fig. 2 shows a flow chart of data processing in a
stochastic framework including the prediction proce-
dure of the deterministic method. The state variable is
the model parametera of the conceptual rainfall
model and the mixing ratio of precipitation particles
ml is used recursively in this framework. As
mentioned in the previous section,a defines the
amount of water vapor converted to liquid water and
it greatly affects the prediction. Therefore,a can be
regarded as an index that defines the evolution of the
system. On the other hand, as can be seen from Eqs.
(A2) and (A5),a is sensitive to the temporal variation
of ml; furthermore,ml is a key variable because rain-
fall intensity is a function ofml and the terminal velo-
city Wt in Eq. (4). In the stochastic framework, the
distribution ofml estimated using radar data is utilized
to updatea . This is important for reducing the discre-
pancy between predicted values (i.e.mv, u , and ml)

that represent the atmospheric state and the rainfall
field observed by a radar. In this framework, predic-
tion errors ofa cause prediction errors ofml.

The state of the system is updated at 1-h intervals
from both the distributions of newly estimatedml and
that ofa predicted 1 h later; this update is based ona
estimated as the initial value 1 h earlier. The stochas-
tic method computes not only the predicted state value
but also the covariance matrix of the prediction error
in a sequential manner at the same time. In this frame-
work, the rainfall distributionr can be predicted over
lead times of 4 h by repeatedly using the updateda as
the initial value.

3.3. Mathematical formulation

The filtering equations allow objective, optimal, and
recursive updating of the model state (i.e. the model
parametera) from new observations (i.e. the mixing
ratio of precipitation particlesml). In the stochastic
framework, the evolution equation of the system
state can be formulated in the state–space form:

af ;a
k � wf ;a

k ; af
k � Lk;k21a

a
k 1 b̂k; �25�

wherea k is the n-vector system state with elements
corresponding to the squares of the domain at timetk.
The operatorLk,k2l represents advection from timetk2l

to time tk. The stochastic forcing term is assumed
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white:

E�b̂t
k�b̂t

k 0 �T� �
Q̂k for k � k 0

0 otherwise

(
: �26�

Then the error covariance evolution equation corre-
sponding to Eq. (16) is derived as

Pf
k � Lk;k2lP

a
kL

T
k;k2l 1 Q̂k: �27�

In the conceptual rainfall model, the distribution ofa
is predicted by a simple advection using Eq. (10), that
is, the advection of the model parameter over a time
periodDt amounts to a shift in position by (UDt,VDt):

Lk;k2l � L; �28�
where the operator L calculates the shift
�U·lDt; V·lDt�: Furthermore, the model forcing over
a complete prediction cycle is accounted for by taking

Q̂k � l·Qk: �29�
In this work, the contribution to the evolution of the
prediction error covariance will be approximated only
as a final step at the end of a prediction cycle. The full
propagation equations of the error covariance, repre-
sented by Eqs. (13) and (16) in the conventional
Kalman filter, are replaced with Eqs. (27) and (29).

Particularly in a nonlinear case, the transition
matrix Ak,k21 depends on the state trajectory; hence,
it is not clear that additive error forcing should only
occur at the prediction model time-step intervals. The
expensive computational demand for prediction of the
error covariance is reduced by this method. Dee
(1990) successfully used such a simple scheme; this
had nearly the same advantages of the Kalman filter
with a linear one dimensional shallow-water model.
The form ofQ̂k will be discussed later in this section.

