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Abstract

The objective of this paper is to demonstrate the formulation of a numerical model for mass transport based on the Bhatnagar—
Gross-Krook (BGK) Boltzmann equation. To this end, the classical chemical transport equation is derived as the zeroth moment of
the BGK Boltzmann differential equation. The relationship between the mass transport equation and the BGK Boltzmann equation
allows an alternative approach to numerical modeling of mass transport, wherein mass fluxes are formulated indirectly from the
zeroth moment of a difference model for the BGK Boltzmann equation rather than directly from the transport equation. In par-
ticular, a second-order numerical solution for the transport equation based on the discrete BGK Boltzmann equation is developed.
The numerical discretization of the first-order BGK Boltzmann differential equation is straightforward and leads to diffusion effects
being accounted for algebraically rather than through a second-order Fickian term. The resultant model satisfies the entropy
condition, thus preventing the emergence of non-physically realizable solutions including oscillations in the vicinity of the front.
Integration of the BGK Boltzmann difference equation into the particle velocity space provides the mass fluxes from the control
volume and thus the difference equation for mass concentration. The difference model is a local approximation and thus may be
easily included in a parallel model or in accounting for complex geometry. Numerical tests for a range of advection—diffusion
transport problems, including one- and two-dimensional pure advection transport and advection—diffusion transport show the
accuracy of the proposed model in comparison to analytical solutions and solutions obtained by other schemes. © 2001 Published

by Elsevier Science Ltd.
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1. Introduction

Conventional numerical models are based on apply-
ing the method of characteristics, finite elements, or fi-
nite differences to solve macroscopic equations for a
continuum based on conservation principles such as the
advection—diffusion equation, shallow water equations,
Euler equations and Navier-Stokes equations. Recently,
the Boltzmann equation has been found to provide an
alternative approach for the formulation of numerical
models describing a wide range of fluid mechanics
problems. The advent of Boltzmann-based schemes
came about from the realization that, with the Chap-
man-Enskog expansion, fundamental conservation
equations can be obtained as moments of the Bhatna-
gar—Gross—Krook (BGK) Boltzmann equation (see e.g.,
[7,20,29,32,33]). The relationship between the macro-
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scopic conservation laws and the BGK Boltzmann
equation prompted numerical modelers to formulate
difference equations for the macroscopic variables as
moments of a difference representation of the BGK
Boltzmann equation.

The formulation of the BGK Boltzmann numerical
technique herein consists of three components: (i) a
check for consistency of the equations being solved; (ii)
a discretization of the BGK Boltzmann equation in
coordinate space; (iil) integration of the discrete equa-
tion over particle velocity space. The consistency check
involves ensuring that the macroscopic equations that
describe the process of interest can indeed be obtained as
moments of the BGK Boltzmann equation through the
introduction of appropriate relationships between the
mesocopic and macroscopic variables. Macroscopic
laws based on conservation principles, such as the Na-
vier-Stokes equation, are obtained from moments of
second-order approximation to the BGK Boltzmann
equation, where the second-order error parameter is of
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the order of the ratio of molecular to macroscopic
length scales [29]. As this parameter is typically negli-
gibly small, the approximation of the conservation
equations is highly accurate. In the process of recovering
macroscopic conservation for different applications, the
relationship between mesoscopic and macroscopic
variables and the number of moments required for a
particular equation will depend on the application.
However, the generic form of the underlying BGK
Boltzmann equation does not change. For example, the
BGK Boltzmann equation used to recover the two-di-
mensional Navier—Stokes equation is identical to that
used to recover the shallow water equations or a two-
dimensional mass or energy transport equation. The fact
that problems which appear different at the macroscopic
level are in fact, similar at the mesoscopic level is well
illustrated by the following statement of Feynman (re-
ported in Ref. [24, p. 4]):

We have noticed in nature that the behavior of
fluids depends very little on the nature of the indi-
vidual particles in that fluid. For example, the flow
of sand is very similar to the flow of water or the
flow of ball bearings.

In the framework of the BGK Boltzmann method,
the macroscale differential equations are not discretized
and solved. Rather, the discretization step entails for-
mulating a difference scheme for the BGK Boltzmann
equation. Given that the generic form of the BGK
Boltzmann equation from which momentum, mass, and
energy transport equations are obtained, a BGK differ-
ence equation constructed for one application can be
employed for other applications. For example, the dif-
ference form of the BGK Boltzmann equation used in
the formulation of a numerical scheme for shock waves
in gas dynamics [32,33] is identical to that used in the
formulation of a numerical scheme in shallow waters [7].
This same discrete BGK Boltzmann equation is used in
the present paper for the formulation of a numerical
solution to the advection—diffusion equation.

The third formulation step involves integration of the
difference form of the BGK Boltzmann equation in
particle velocity space to obtain difference equations in
terms of the macroscopic variables such as flow velocity,
pressure and density. The integration step thus involves
establishing a link between the particle distribution
function and the macroscopic variables. The integration
from mesoscopic to macroscopic variables is typically
straightforward and requires the determination of mo-
ments of a Gaussian distribution. It is worth emphasizing
that it is in the integration step, where the difference
equations for macroscopic state variables emerge from
the difference form of the BGK Boltzmann equation.

Examples where Boltzmann based models have been
applied include shock waves in compressible flows (e.g.,

[3,20,32,33]), multicomponent and multiphase flows (e.g.,
[8,9,30]), flows in complex geometries (e.g., [1,23]), tur-
bulent flows (e.g., [2,17]), low Mach number flows (e.g.,
[26]), heat transfer and reaction diffusion flows (e.g.,
[19,31]), and open channel flows (e.g., [4,7]). These ap-
plications revealed a number of advantages of Boltzmann
based schemes. For instance, numerical models based on
the collisional Boltzmann theory are found to satisfy the
condition that entropy production in an isolated process
cannot be negative. Thus they preclude the possibility of
physically non-realizable solutions being obtained [7,33].
Boltzmann based schemes have been noted for the ease
with which they can be extended to multi-dimensional
cases and for their local character which makes them ideal
for implementation in parallel computers [1,14]. Fur-
thermore, Boltzmann based techniques have been found
to be well suited for problems with complex geometry and
boundary conditions [1,6,11,20]. Additionally, using a
Boltzmann based scheme, [26] showed that incompress-
ible flow solutions can be obtained in the limit as Mach
number tends to zero. This observation allows the tedious
and difficult solution of the Poisson’s equation for the
pressure field, required in traditional approaches to solve
the incompressible flow equations, to be avoided. The
fact that the Boltzmann equation has a simple form and
that this equation is kinetic in nature makes the incor-
poration of additional physics straightforward [1,9]. The
diffusion and viscous terms that appear as second deriv-
ative terms in macroscopic modeling are represented by a
simple algebraic difference term in mesoscopic modeling.
This eliminates the need for separate treatment of the
advection and diffusion terms.

The objective of the current work is to explore the
applicability of the BGK Boltzmann equation in the
formulation of a numerical model for the advection and
diffusion of a chemical contaminant. To this end, it is
shown that the classical partial differential equation for
mass transport is derivable from the zeroth moment of
the BGK Boltzmann differential equation. Demonstra-
tion of this relationship allows one to then formulate the
discrete Boltzmann equation and then integrate it to
obtain a discrete equation in terms of concentrations of
the chemical constituent. In particular, a second-order
numerical solution for the integrated BGK Boltzmann
equation, used by [32,33] for gas dynamics and [7], is
adopted. This difference model satisfies the entropy
condition, thus preventing the emergence of non-physi-
cally realizable solutions such as oscillations and over-
shoot in the vicinity of sharp concentration fronts. The
resulting difference model depends on concentrations at
the center and boundaries of the local computational
cell. Interpolation approaches are introduced to relate
these quantities over a discretization region. Numerical
tests for a range of advection—diffusion transport prob-
lems in one- and two-dimensions are performed to
provide a basis for the comparison of the attributes of
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the Boltzmann-based model with the analytical solu-
tions and solutions obtained by other schemes. Based on
the accuracy and robustness of the solutions obtained,
the possibility of using the BGK Boltzmann equation as
an alternative approach to the numerical solution of
mass transport is established.

In the Section 2, a discussion is provided to dis-
tinguish the present approach from existing ones and to
motivate the usage and features of the BGK Boltzmann
scheme. Then in the subsequent sections, the three steps
to establishing the form of the BGK Boltzmann model
for chemical transport will be performed. Finally,
computed results for the test problems will be displayed.

2. Distinguishing features of the BGK Boltzmann ap-
proach

One of the persisting challenges in the numerical
solution of conservation equations is the development of
accurate algorithms for the simulation of advection-
dominated processes and systems containing shocks.
Two currently advocated approaches may be classified
as flux difference splitting schemes (FDS) and flux vector
splitting schemes (FVS). The general features of these
methods will be indicated here to provide a context that
motivates the BGK Boltzmann approach.

To provide a setting for this discussion, the following
two-dimensional system of partial differential equations
in Cartesian coordinates is considered:

Ou Or Os
oty
where u is the vector of conserved variables r and s and
are the total fluxes of u in the x- and y-coordinate di-
rections, respectively. Each of the fluxes is a sum of an
advective and a dispersive contribution such that

=0, (1)
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where U; ; is the average value of u over the spatial co-
ordmates of the volume at time ¢". Solution of Eq. (3) to
obtain an approximate value U”Jrl requires that proce-
dures be employed to approx1mate the integrals in
Eq. (3). Several of these methods will now be discussed.

FDS schemes (e.g., [5,18,21,22]) provide approxima-
tions for the integrals of the advective fluxes in Eq. (3)
based on the approximate solution of the Riemann
problem. It is quite instructive to review how the Rie-
mann problem, on which FDS schemes are based, is
obtained. The FDS scheme splits the fluxes in the dif-
ferential equation into the advective and dispersive parts
and deals with these separately. First, the advective
problem is solved by breaking it into two one-dimen-
sional problems

Ou Or, Ou Os,

—+—=0 d —+—=0 4
o T ox and &t “)
that may also be expressed as
Ju du Ou du
A= 41 B.
P, + o 0 and 5 + & =0, (5)
where A and B are Jacobian matrices with

or, 0s,
A= u and B= - (6)

The Jacobian matrices are generally non-linear. FDS
schemes employ linearized approximations to these
matrices, and the main differences among various im-
plementations of FDS are related to the approximation
used. Here, assume that some linearization method is
employed that converts A and B to A and B, re-
spectively, where the overbar indicates a linearization.
Thus the split equations become
Oou - Ou Oou - Ou
at+A~ax_0 and 5 +B- & =0. (7)

From the known information at ¢", these equations
are solved by characteristic decomposition for values of
u at the interfaces between the discrete volumes. These
solutions for u are then employed to obtain the FDS
advective fluxes and dispersive fluxes for use in Eq. (3).
Thus, the FDS scheme consists of splitting of the con-
servation equations in space; computation of FDS fluxes
with dispersion neglected using a linearized advective
operator from piecewise constant initial conditions
using the method of characteristics; introduction of the
FDS fluxes and a dispersion flux (computed, for exam-
ple, using a central difference technique) into the model
Eq. (3) for solution of U”Jrl

FVS schemes (e.g., [25 28]) belong to the same class
as FDS schemes in the sense that they are both up-
winding techniques. As with the FDS method, the FVS
splits Eq. (1) to obtain Eq. (4). However, FVS methods
employ a different procedure for approximating the
advective fluxes. A central requirement for FVS is that
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the fluxes, r, and s, must be homogeneous [10] such that,
for an arbitrary parameter 1

r,(Au) = Ar,(u) and s,(lu) = Js,(u). (8)

Differentiation of these relations with respect to 4 yields

O[r,(Au)] d(Au)  O[r,(Au)]

o) di ~ ogw " R®W (%)
and

O[sa(Au)] d(iu)  O[s,(Au)]

oUm) dr -~ ogm) W %)

Then, if these equations are evaluated for the case of
A =1 and Eq. (6) are imposed, one obtains

a[(’la'?l(:)l)] ‘u=A-u=r,(u) and
6[2253” u=B-u=s,u) (10)

FVS schemes decompose the Jacobian matrices ac-
cording to

A=A"+A" and B=B'+B, (11)

where A and B" are associated with positive charac-
teristics A~ and B™ and are associated with negative
characteristics. Thus, the fluxes in Eq. (10) decompose
as

A" u+A cu=r/+r, =r, and
B -u+B -u=s; +s; =s,. (12)

Note that if the fluxes were not homogeneous, the de-
composition of A and B is still mathematically possible,
but the parts would not be associated with the physical
characteristic curves. Substitution of Eq. (12) into Eq. (4)
yields
a_u+ar;+ar; =0 and a_qu@s:Jr@s; =
o Oox Ox o0 dy Oy
The solutions to these equations are based on ap-
proximating the gradients of the fluxes using upstream
or downstream values of the gradient of the flux inter-
polated from the conditions at time #’. Then the relation
given in Eq. (10) provides the fluxes at the cell interfaces
that are employed in Eq. (3). As with the FDS method,
central difference approximations are used to estimate
the dispersive fluxes. Thus, the first step of FVS consists
of splitting the conservation equations in space that
neglect the dispersive flux with the advective operator
expressed in a homogeneous form. Then the character-
istic decomposition is performed to resolve the positive
and negative characteristics for use in the solution.
The major difference between the FDS and FVS
schemes is that FDS schemes include the interaction
between positive and negative waves at the cell inter-
faces but FVS schemes allow the positive and negative
waves to cross the cell interface but without interacting.

0. (13)

Nevertheless, a proper choice of the interpolative
scheme for the construction of initial conditions for FVS
schemes and other artificially added terms have been
found to make FDS and FVS schemes identical.

While FVS and FDS schemes require a directional
split and a split of the physics of advection and diffusion
to estimate advective fluxes based on wave direction,
BGK schemes do not require these splits and do not
resolve waves. Fundamentally, the FVS and FDS ap-
proaches are based on the macroscopic behavior of the
flow while the BGK Boltzmann is based on the meso-
scopic behavior of the flow. To explain, the physics of
advection and diffusion are a manifestation of adopting
the continuum approach. In fact, macroscopic advection
is nothing but the mean motion of the random velocity
of atoms that make up the continuum; and macroscopic
dispersion is due to the fluctuations around this mean.
The Boltzmann theory gives an equation that governs
the probability distribution of molecular speeds.

Since only molecular motion is monitored at the
mesoscopic level, the BGK Boltzmann approach simply
states that: the total advective and dispersive mass fluxes
entering a finite volume across the boundaries of the
volume are simply equal to the net mass of particles that
enter the volume. The Boltzmann distribution of particle
speeds, f, at a particular location defines how the mass of
particles is distributed among the speeds. Thus, fluxes are
split between particles that move in the positive and
negative coordinate directions. For emphasis, note that in
the BGK scheme, as compared to the FDS and FVS
schemes, all splitting is done on a scalar function, f, rather
than on a vector flux function and the splitting is
accomplished simply without linearization of matrix
decomposition.