Recall the relationship representing the observa-
tional scheme. From Eqs. (A1), (A2), and (A5), we
find

ml�k�2 mp
l �k� � mp

v�k�2 �1 2 af
k�mp

s�k�
1 1 �1 2 af

k�dkm
p
s�k�

; �30�

with

dk � 1
up2�k�

L2

CpRv

1000
p�k�

� �2Rd=Cp

; �31�

where those values withk depend on time. In the

stochastic framework,�ml�k�2 mp
l �k�� is the observed

value because the intermediate valuemp
l �k� is avail-

able andml(k) is estimated at timetk. Here, assuming
wo

k to be thep-vector of�ml�k�2 mp
l �k��; and neglect-

ing second and higher terms in the Taylor expansion
of Eq. (30),hk andHk in Eqs. (20) and (21) are deter-
mined at eachp-grid node in space at timetk as:

hk � mp
v�k�2 �1 2 af

k�mp
s�k�

1 1 mp
s�k��1 2 af

k�dk
; �32�

Hk � mp
s�k��1 1 dkm

p
v�k��

�1 1 mp
s�k��1 2 af

k�dk�2
: �33�

We assume that the observation error covarianceRk

is diagonal because observational errors are generally
independent. In this work, the observational error at
each grid node is proportional to�ml�k�2 mp

l �k��; so
the variancer k, which is a diagonal element ofRk, can
be expressed with a coefficient of errors as

r k � ��ml�k�2 mp
l �k��·s� 2: �34�

If the newly estimatedml at a grid node is not
available at timetk, the state variable at this grid
node cannot be updated. The state remains unchanged
from the a priori estimate in this case (i.e.K k � 0;
Pa

k � Pf
k). On the other hand, if the statewf

k before
updating is undefined, the update algorithm is as
follows:

1. If the newly retrieved CRWV at this grid node is
also undefined, the updated state remains unde-
fined.

2. If the newly retrieved CRWV at this grid node is
defined, the updated state is obtained from Eq. (9).

Finally, we should check the structure of the covar-
iance matrixQk from a viewpoint of the enormous
computational burden due to a very large number of
components. Moreover, a discussion on the choice of
Qk form is required. The cost of computing the covar-
iance matrix has prevented widespread use of the
Kalman filter (Bennett and Budgell, 1987). Brute-
force calculation of the forecast error covariance is
not feasible. Nevertheless, the choice of the model
error covariance matrix exerts considerable influence
upon the forecast error covariance matrix (Phillips,
1982).
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For strictly linear dynamics, Cohn and Parrish
(1991) theoretically and numerically demonstrated
the influences of the form ofQk by assuming model
errors to consist of uncorrelated slow modes. The
modal expansion coefficients of the model error field
can be introduced in such a linear model. Supposing
these coefficients are mutually independent, the
covariance of the model error is derived by prescrib-
ing the variance of each coefficient as a function of
wavenumber and wave type (Dee, 1990). However,
this theory applies strictly only to linear dynamics,
which is not a realistic situation.

We preferred a diagonal form to a non-banded one
for the following two reasons: (a) the computational
demands are far greater for non-banded forms; (b)
optimality in the choice of a non-banded form is not
warranted when nonlinear input functions and para-
meters are involved. Thus, more complex formulation
will not necessarily produce better results (Lee and
Georgakakos, 1996). Fortunately, a diagonal form
has been found to yield good estimates for a number
of practical applications (Lee and Georgakakos, 1996;
French et al., 1994). Because of its operationality, we
assume that the covariance error matrixQk is diagonal
for practical purposes. As with the observational error,
the prediction error is assumed proportional toa .
Each diagonal elementqk of Qk can be expressed as

qk � �af
k·g�2; �35�

where g is the coefficient that indexes the model
prediction error.

4. Application to rainfall prediction

As an application, we used data from a C-band
volume scanning radar, called the Miyama radar,
which is operated by the Ministry of Construction of
Japan. The wavelength is 5 cm. The average resolu-
tion is about 3 km by 3 km horizontally, 1 km verti-
cally, and 5 min temporally. The quantitatively
observable radius is about 120 km. Nakakita et al.
(1990, 1991) described the characteristics of this
radar in more detail. A utilization of GPV data and
AMeDAS for estimating the meso-a moisture field is
presented in Nakakita et al. (1996).