The details of how the function f is obtained and of
the implementation of the BGK Boltzmann procedure
are explored in the subsequent sections of this manu-
script. However, based on the preliminary discussion
here, it is possible to identify the following advan-
tageous features of the BGK approach:

o The diffusion and viscous terms that appear as second
derivative terms in macroscopic modeling are rep-
resented by a simple algebraic difference term in mes-
oscopic modeling. This eliminates the need for
separate treatment of the advection and diffusion
terms. FVS and FDS schemes can only model advec-
tive terms. The BGK automatically gives the total flux.

e Boltzmann-based schemes have been noted for the
ease by which they can be extended to multi-dimen-
sional cases and for their local character that makes
them ideal for implementation in parallel computers
[1,14]. This simplicity arises because the construction
of BGK fluxes is based on a scalar function while the
FVS and FDS procedures are based on vector quan-
tities and require a directional splitting in treating
multi-dimensional problems.
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e Boltzmann-based techniques have been found to be
well suited for problems with complex geometry
and boundary conditions [1,6,11,20]. The advantage
here arises from the fact that the BGK scheme makes
use of particle velocities and not characteristic curves
in solving a single scalar equation that can be easily
written in various coordinate systems.

e Using a Boltzmann-based scheme, [26] have showed
that incompressible flow solutions can be obtained
in the limit as the Mach number tends to zero. Thus,
the tedious and difficult solution of the Poisson’s
equation that describes the pressure field in incom-
pressible flow is avoided. FVS and FDS schemes em-
ploy characteristic curves. As a flow tends toward
incompressible, the characteristic propagation speeds
become infinite and these schemes fail. On the other
hand, BGK schemes are based on particle speeds
and not characteristic curves and thus are not im-
pacted at the incompressible limit.

e Numerical models based on the collisional Boltz-
mann theory have been shown to satisfy the entropy
condition; thus, precluding the emergence of physi-
cally non-realizable solutions [7,33]. The moments
of the Boltzmann equations not only provide the
macroscale conservation laws of mass, momentum
and energy but also the entropy equation. Hence,
the solution that is based on Boltzmann equation im-
plicitly satisfies the entropy equation. However, FVS
and FDS schemes only satisfy one-dimensional ad-
vection equations in different directions. The direc-
tional splitting alone can produce solutions that do
not satisfy the entropy condition. The paper by Quirk
[34] discusses the failures of FDS schemes.

Despite these attractive features, the BGK Boltzmann
scheme is not always superior to other procedures. The
application of the BGK schemes rests on the premise
that the model to be solved can be recovered from the
Boltzmann equation. If this cannot be accomplished, the
BGK scheme cannot be adopted.

In the subsequent sections, the formulation of the
BGK-based flux of mass transport is based on the full
Boltzmann equation. However, it is possible to simplify
the formulation by directional splitting of the Boltz-
mann equation. However, [13] have showed that the
BGK flux obtained from directional splitting of the
Boltzmann equation is a non-linear amalgamation of
the Lax—Wendroff scheme and FVS. In addition, they
showed that the BGK scheme approaches the Lax—
Wendroff scheme as the molecular collision time tends
to zero; and it approaches the FVS scheme as the col-
lision time tends to infinity. This implies that FVS
schemes are highly diffusive.

The essence of the preceding discussion is that the
BGK schemes and lattice Boltzmann schemes have their
roots in the mesoscale molecular dynamics of the flow,
while classical schemes have their roots in macroscopic

behavior. Building on these ideas it is possible to de-
velop conservation equations of mass, momentum, and
energy as moments of the Boltzmann equation. The
objective here is less comprehensive and more illustra-
tive as we wish only to provide the three-step derivation
appropriate for species transport and then demonstrate
a suite of solutions to this equation.

3. Consistency of the mesoscopic model with the macro-
scale transport model

The two-dimensional BGK Boltzmann equation is
written as follows [7,12,33]:

of of of Fof F of q—f
6t+v6 +e L6y+macx+macv T (142)
or, in vector notation as
of 1. 0f _q-f

F- 14
m +c Vf—i— %" 1 (14b)

where subscripts x and y refer to vector components in
the x-coordinate space, ¢ the velocity vector of a particle
in the two-dimensional space; ¢ the time, V the two-di-
mensional nabla operator, m the mass of a particle, F
the net external force acting on the particles in the co-
ordinate directions, t the collision time and will be dis-
cussed subsequently, f(x,c¢,7) the non-equilibrium
distribution function of particles that comprise the
species of interest, and ¢(x,c,?) the equilibrium distri-
bution function of particles that can be determined by
maximizing the entropy function [7]. Note that the right-
hand side of the preceding equation is a measure of
disequilibrium of the distribution function and that f for
the species of interest is different from f for the entire
fluid phase.Eq. (14b) may be written in terms of the total
derivative of the distribution function f as

df _q-f

dt ¢’ (152)
when

dx

and

de F

L I (15¢)

The equilibrium particle distribution function for the
chemical constituent of interest is given by the following
Gaussian distribution [7]:

glx.¢,1) = C= exp[~Ae —v[7, (16)

where v is the macroscale advective velocity vector of the
fluid, C is the contaminant concentration, and 1 is a
measure of the distribution of particle velocities.
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The macroscopic concentration C is related to the
mesoscopic variable f as follows [32]:

_ / : / ': fde.de, (17)

and the integral of the first moment of f is the flux
function of the chemical species, N, where

N:/;: l:cfdcxdcy. (18)

If a fluctuation particle velocity for the chemical con-
stituent of interest is defined as ¢/ = ¢ — v, where v is the
flow velocity and c is the particle velocity of the chemical
species, then Eq. (18) may be written

N=vC+ /OC /Oc d(f —q)de,dey, (19)

where the first term on the right-hand side is the ad-
vective flux. The integral term accounts for dispersion of
the chemical species under study, and the integrand is a
product of the deviation of species particle velocities
from the mean flow velocity and the deviation of the
distribution function of the species from its equilibrium
form. The fact that mass is collision invariant (i.e., no
chemical reactions are being considered) provides the
restriction that

IR
To obtain the mass transport equation, it is necessary to
integrate Eq. (14b) over the particle velocities to obtain

/OC /OO gdcxdcy—i—/oo /Ooc-Vfdcxdcy
IR SR
(21)

From Eq. (20), the right-hand side of Eq. (21) is zero.
Also, F/m is an external force term that is independent
of the particle velocity distribution. Thus, it may be
moved outside the integral. Then integration of the third
term shows that this integral is zero. The integrands of
the first two integrals may be added together. Also, the
order of integration and differentiation may be rear-
ranged in Eq. (21) to obtain

%/ / fdcxdcy—&—V-/ / cf'de,de, =0

/ de,de,. (20)

dcV de,.

(22)
or, after making use of Eqgs. (17) and (18)
66_C+ V-N=0. (23)

Note that under conditions of an equilibrium distri-
bution of particle velocities (i.e. when f = g), the flux
term will be solely advective such that N = Cv. How-

ever, when f # ¢, the flux term accounts for both ad-
vection and diffusion; but it is not obvious how the flux
should be divided between these two processes. Since the
form of f'is not available precisely, discretization of the
Boltzmann equation written in terms of f will be more
difficult to relate to a macroscale discrete equation than
a discretization of an approximate Boltzmann equation
written in terms of the known equilibrium distribution
function ¢. Therefore, it will be useful to express f via
an expansion in terms of ¢ and its derivatives. From
Eq. (15a), f may be expressed as
df

fzq—fa (24)

Then substitution of this expression for f into the time
derivative yields

)

Note that 7 is of the time scale of a particle collision,
whereas ¢ is at the macroscopic time scale, a scale at
which f changes significantly. Therefore, it is convenient
to write T = et, where € is a small dimensionless constant
of the order of the molecular collision time divided by
the macroscopic time scale and 7 is of the same order as
the macroscopic time scale. Thus, Eq. (25) becomes

rea-alg-a ()] )

Further substitution of f may be employed to extend this
expression to include higher derivatives of ¢ and a final
term involving a derivative of f. The form obtained may
be truncated to read

f':q—ef%—i-ez%g( C;‘t’>+@( ). (27)