All variables are defined at the sames levels in the
vertical. For instance, radar data are transformed to
Cartesian coordinates by combining segments of the
various scans. This technique is well known as the
Constant Altitude Plan Position Indicator (CAPPI).
All required values from GPV data are transformed
into the same Cartesian coordinates by an interpola-
tion using Legendre’s transformation, which produces
a distribution smoother than that from the linear inter-
polation. Vertical levels are defined ass� 0; 1/1100,
1/220, 1/110, 2/110, 4/110, 6/110, 8/110, 10/110, 12/
110, 15/110, 20/110, 30/110, …, 80/110, 90/110, 100/
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Fig. 3. The radar observation area. The circle indicates the range of the radar observation.



110, and 110/110. If the terrain height is zero, these
correspond to elevations of 0, 10, 50, 100, 200, 400,
600, 800, 1000, 1200, 1500, 2000, 3000, …, 8000,
9000, 10 000, and 11 000 m above the surface,
respectively. All basic equations are approximated
by finite difference equations with the forward scheme
for temporal terms, the upstream scheme for advective
terms, and the central differential scheme for all the
other terms. The horizontal grid spacing is 9 km over
the region of interest, and the temporal increment of
the finite difference is 15 s.

The test area is the one used previously by Nakakita
et al. (1996, Fig. 5) for their deterministic method.
The model domain spans 450 km in the east–west
direction and 585 km in the north–south direction,
with a center at longitude 1358220W and latitude
358020N. The radar is located at the center of the

model domain. The terrain is very complex in the
southeast and west–northwest region of the radar
observation area (Fig. 3).

The prediction method is applied to a rainfall event
of July 7, 1994, which occurred along a stationary
front during the Baiu rainy season. Fig. 4 shows the
sequence of observed rainfall distribution for the
height of 3.5 km from 1500 to 2000 hrs Japan stan-
dard time (JST). Rainfall intensity is computed by the
moving average to a resolution of 15 km by 15 km
(horizontally) and 20 min (temporally). The rainfall
area is expanding under the influence of the complex
terrain; it is difficult to predict using only simple
advection of the rainfall distribution.

Two parameters that are the indices of error
variances are determined manually by trial and
error. The parameter spaces of the corresponding
coefficients are defined by the range ofg over
[0.1,3.0] and the range ofs over [0.1,1.0] with 0.1
resolution. The stochastic predictions, which are valid
for 4 h in advance, are done offline for each pair of
coefficients, and the predicted results are measured
using performance criteria defined later. The predic-
tions are started at 1-h intervals from 1500 hrs JST to
2100 hrs JST. For overall predictions, the optimal pair
of coefficients is searched.

We determined thatg equals 0.3 ands equals to
0.6 for this application. These show that the model
was accurate within plus or minus 30% and that recur-
sive observations were available with accuracy within
plus or minus 60%. The value ofs implies that the
estimated mixing ratio of the precipitation particles
would be good data on the basis of the 40% criterion
given in Georgakakos and Krajewski (1991); this
assumes that recursive observations include the inter-
mediate variablemp

l predicted in the procedure of
rainfall prediction.

4.1. Results of prediction

The predictions by this physically based stochastic
method are compared with predictions using a persis-
tence method and also with predictions using an
advection method. Persistence means that the latest
available radar observation is equal to the prediction
without growth, decay, and advection of the rainfall
field. The advection technique used in this study
assumes a linear vector as proposed by Takasao and
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Fig. 4. Hourly sequential rainfall distributions from 1500 hrs JST,
July 7, 1994, to 2000 hrs JST, July 7, 1994.



Shiiba (1985). The prediction was calculated by extra-
polating the latest radar data along the estimated vector
without growth and decay of the rainfall intensity.

Figs. 5 and 6 provide radar-observed and predicted
rainfall distributions from 1600 hrs JST, July 7, 1994,
to 2000 hrs JST, at 1-h intervals for the height of
3.5 km. The left-hand and right-hand columns show
the radar-observed distributions and the predicted

results, respectively. The predictions are valid up to
4 h in advance. Fig. 5 shows the result predicted by
the deterministic method. The starting time of predic-
tion is 1600 hrs JST, July 7, 1994. Fig. 6 shows the
result using the stochastic method. The starting time
of this prediction is 1500 hrs JST because the predic-
tion in Fig. 6 is based on the model parameter updated
at 1500 hrs JST and 1600 hrs JST.
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Fig. 5. Radar-observed and predicted rainfall distributions in hourly
intervals using the deterministic method. The prediction is valid up
to 4 h in advance.

Fig. 6. Radar-observed and predicted rainfall distributions in hourly
intervals using the stochastic method. The prediction is valid up to
4 h in advance.



It can be seen that the rainfall distributions
predicted by the stochastic method are a better
match to the observed patterns than are those
predicted by the deterministic method. Fig. 6 shows
further improvement in predicting rainfall areas that
expand as they pass over mountainous regions. Figs.
7–9 show the performance scores for prediction times
up to 4 h in advance from the stochastic method, the

deterministic method, the persistence, and the advec-
tion method. Performance criteria used for the
comparison include the domain-averaged mean error
BIAS in rainfall rate shown in Fig. 7, root mean
square error (RMSE) in Fig. 8, and a domain average
cross-correlation coefficient (CC) in Fig. 9 between
predictions and corresponding observations of rainfall
intensities. Because the radar data are important input
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Fig. 7. Error in rainfall rate for the July 7, 1994 event.

Fig. 8. Root mean square error in rainfall rate for the July 7, 1994 event.



to the prediction method, predictions for locations in
areas where advection would have come from outside
the radar coverage should be evaluated separately.
Therefore, only the downwind half of the radar field
is evaluated so that the benefit of the added radar data
or the performance of the method can be estimated.
Note that the performances at 3.5-h lead time are not
evaluated because the radar data are missing.

In most cases, both the advection and the persis-
tence methods work as well as or better than other
methods for the 1-h predictions. The predictions by
the physically based method show good skill for lead
times longer than 1 h. This indicates that the persis-
tence and the advection methods are useful only when
a rainfall event is stationary and characterized by
negligible growth and decay over the prediction

times. Though a larger BIAS of the physically based
method implies that predicted rainfall amounts are
underestimated due to the underestimation of the
CRWV (Nakakita et al., 1996), usefulness of the
conceptual rainfall model is reflected in smaller
RMSE and higher CC. The stochastic method
improves this underestimation problem, which leads
to a BIAS of the stochastic method smaller than that
of the deterministic method. Additionally, the
stochastic method performs better than the determi-
nistic method and produces a slightly higher CC and a
slightly smaller RMSE for lead times longer than
2.5 h. These results indicate that newly observed
and forecasted data can be utilized effectively within
the stochastic framework.

Figs. 10 and 11 show the distributions of the model
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Fig. 9. Correlation coefficient for the July 7, 1994 event.

Fig. 10. A priori distributions of the model parameter for the heights of 4 and 5 km at 1500 hrs JST, July 7, 1994.



parameter for the heights of 4 and 5 km. The a priori
fields of the model parameter shown in Fig. 10 are
updated to the a posteriori fields shown in Fig. 11 to
lessen the underestimation of the localized high rain-
fall amounts.

Figs. 12 and 13 provide radar-observed (left-hand
column) and predicted (right-hand column) rainfall
distributions. These differ from Figs. 5 and 6 in that
the predictions in Figs. 12 and 13 are valid for 1-h in
advance. So, prediction times longer than 1 h are not
used as information for the update process. Figs. 12
and 13 show the results from using the deterministic
method and the stochastic method, respectively. The
images predicted by the stochastic method more
closely match the intense rainfall patterns. In the
deterministic method, the model state is reinitialized
using each time observation and stochastic elements
associated with uncertainties are ignored. These
results indicate that utilizing GPV data with low accu-
racy of forecasts is likely to decrease the performance
of rainfall prediction and that the stochastic frame-
work reduces the instability of performance in the
deterministic model.