Now substitution of this equation into Eq. (22) provides
the expression

at/ / gdc,dc, — 6/ /
—|—V/ / cqdc,dc, — V/ / cer dchdcy

+ O(e (28)

Each of the integrals in this equation may be evaluated
as follows:

dcx dcy

o[> [ oC
o /_Oc /_Ooqdcxdcy =3 (29a)
o[ .[oC
at/ / dcvdcy at{er{a—i—v.(cﬂ]},
(29b)
V- / / cgde,de, =V - (Cv), (29¢)
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Then reconstitution of Eq. (28) yields

%(;+V~(CV)—;{€%[%§+V-(CV)”—v

0 1
Ler| = . — 0(e?) =
{er{at(CV)-l-V [C(vv+2il)]}}+6(e) 0.
(30)

Now to make the manipulations to follow more trans-
parency, define a grouping of terms, M, such that

oC
M:E+V-(Cv). (31)
Then Eq. (30) may be directly reorganized to

0. . .| ov 1
M—&[E’L’M] -V {erC{at+v~Vv+V<2i>]
+ eva-l—%VC} (&) =0. (32)

Thus, it can be seen that M is of O(¢) so that any term
containing eM is of (¢/(¢?) and can be lumped in with the
error term so that Eq. (32) becomes

__|ov 1 €T
+0(E) =0. (33)

It can be shown (e.g., in Ref. [7], for shallow water
flow; in Ref. [29], for the Navier—Stokes equation), that
the term in square brackets is the momentum equation
with error ((e), where the pressure divided by density
can be identified as 1/(21) with units of L?/T?. Since
this momentum expression is multiplied by e, it is of
order O(e*) and may also be lumped with the error
term leaving

M-V. %Vc L) =0 (34)

or, after reinstating the expression for M

oC €t 5
E—f-V-(Cv)—V- ﬁVC =0(€). (35)
Thus, if a diffusion coefficient D is defined with units of
I*)T

€T
D= 7 (36)

Eq. (35) represents a second-order approximation to the
classical advection—diffusion equation. Recall that since
€ is the ratio of the molecular time scale to the macro-

scopic time scale, the error is negligibly small. If € is
large (say of order 1), then the Boltzmann based scalar
transport equation departs from the classical scalar
transport equation. Therefore, it is tempting to conclude
that the Boltzmann based model is incorrect in this case
and that one needs to return to the classical scalar
transport equation for modeling purposes. However, ¢
of order 1 means that the molecular and macroscopic
length scales are of similar magnitude making the con-
tinuum hypotheses and thus the classical transport
equation equally invalid. In fact, the continuum ap-
proach is invalid for problems with € of order 1 or larger
and either microscopic or mesoscopic modeling would
be needed in this case. On the other hand, in the limit
A — oo, Eq. (35) approaches the pure advection equa-
tion. In fact, in solving the species transport problem
based on the Boltzmann equation, the advection and
dispersion will not be treated as separate components of
the flux term. Nevertheless, whenever the Boltzmann
equation is solved with finite A, the diffusional dissipa-
tion of a sharp concentration front will be accounted
for.

4. Discretization of the BGK Boltzmann equation

The solution for a concentration field based on the
BGK Boltzmann equation now requires integration of
Eq. (22) to obtain Eq. (23), and then a direct solution
of Eq. (23). However, this procedure is complicated by
the facts that f'is not known and that solution of the
resulting differential equation is complicated by geo-
metric effects and the velocity field. To overcome these
obstacles, two important alterations are made to
Eq. (22). Firstly, the unknown function f is expressed
in terms of the known function ¢ based on the ex-
pansions presented previously. This may be done in a
variety of ways. Typically, a region of study is dis-
cretized into a number of blocks or elements. Then
within each element, an equilibrium expression for is ¢
applied. Variation of ¢ within the element can be al-
lowed using polynomials to whatever degree desired.
Issues relating to discontinuities in f at the element
boundaries require special attention. Secondly, the
differential form of Eq. (22) is approximated in a
difference form. Thus, performance of the integrations
leads to a discrete analog of Eq. (23). In the present
section, issues relating to the discretization and ap-
proximation of f will be examined.

Consider the grid in Fig. 1, which shows a portion of
a region of interest. The discussion here will center on
the formulations of the approximations to f associated
with the grid box centered at (x;,y;) with boundaries at
Xi—1/25 YVj+1/25 Xit1/25 and Yj-1)2- The subscript i will be used
to indicate the x-coordinates and the subscript j the
y-coordinates. In particular it is important to obtain
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Fig. 1. A two-dimensional computational cell and its interfaces.

expressions for the distribution functions on the
boundary of the grid block because the total mass fluxes
at the cell boundaries are obtained from the moments of
f. Here, the exposition will focus exclusively on the
boundary at x;,/,. Totally analogous manipulations
apply to the other boundaries.

Consider the solution to Eq. (15a) along a charac-
teristic extending from the location (Xi.i/,Y;, ") and
terminating at the interface (x;;1/2,;,). From Eq. (15a)

f(xi+l/2,j> t) :f(Xi+l/2,j, t”)e*(pm/T

+7 [ axip).petrap, (37a)

where for convenience, the dependence of the distri-
bution function on c¢ is not explicitly indicated and
deviations of F/m in Eq. (15¢) from zero have been
ignored for now (such that the particles move with
constant speed along straight paths). The case of non-
zero F is discussed in Appendix A. The function, ¢ that
appears in the integral is an approximation to ¢
modified so that it is C° continuous at the interface.
This approximation will be developed subsequently.
Note that the starting location for the characteristic is
a function of time and is obtained by integration of Eq.
(15b) as

Xiv12,j() = Xipnj — et = 1) (37b)
and the particle trajectories are given by
X(B) = Xis1/2,(t) + (B — 1) (37¢)

To obtain the form for f(X;.1/ ,¢), both f(Xii1/,;,")
and g[x(p), f] must be known. They will be evaluated in
Sections 4.1. and 4.2.

4.1. Evaluation of f(Xii1/2,j,1")

The function f (X112 ;, "), where Xi11/2 ; = Xip1/2,5(2),
may be obtained from a Taylor series expansion ac-
cording to

FXivi ") = @i+ (Vi p- - Kivija g — Xiv1/2,5)

for X1 <xi1p2 (38a)
and
f X2 5") = @ier e+ (V@) pr - Kivryo,) — Xiv12,7)
for )(i+1/2 > Xit1/2, (38b)

where use has been made of the assumption that within
a cell the equilibrium situation applies such that f =g
while discontinuities in f at the boundary of the cell
account for disequilibrium. The superscripts “+” and
“—” on the subscripts indicate on which side of the
discontinuity at i 4+ 1/2 the functions are being evalu-
ated. Substitution of Eq. (15b) into these expressions
yields

S (Xiz1y2,,1") = T, — (V‘I)?ﬂ/zaj e(t—1")

for X1 <xi1p (39a)
and
FXivip ") = @iiijpe ;= (V@i or et = 1)

for AXHI/Z > Xit1/2- (39b)

The expressions for f(X;1/2,;,¢") provided in Egs. (39a)
and (39b) may be combined into a single expression by
making use of the Heaviside step function such that

S Xi12 ") = H(Cx){q:?ﬂ/z:j —(Va)i1p et = Z")}

(1= HE oy = (VO el =)

(40)
where the Heaviside step function H(c,) is such that
H(c,)=1 fore, =0, (4la)
H(c,) =0 fore, <O. (41b)

The functional form of ¢ is provided as Eq. (16). The
gradients of ¢ may be calculated, in general, from this
expression as

1 1
Vg=gq EVC—!—ZAVV- (e—v)+ (E_ c—vz)V/l].