As a result of the above application, improved
model behavior is observed when the stochastic
method is used. The deterministic method is extended
to the stochastic method more suitable for real-time
prediction. The weaknesses of this stochastic frame-
work are identified as future research themes in
Section 5.

4.2. Discussion

We now describe on uncertainties of radar-rainfall
estimates. The estimates of the radar-based rainfall
intensity r and the mixing ratio of precipitation

particlesml involve some uncertainties known such
as ground clutter and the bright-band (melting
layer). Regarding uncertainty problems, Battan’s
text (1973) and Doviak and Zrnic´ (1993) are good
sources of information.

In this work, the radar data are corrected for ground
clutter by the moving target indicator (MTI). Thus,
angles below 1.08 can be selected as the lowest
beam angle, even over the mountainous terrain. This
situation makes it possible to detect rainfall produced
by relatively low-level clouds. In the case of the radar
used in this work, the lowest elevation angle was set at
0.48 and the height of the circular cylinder’s bottom
was about 1.5 km. The melting layer was at a height of
about 4.5 km in the rain event studied here. Therefore,
we compared the predicted results with the observed
radar data at the height of 3.5 km, which is below the
bright-band.

Distinguishing ice from liquid phases of precipita-
tion is a long-standing problem in radar meteorology.
In fact, radar techniques have practical limitations and
their accuracy in rainfall estimation is highly suspect.
However, radar has a significant advantage in that it
can survey wide areas and make millions of measure-
ments in minutes (Doviak and Zrnic´, 1993). Georga-
kakos and Krajewski (1991) demonstrates by their
covariance analysis together with Georgakakos and
Bras model (1984a) that radar data are valuable for
estimating vertically integrated liquid water content.

In this work, an operational procedure based on
Nakakita et al. (1991, 1996) was used to take into
account the uncertainties mainly due to the bright-
band. Their procedure produces a smoothed vertical
profile of both r and ml by reducing, as much as
possible, the gap between the estimated values of
the grid points above and below the 08C layer (i.e.
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Fig. 11. A posteriori distributions of the model parameter for the heights of 4 and 5 km at 1600 hrs JST, July 7, 1994.



the bright-band of stratiform clouds). This procedure
plays a crucial role in retrieving the CRWV with accu-
racy using Eq. (1) because the sensitivity analysis inves-
tigated by Nakakita et al. (1991) demonstrates that the
CRWV is the most sensitive to the vertical gradient ofr.
Nakakita et al. (1996) provides a detailed and fruitful
discussion on the applicability of this procedure.

5. Conclusions and future research directions

A stochastic rainfall prediction method has been
formulated and evaluated. The method presented
and tested herein is an extension of the deterministic
method developed by Nakakita et al. (1996). This
work presents a state–space mathematical model
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Fig. 12. Radar-observed and predicted rainfall distributions in
hourly intervals using the deterministic method. The prediction is
valid for 1 h in advance.

Fig. 13. Radar-observed and predicted rainfall distributions in
hourly intervals using the stochastic method. The prediction is
valid for 1 h in advance.



that uses the extended Kalman filter and evaluates the
model using several performance indices to quantify
the behavior of the method.

The performance of the stochastic method is
compared with that of the determinstic method, the
persistence, and an advection method. The results of
rainfall prediction produced by the stochastic method
were more accurate than other methods for lead times
longer than 2 h. This indicates that the stochastic
method can effectively use newly observed radar
data and forecasted GPV data, and also that the
stochastic method is more suitable for real-time
prediction.

Further research on this method is needed in the
following three areas. With regard to the stochastic
framework, calibration of the filter parameters,
which represent observation and model errors,
require more investigation. These parameters were
calibrated manually by trial and error in this work.
However, these parameters should be considered
automatically with data observed in the past and
predicted results in advance. A sensitivity analysis
should be also conducted to clarify the dependence
of the formulated stochastic rainfall prediction
method on these parameters.

As an alternative approach, adaptive algorithms for
estimating error covariances, both of the model and
the observations, could be applied. Dee et al. (1985)
has shown that the covariances can be estimated
during the course of data assimilation without undue
increase in computational burden. Another interesting
study is Rajaram and Georgakakos (1989), which
developed a physically based parameterization of
the elements of the covariance matrices using only
two parameters.

Second, the stochastic framework could be
extended by including statistical estimation (Gelb,
1974) as a nonlinear filter. Generally speaking, such
an estimation is more accurate than the Taylor expan-
sion method. In this work, we have demonstrated that
the stochastic concept improves the performance of
rainfall prediction. Hence, utilization of new data
might be more effective if some statistical estimation
method is applied to the data.

Third, the rainfall prediction method is inadequate
for simulating and predicting high rainfall intensities
from convective rainfall events that are affected by
smaller-scale updrafts or downdrafts. In fact, the

model parameter is useful for modeling the shortage
of the vertical flux of water vapor. Underestimated
water vapor is not, however, compensated by an addi-
tional vertical wind motion. Nakakita et al. (1996)
suggested that the CRWV could be underestimated
mainly because of the underestimated vertical motion.
This view is related to the known limitation that the
wind field obtained from GPV data does not have
sufficient spatial resolution to resolve convective
processes on meso-b or meso-g scales. In this
sense, our proposed rainfall prediction method
requires the improved performance from NWP,
which is common with other methods that use a
conceptual rainfall model.

In parallel with this work, Nakakita et al. (1998b)
has presented a new conceptual rainfall model that
parameterizes the vertical transport of water vapor
in terms of CAPE and attempted to introduce this
concept into the deterministic method. Nakakita et
al. (1998c) has also proposed a method of estimating
the updraft velocity at the meso-b scale using conven-
tional radar. It is important that these other methods
should be combined with our method, so that our
stochastic conceptual model can utilize the updraft
velocity at the meso-b scale.
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Appendix A. Integration procedure of the
governing equations

Given the initial wind field and boundary condi-
tions of the area of interest, it is possible to integrate
the governing equations and determine the three-
dimensional distribution of water at each time step.
The integration of the conservation equations (1)–(3)
is done in two steps in a manner similar to the method
presented by Asai (1965) and used by Soong and
Ogura (1973) and Colton (1976).

First, we calculate intermediate values ofu p, mp
v;
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andmp
l at the next step using only the dynamic terms

in the equations. Ifmp
v . �1 2 a�mp

s; condensation
must occur to keep the air from becoming supersatu-
rated. Letting

dmpp � mp
v 2 �1 2 a�mp

s; �A1�
and assuming that the process is isobaric, the amount
of vapor to condense can be derived (see Ogura and
Takahashi (1973)) as

dm� dmpp 1 1
�1 2 a�mp

s

up2

L2

CpRv

1000
p

� �2Rd=Cp

" #21

;

�A2�
whereRv is the gas constant for water vapor anda the
model parameter at the current time. A similar repre-
sentation is used ifmp

v , mp
s and mp

l . 0 (i.e. the
evaporation condition is met). The maximum possible
condensation or evaporation should bemp

v or mp
l ;

respectively.
The final predicted values ofu , mv, andml at the

next step are then

u � up 1
L
Cp

1000
p

� �Rd=Cp

dm; �A3�

mv � mp
v 2 dm; �A4�

ml � mp
l 1 dm: �A5�

If neither the condensation condition nor the evapora-
tion condition is met, the values ofu p, mp

v; and mp
l

become the predicted values ofu , mv, and ml with
no additional adjustments.
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