(42)

Note that determination of V¢ requires a knowledge of
the concentration, velocity, and pressure fields, either
from calculation or as a specified function. Further-
more, the evaluation of ¢ and its derivatives at the
boundary of a cell based on the calculated or specified
values of C,v, and 4 at the center of a cell is not unique.
In the example to be presented here, the velocity and
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pressure fields are specified as analytic continuous
functions in space. The expressions used to evaluate C
and VC at the boundary of the cell from calculated
values C of at the cell centers are given in Appendix B.
The technique presented there may also be applied to
the velocity and pressure fields in more complex cases
where they are only known discretely.

4.2. Evaluation of g[x(p), p]

The calculation of this C° continuous function begins
with the Taylor series expansion of second-order such
that

Q[Xa ﬁ] = 6;14_1/2,] + (v6)7+1/2*,j (x— Xi+1/2>./')

+ <Sq> (B—=1") for x<xi1p (43a)
i+1/2,)

and
qx, Bl =10, + (V@i o (X = Xig1p2,)
AN ,
+ | 35 (B—1") forx>uxii, (43b)
it1/2,j

where the function ¢ is defined analogously to ¢ in
Eq. (16) with

"

g = CZ expl—ile—vf] (43¢)
with derivatives analogous to those in Eq. (42)

1~ 1 .
Vq:q[EVC—I—MVV- (c—v) + (7— |c—v|2>w]

L

(43d)
and

7} 1 aC ov

%:q E@Jrué-(c—v)]. (43¢)

In these equations, C (and v and /, if not specified as
continuous fields) is an interpolant of C (and v and 1)
based on the values of C at the cell centers developed
such that it is C° continuous at the cell boundaries. The
procedures used here to calculate these interpolants are
given in Appendix C. The derivatives of g with respect to
y and ¢ will be continuous at x;,/, ; but, since ¢ is only
C° continuous, its first derivative in the direction normal
to the boundary of the region (in this case, the x de-
rivative) will be discontinuous. That is the reason for the
persistence of the “+” and “—” superscripts in the
subscripts of the gradient terms. Egs. (43a) and (43b)
may be combined making use of the Heaviside step
function, and the continuity properties of g and its de-
rivatives to obtain

n

a a_ n
L )+ (a%) (B2
Y i+1/2,j i+1/2,j

0
oq 0q
+1 H(e) H +[1-H(e) M
i+1/27,j i+1/2%

X (x—x,«ﬂ/z). (44)

In the problems studied here, it should be noted that
the purpose is exposition of the method in its applica-
tion to simple problems. Therefore, no numerical cal-
culation is done for the flow field. Due to this, no value
of A has been calculated. Thus, the value of A employed
is obtained from Eq. (36) as

q[x,p] :‘7?“/27]"'

n n

h= (45)

where a physically realistic value of the diffusion coef-
ficient is used and et = 7 is obtained from

c? —C"
P12+, ir1/2,

T:’+1/2 =A1At + A, ” ! ” ! At
G+ Clhipn

for y € [y_1/2,¥541/)- (46)

The constants 4; and A4, are determined from nu-
merical experiment. [13] report that the BGK Boltz-
mann solution scheme is robust with respect to the
choice of these constants. [32] have used values of 4; and
A, on the order of 0.01 and 1.0, respectively, when
simulating shocks in gas dynamics problems. [7] have
used the same values for shallow water calculations. In
the calculations performed in the present work, t was set
equal to 200 D.

4.3. Summary of discretization procedure for distribution
Sfunction

The discretization procedure is directed toward ob-
taining an approximation for f (X1, ;,t) as found in
Eq. (37a). This is achieved making use of the expressions
for the terms on the right-hand side of Eq. (37a) as
provided by Eqgs. (40) and (44). For a cell centered at
X;;, analogous relations may be obtained for
S (Xizij2,5,1), f(Xijs12,1), and f(X;;-1/2,¢). Thus, ex-
pressions are provided for each of the distribution
functions along the boundary of a cell. It is important to
note that by the procedure employed here, a unique
value for the distribution at a cell interface is obtained
that depends on the information from cells on both sides
of each interface. Of further importance is the fact that,
in application, the distribution functions are not ex-
plicitly calculated. The overall goal is to solve the
transport Eq. (23). The discrete form of this equation,
derived from the discretization of the Boltzmann equa-
tion, is what is solved in the numerical model. This form
is based on the integration over the particle velocities of
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the distribution functions obtained here. Only these in-
tegrals of the distribution functions must be evaluated.
At time level n, the values of C and v are known at the cell
centers. The limiter is used to determine these quantities
within the cell at ¢* . This process of determining the
discrete transport equation is referred to as the recon-
struction procedure and is described in Section 5.

5. Reconstruction of the transport equation

The numerical formulation of the mesoscopic trans-
port model is based on Eq. (23) integrated in space over
each cell of interest (e.g., the cell in Fig. 1) and over time
from ¢ to ¢"*!. Integration of Eq. (23) yields

1 Nx 4 o Nx ' .
oy - [ P~ Wns
m

Ax

PN s — (V)
. /i, j+1/2 Y7 j=1/2 dr 47
/ 5 , (47)

where N, is the flux in the x-direction and ¥, is the flux
in the y-direction. These fluxes are obtained as integrals
of the distribution functions developed in the last sec-
tion. For example, at the x;;,/, boundary

(Nx)i+1/2kj = / / cxf(XiJrl/Z,ja t) de, dCy, (48)

where the distribution f(X;;1,;,¢) is known from the
last section. The other terms in the integrals may be
developed and evaluated similarly. Thus, all integrations
indicated on the right-hand side of Eq. (47) may be
performed such that the solution for C7#' is obtained
explicitly. The main task, therefore, in the full con-
struction of a solution to the transport equation based
on the BGK Boltzmann equation is the manipulations
that go into the specification of f(X;y1/,;,1).

6. Summary of the solution procedure

The calculations that must be performed are provided
in detail in Appendices BCD. It is convenient to sum-
marize the procedure for advancing the solution from ¢
to ¢!

1. Start with known values of C7 ..

2. Determine the derivatives of C within each cell using
the flux limiters of Eqgs. (56a) and (56b).

3. The derivatives and the values of C}'; are used to cal-
culate the values of C” at the cell boundaries from Eq.
(55).

4. The values of C" at the cell interfaces are calculated
using equations analogous to Eq. (59).

5. The derivatives of C" within each cell are obtained
from equations analogous to (63a) and (63b).

6. Information from steps 4 and 5 is used to calculate
the time derivative of C at " and at the interfaces us-
ing expressions such as Eq. (76).

7. The quantities calculated in steps 2-6 are useful in
calculating the expressions for the the derivatives of
¢ and g needed to calculate f at the interface as in
Eq. (37a). The description of this calculation is pro-
vided in Eq. (38a)—(44).

8. Finally, from the known values of f at the interfaces,
the fluxes can be evaluated for the integrals appearing
in Eq. (47) such that the solution for C}'} !'is obtained.

7. Example calculations

Several transport problems will now be solved for the
purpose of demonstrating the effectiveness of the pro-
cedure developed here. The model, once developed, is
easily applied to complex flow fields and concentration
distributions. However, here the focus is on simply de-
scribed problems that illustrate the attributes of the
computational procedure.

7.1. One-dimensional pure advection tests

The first example is the pure advection of a Gaussian
concentration profile with a peak value 1 and a standard
deviation 264. Fig. 2 shows that both analytical and
numerical solutions at time 10,000 s agree well.

The second test demonstrates the one-dimensional
advection of a “step” profile. Both analytical and nu-
merical solutions at different times are shown in Fig. 3.
This calculation shows that the implemented model is
able to handle sharp fronts without introducing over-
shoots and undershoots. It should be noted that no
special treatment of the front is required as the ap-
proximation procedure is the same for all points in the
system.

7.2. Test of the Leonard problem

[15] has devised a test case that consists of three
concentration distributions that are to be advected in

0.8
06 analytic
C 04 o nhumerical
0.2 initial
01 t t } t
0 2000 4000 6000 8000 10000 12000
x(m)

Fig. 2. Pure advection test (solution at ¢=10,000s with
uAt/Ax = 0.9, u=1.0 m/s, and Ax = 100 m.
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09 4 '. 1 '~ ' -
. , | ' ————analytic (t=1972)
0.8 : ' ' 1 N P numeric (t=1972)
0.7 + . . : ' ——— analytic (t=3859)
0.6 1 \ : ' ) N . numeric (t=3859)
[ ' ' ' —————analytic (t=5835)
© 05+ | . - - - - - numeric (t=5835)
0.4 + ' —___analytic (t=7718)
0.3 + S S EEEE numeric (t=7718)
0.2 ‘ ———— analytic (t=9694)
' . . A numeric (t=9694)
0.1 + ! , \ . ‘
0 - ; ' + o :
0 1000 2000 3000 4000 5000 6000
x(m)
Fig. 3. “Step” test at different times with uA7/Ax = 0.96, Ax = 50 m, and u = 0.5 m/s.

127 To evaluate the performance of the proposed
mesoscopic model in comparison with the results ob-
tained by various ULTIMATE schemes, the absolute
error e and the waviness error w defined, respectively, by
[15] as
e = Z |Cexact,[ - Ccompuledj‘ (49)

i
02 0.4 06 08 1 12 14 and
x
w= Z |(Ci+1 - Ci)exact - (Ci+1 - Ci)computed| (50)
i

Fig. 4. Initial concentration profile for the Leonard test.

one-dimension. The initial condition is illustrated in
Fig. 4. The lead distribution is a semi-ellipse of width
20Ax. The middle distribution is a sine-squared distri-
bution, also of width 20Ax , and the lagging distribution
is a sharp front. This initial condition is advected to the
right by a normalized speed of 1. The discretization is
the same as that used by [15] and parameter values are
indicated in the solution plotted in Fig. 5.

1.2

are employed. Fig. 6 plots the absolute errors in ap-
proximating the step (e-STEP), the sine (e-SINE) and
the ellipse (e-ELLIPSE) obtained with the mesoscopic
model at the second-order position on the abscissa. For
comparison, the absolute errors of the second-, third-,
fourth-, fifth-, sixth-, seventh-, eighth- and ninth-order
ULTIMATE schemes are also plotted versus the order
of the scheme. The figure shows: (i) e-STEP of the
proposed second-order scheme is the same as that of the

Fig. 5. Analytical and numerical solutions to the Leonard test after 90 time-steps with uA¢/Ax = 0.5, Ax = 0.01 m,u = 0.045 m/s.
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(Cr=0.5)

—&— e-STEP(Ultimate)
—— e-SINE(Ultimate)
—#— e-ELLIPSE(Ultimate)
X e-STEP(Boltzmann)
% e-SINE(Boltzmann)
® e-ELLIPSE(Boltzmann)

order of scheme

Fig. 6. Comparisons of total absolute errors for Leonard test after 90 time-steps with uAz/Ax = 0.5, Ax = 0.01 m, u = 0.045 m/s.
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Fig. 7. Comparisons of waviness errors for Leonard test after 90 time-steps with uAz/Ax = 0.5, Ax = 0.01 m, u = 0.045 m/s.

third-order ULTIMATE scheme; (ii) e-ELLIPSE of the
proposed scheme is the same as that of the fourth-order
ULTIMATE scheme; (iii) e-SINE of the proposed
scheme is better than that of the second-order ULTI-
MATE scheme but worse than that of the third-order
scheme ULTIMATE scheme; (iv) the absolute error in
approximating the whole profile of the proposed second-
order scheme is the same as that of the third-order
ULTIMATE scheme. Hence, for the same discretiza-
tion, the proposed second-order model produces the
same global absolute error as the third-order ULTI-
MATE scheme of Leonard.

Fig. 7 shows the waviness errors w-STEP, w-SINE
and w-ELLIPSE versus the order of the scheme. It can
be seen that: (i) w-STEP of the proposed scheme is the
same as that of the fourth-order ULTIMATE scheme;
(i1)) w-ELLIPSE of the second-order proposed scheme is
better than that of ULTIMATE schemes up to the
ninth-order; (iii) w-SINE of the second-order proposed
scheme is better than that of the ULTIMATE scheme
up to the ninth-order. In summary, the absolute error in
the mesoscopic model is equivalent to the third-order

ULTIMATE scheme and the waviness error in the
proposed model is better than that in the ninth-order
ULTIMATE scheme.

7.3. Advection—diffusion test

This example is intended to test the capability of the
model in handling the advection—diffusion transport
under different diffusion strengths. The initial profile is
chosen as a Gaussian distribution with the peak value 1
and the standard deviation 264. Fig. 8 shows both an-
alytical and numerical solutions for different Peclet
numbers. It can be seen that all the numerical results
agree with the analytical results very well.

7.4. Two-dimensional transport tests

The first two-dimensional example tests the capability
of the proposed mesoscopic model in handling two-di-
mensional steep gradients. A cube of base 19Ax x 19Ay
and of height one is advected diagonally. Fig. 9 shows
the initial concentration distribution surface and the
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12 +
1 O numeric(Pe=10)
—— analytic(Pe=10)
O numeric(Pe=20)
0.8 + —— analytic(Pe=20)
O numeric(Pe=40)
0 06 1 —— analytic(Pe=40)
O numeric(Pe=infinity)
0.4 + — analytic(Pe=infinity)
0.2
04

8500 11500 12500 13500 14500
x(m)

Fig. 8. Advection—diffusion test for transport of a Gaussian distribution after 96 time-steps using different Peclet numbers with
ulAt/Ax = 0.5, Ax =200 m, u =1 m/s.
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Fig. 9. Two-dimensional advection test with Ax =1, u = v =1, Az = 1. Initial condition and solution after 30 time-steps.
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Fig. 10. Comparison of analytical and computed profiles for two-dimensional advection test of Fig. 9 at y = 50.
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Fig. 13. Comparison of computed profile from Fig. 12 at y
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Fig. 14. Comparison of computed profile from Fig. 12 at x = 20 with analytical solution.

surface after 30 time-steps. It indicates that the meso-
scopic model gives stable and quite satisfactory results.
Fig. 10 compares a computed and analytical cross-sec-
tion of the concentration profile and demonstrates the
high resolution obtained for the discontinuity.

The second two-dimensional example tests the mes-
oscopic model in simulating a two-dimensional steep
gradient profile transported in a non-uniform flow field.
The test domain is an 80Ax x 80Ay square. The velocity
field is a counter-clockwise circular flow similar to that
of a rigid body rotating about its center. The angular
speed is /80, and one complete revolution requires 160
time-steps. The initial concentration distribution surface
is shown in Fig. 11, with a square base of 20Ax x 20Ay
and height one, the center of which is located at
(x = 20Ax x 20Ay). Since diffusion is not included, the
concentration distribution after a complete revolution
should coincide with the initial concentration distribu-
tion. Fig. 12 shows the computed concentration distri-
bution surface after a complete revolution. Figs. 13 and
14 compare the computed concentration profiles with
analytical solutions and demonstrate the resolution ob-
tained for the discontinuous profile.

8. Conclusion

In this paper, a mesoscopic model for the advection—
diffusion contaminant transport is proposed based on
the kinetic theory. It utilizes BGK collisional Boltzmann
equation as a starting point. The finite volume method is
used to establish the second-order mesoscopic level
based numerical model. The mesoscopic model has a
number of attractive features. It satisfies the entropy
condition and can be easily extended to multi-dimen-
sional cases. In addition, in the BGK model, the diffu-
sion term is represented by a simple algebraic difference

term rather than a second-order partial derivative term,
which much simplifies the discretization and prevents
the numerical oscillation. Another outstanding attribute
of the mesoscopic model is that the convection term in
the BGK Boltzmann equation is linear. Numerical re-
sults obtained for a range of advection—diffusion trans-
port problems, including one- and two-dimensional pure
advection transport and advection—diffusion transport,
have been compared with analytical solutions and nu-
merical solutions obtained by other schemes. The com-
parisons show the high accuracy, stability, and
robustness of the proposed mesoscopic model.
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Appendix A. Non-zero net external force

If the resultant of all external forces is not zero (i.e.,
F # 0), then the derivation of the discrete Boltzmann
equation from Eq. (37a) to (44) is altered. An approxi-
mate solution for the distribution function at interface
i+ 1/2 is obtained using either operator splitting or
using approximate particle paths determined through
numerical integration of the Egs. (15b) and (15¢). Both
approaches are discussed in this appendix.

A.1. Operator splitting when F #£ 0

Operator splitting [10,16,35] may be used to rewrite
the Boltzmann equation as follows:
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aé; +e-Vf= g with initial condition
f1(x,¢,t") = f(x,¢,t"), (51a)
of + E . o = (0 with initial condition

ot m Oc
X e t") = f1(x,¢,1) (51b)

for t € [t",/"*!]. This splitting has been used by [7] for
transient open channel flow problems to advantage.
Eq. (51a) is identical to the Boltzmann equation with
F = 0, and its solution is identical to Eq. (37a) and re-
quires the same manipulations as provided in the text
for calculation of that solution. Eq. (51b) may be ex-
pressed in the characteristic form useful for its solution

df** B

=0 52
& (52a)
subject to
de F
—=— 52b
dt m (520)

The solution to this equation pair at the cell interface
i+1/21s

S Xivia g €8] = f[Xiy2,, ¢, 1], (53a)
where
t
F
c=c"+ / —dt. (53b)
o m

Since the expression for ¢ that appears in the right-
hand side of Eq. (53a) contains a time integral of the net
external force, an approximate quadrature method can
be employed. [7] have found that a first-order integra-
tion was sufficient for the study of transient open
channel flows such as dam break problems.

A.2. No operator splitting when F # 0

When no operator splitting is employed with F # 0,
Egs. (37a) and (37c) are still employed as the solution
for f (X125, t), but Eq. (37b) is replaced by

t p F
Xeoya ) =Xvms ~ =)= [ [ Tayap, (54
moJm

where f# and y are dummy variables. To determine the
particle paths, an approximate quadrature method must
be selected for the integral that appears in this equation.
Then the solution provided by Eq. (37a) and the method
for evaluating this solution are employed as described
when F = 0 with the expression for X;, /() given by
Eq. (54) rather than Eq. (37b).

Appendix B. Evaluation of C and VC at cell boundaries

The equilibrium distribution function ¢, as given in
Eq. (16), and its gradient, as given in Eq. (42) must be
evaluated at the boundaries of the computational cell in
Eq. (40). To do these evaluations, C, v, and A, which are
known at the cell centers, must be interpolated to the cell
boundaries. In fact, for the simple examples demon-
strated here, the velocity fields are specified at all points
in space and the pressure field is a constant so the only
function that actually must be treated is the concentra-
tion field.

Here, within a cell centered at x; ;, the concentration
profile will be represented as the second-order Taylor
series

C'(x) = Cj + (x = xi;) - (VC); . (55)
The derivative functions are obtained using the mono-

tonic upstream centered scheme for conservation laws
(MUSCL) slope limiter introduced by van Leer [27]

(6C> _ sgn(ACi ;) +sgn(V.C))
i.j

A 2Ax
x min(|8,C; |, |ACi i, [VLCij]), (56a)
oc _ sgn(AyC; ;) + sgn(VyC; ;)
W/, N 2Ay
x min(|6,C; l, [ACijl, [V,Cijl) (56b)
where
ACi;=Ci,;— G, (57a)
V,.Ci;j=C;—Ciy, (57b)
1 1
0xCi; = 3 (AC;+ ViCy)) = 5 (Cis1,; — Ci1,j)s (57¢)
AyCi,/ = Lij+1 — Ci,j7 (57d)
V,Ci;j=Ci;—Cij, (57¢)

1 1

0,Cij =5 (ACoy + YV, Cij) = 5 (Cijur = Cijm). - (STF)

The approximation used here results in derivatives
that are constant within a cell. The velocity fields for the
examples are provided exactly and thus may be evalu-
ated exactly. Therefore, all the information is available
so that a discrete approximation to Vg is obtained using
Eq. (42) and all the items in Eq. (40) will be known.

Appendix C. Evaluation of and its derivatives

The manipulations in the preceding appendix provide
an expression for C within a cell. However, at a cell
boundary, the value of C will depend on the direction of
approach to the boundary. In Egs. (43a)—(43¢) a unique
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value of C is needed. This is obtained from the values of
C in the elements adjacent to the boundary as follows.
If the boundary of interest is at x,.1/,, the particle
movements toward this boundary will occur from the
adjacent cells depending on the particle velocities. Thus,
the concentration at the boundary may be defined mak-
ing use of the distribution functions for those cells as

l+1/2 i / /

q1+1/2 J
+1- (CX)]qi+]/2+‘j}dcxdcy (58a)
l+1/2/ / / q,+1/27 ijde}
+/ / q:’+l/2+,(jdcxdcy- (58b)

Evaluation of the integrals based on the tabulated forms
in Appendix D yields

C,”H/z] { [erfc(—u\/—)}}lﬂ/2 )

n {%[erfc(uﬂ)]} : (59)

i+1/2%,j

where erfc is the complementary error function.

erfc(n \/_ / exp(—r?)dr. (60)

The derivation in Appendix B provides the informa-
tion needed to calculate C, u, and A (a surrogate for the
pressure) at the two sides of the cell boundary. Thus, C
is a weighted average of the values on the two sides of
the boundary. If a continuous flow field is specified, then
there will be no need to calculate an approximate
velocity at the boundary of the cell. However, if the field
is calculated and not continuous, then the appropriate
values for # and ¥ can be obtained analogously to Eq.
(58b) by including ¢, and c,, respectively, in the inte-

Ja®

grand. This yields
_ C ¢ "
(Cit)1 0, = {5 [uerfc(—uﬂ) + v } B
i+1/2-,j
—u? "
uerfe(uv/7) - ] } , (61)

e
2

m i+1/2%, )
(C0)iy1pn, = {% lerfe( — uﬂ)]} .y
+ {%[erfc(u\/})]} . (62)

The derivative of C with respect to the direction normal
to a cell boundary is easily obtained from the discrete
expression, for example

@ _ C‘i+1/2‘j - Ci,j (63a)
ox liip Xit1/2,j — Xi,j

@ _ Ci+1,j - 7i+1/2,j (63b)
Or dirl/2%, il T2

The derivatives of C and v with respect to the coordinate
tangential to the boundary and f are obtained as simple
extensions of their definitions. For example, based on

Eq. (58b)
de,de
/ / { 6y} i+1/2-,j ’
de,dey, (64)
/ / [GJ/] i+1/2+,j ’

which may be evaluated directly using the tabulated
integrals in Appendix D as

fglgvl),

+{§y{ erfc(\/—u)} }m/z ; (65)

The derivatives of C, u, and 4 on the right-hand side of
Eq. (65) are approximated as in Appendix B.

To evaluate the derivative of g with respect to time, as
in Egs. (43a) and (43b), the derivative of C with respect
to time must be known in Eq. (43¢). The calculation of
this term is more complex than the calculation of the
spatial derivatives of C.

Begin by substituting Eq. (40) into Eq. (37a) to obtain

S (Xipiyp,t) = H(Cx){%’“/zf,j = (V@)iipp et = t")}

x e T L1 — Hicy))

i+1/2,j

@ n
dy

i+1/2,)

Al — (VO elt—m]}

" 1 [
x e / aIx(), Bl dp.

(66)

Now substitute the particle trajectory given by Eq. (37¢)
into Eq. (44) to obtain

% o (f—1)

i+1/2,j

66?)” n laq]n
+ | = =1+ Hley) | =—
(6[3 i+1/2,) O i+1/27,j

11 - He) [?]

i+1/2%,j

X Bl = Gl +

(f—1). (67)
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Then substitution of Eq. (67) into Eq. (66) yields the
expression

S(Xit1/2,,)

= H(cx) {q?ﬂ/zaj - (V‘I)?H/z—,j : c(t — t”) }e—(t—t”)/r

+11 —H(cxn{qfw,,—<Vq>;;1/2+,,--c<r—r">}e*<f*f">/f

1 P [ag]"
Aot (]
i \J
t a— n
x ey (B— e P/ dp -+ /(%)
" it1/2,)

< (B e Py / t {Hm) [?]

i+1/27)

i+1/2%,j

+[1-H(e)] [?] ,, }cxw ~ 1) P,
(68)
Evaluation of the indicated integrals then produces
S (Xisi/2,5,1)
= H (e~ (Va)iaryo ot fe™

+ 1= He) e — (V) e et e ™

n

—=n —K aq —K —K
+Qi+l/2,j[1 N cytfke™ — (1 —e™)]
i+1/2,)
oG n 2 n
+ a—q te—(1—e™)]+ H(cx)[aq]
i+1/2,) i+1/27j

(69)

where k = (¢ — ") /7. Eq. (44) may be used to obtain an
expression for ¢(X;y1/2,;,¢), which will be continuous at
the interface as

,,, oq"
=qinp; T3, K. (70)

q[x,-+1/2,_/a 1] Otiv1)2,)

Substitution of Eq. (70) into Eq. (69) and re-arrange-
ment yields

S (Xiv1/2,551) — G[Xiv1/2,5 1] " l%] (1—e™)
T 0
i+1/2,]
1 n n —n —
= T {H(cx)%url/z:j +[1— H(C.x)]qi+1/2+,j - qi+l/2,j}e
~{H )V + 1= HEN Ve, |
| .
ocre ™ + | cy[ke™ — (1 —e™)]
4172,
o] 2"
+ 9 Hlex) [a] +[1 = H(ey)] [a]
i+1/2-,j i+1/2%,j
X cy[ke™ — (1 —e ™). (71)

This equation may be integrated over the particle
velocities ¢ from —oco to oo to obtain

/ / S Xigi2,551)

ocl’

X )
[ +1/2,j ]dcxdcy

(I-¢™)

i+1/2,j

:_{a%l%erfc( Vi) + 2\/%]

n

i+1/27,j

0 | Cu 1e ]
— | ZZerfe(Vu) — = — —K
+6x 2 . c(\/—u) 2\/H] i+1/2+ }Ke

a [ 7)14 ~|n
+<{ — erfc(— \/_u
{ax \/Tc_/L i+1/27,j

L@ e ] .
— —erfc \/_u Ke ©
6 \/7 +1/2+7_,}
0 1 e ]
—-{ = —erfc \/u
{a \/H i+1/2-,j
\/_ Au2‘|n
erfc Aul) (I—e™)
a \/—_ i+1/2%,j
a — n a — n
ocv ke " ﬂ] [ke™ — (1 —e™™)]
i+1/2-j i+1/2,j
(72)

In this equation, the overbarred quantities are continu-
ous values at the cell boundaries. Designate the first and
second terms in braces in Eq. (72) using a shorthand
such that
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n le —Au
[6(@&1)] 63 %erfc( Vi) + E i]
X Lit1y2,; 9% VT Ry
0 [ \/— —h? ] !
+— erfc( lu) — (73)
O L 2 \/“ i+1/2%,j
a(Ca) | o [ ca S 1”
= — | —erfe(— \/;LM) =
O dir1y2,; o | 2 2 V/ni i+1/2-
d | Cu = e !
1 = erf . .
+ar| et (Vim = J
i+1/2+
(74)
Then Eq. (72) may be rearranged to
/ / f Xz+1/2 j? [Xl+l/2 Js ]ddeCy
laé] acay | acs "
= — —_— + N
ot
i+1/2,) i+1/2,) i+1/2,)
x(l—e™)— [_@(aCu)} - _G(Cu)] Ke "~
Y iy +1/2,)
(75)

Note that by compatibility condition (20), the left-
hand side of this equation should equal zero. This would
be the case if both collections of terms in braces were
zero. Certainly, the first braced group could be forced to
be zero by selecting the time derivative to be equal to the
negative of the divergence term. However, the quantities
in the second brace have already been determined and
the two derivatives will be equal only if the concentra-
tion and velocity functions are at least C' continuous in
the direction normal to the boundary of the cell. For this
case, the compatibility condition is satisfied if the time
derivative is selected such that

{ } =0. (76)
i+1/2, )

In this instance, the time derivative of C at the cell
boundary and time #' may be calculated directly from
the spatial derivatives that have previously been calcu-
lated. When the last term on the right-hand side of
Eq. (75) is not exactly zero, the compatibility condition
cannot be satisfied at every instant of time. However, it
may be satisfied in an average sense over a time-step by
integrating Eq. (75) over that time-step and requiring
that the compatibility integral be =zero. Since
Kk = (t — ") /7, the integration from ¢" to ¢* + At with the
requirement that the compatibility condition be satisfied
on average over this time interval yields

oC

ac) |, [oca
ot

Ox

oy

Kelk a(Ca) | acv |
0= =91% o o

L i+1/2,) i+1/2,) Y i+1/2,)
x [At— (1 —e /M)

ro(Cu) " a(Ca) |"
HECU

b i i+1/2,;

x [Ate™/" —7(1 — ¢ M), (77)

Thus, the time derivative is determined in terms of the
indicated known spatial derivatives. If the time-step is
much greater than the collision time (as will typically be
the case), then At > t and Eq. (76) is recovered. How-
ever, here the complete form given by Eq. (77) is em-
ployed to determine the time derivative of C from the
known spatial derivatives. This ensures that the com-
patibility condition on mass is satisfied, on the average
such that the computational scheme will be mass con-
servative.

Analogous calculations to those in this appendix
must be performed to calculate the derivatives in time
and space at X;_1/2 j,X; j41/2, and X; ;2.

Appendix D. Moments of the Gaussian distribution

The Gaussian distribution for the two-dimensional
case is given in Eq. (16) as

q(x,¢,t) = c’ exp[—4|e—v | (78)
T

Of interest are the integrals of this distribution over the
particle velocities, ¢, from —oo to oo as well as from 0 to
oo and from —oco to 0. In the present study, the fol-
lowing relations have been used:

1 o0 [o0)
=z /700 /ﬁ)oqrdcxdcy7 (79)

1 oo o0
v=o | | cgde, de,, (80)

vv+—I —/ /cchcxdc}7 (81)

Eerfc / / gde,dc,, (82)
/ / gdc,dcy, (83)
2 \/_ c / / cxqdeyde,,  (84)

u - e
Eerfc(\/Zu) 2\/7 C/ / cxqde,dey, (85)

—erfc \/_u

gerfc( Vi) +
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1
Eerfc(—

1 o0 o0
=C /o [w gdc,dc,, (86)
/ / gdc,dey, (87)

le
E—D C/ / c,qde,dey, (88)

v - 1 e’
Eerfc(ﬂv) ~3 =

= erfc \/_v
v
Eerfc(—\/zv)

0 00
% / ¢,qdecde,. (89)
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