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Abstract

The drainage discharge of a municipal solid waste incinerator (MSWI) bottom ash landfill was simulated using various
modelling approaches. Two functional models including a neural networks approach and a hydrological linear storage model,
and two mechanistic models requiring physical/hydrodynamic properties of the waste material, HYDRUS5 and MACRO
(Version 4.0) were used. The models were calibrated using an 8-month data set from 1996 and validated on a 3-month data
set from winter 1994/1995. The data sets comprised hourly values of rainfall, evaporation (estimated from the Penman–
Monteith relationship), drainage discharge and electrical conductivity. Predicted and measured discharges were compared.

The discharge predicted by the functional models more exactly followed the discharge patterns of the measured data but,
particularly the linear storage model, could not cope with the non-linearity of the system that was caused by seasonal changes in
water content of the MSWI bottom ash. The fit of the neural networks model to the data improved with increasing prior
information but was less smooth than the measured data. The mechanistic model that included preferential discharge, MACRO,
better modelled the discharge characteristics when inversely applied, indicating that preferential flow does occur in this system.
However, even the inverse application of HYDRUS5 could not describe the system discharge as well as the linear storage
model. All model approaches would have benefited from a more exact knowledge of initial water content.q 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Leachate containment and treatment is the central
feature of modern landfill management. Leachate
quantity and quality depend on landfill design, filling
practice and the physical and chemical characteristics
of the wastes. The flow paths and interaction times

determine the extent of the leaching process. An
understanding of the dependence of landfill leachate
quantity and quality has been sought by using a wide
variety of different modelling approaches. The water
balance approach, which considers various inputs,
reservoirs and outputs connected by simple relation-
ships, has found wide application, mainly for
municipal solid waste landfills (e.g. Ehrig, 1983;
Baccini et al., 1987). Recently, Guyonnet et al.
(1998) used another empirical approach by applying
linear storagemethodology to the production of
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leachate in a municipal solid waste landfill. A
mechanistic approach employing the Richards equa-
tion to describe unsaturated flow as a function of
meteorological conditions and landfill design is used
in the well-known model HELP (Hydrological
Evaluation of Landfill Performance, Schroeder et al.,
1984). Nixon et al. (1997) describe in a recent review
HELP and a number of other complementary models.
These models mostly assume the landfilled material to
be idealised layers with homogenous properties.
Simple modelling approaches are justified by the
common lack of required data; while mechanistic
modelling approaches can theoretically more closely
describe physical processes, providing there is suffi-
cient information.

Mechanistic models typically require input of rele-
vant soil properties and an accurate description of the
landfill geometry and the initial and boundary condi-
tions to be able to provide correct simulation results.
Notwithstanding the advances made in the areas of
inverse modelling and spatial analysis, two limitations
found in more theoretically rigorous mechanistic
models are frequently encountered. First, the soil
and hydraulic parameters needed for sophisticated
numerical models are usually well beyond the
capacity of real-world practical applications. Second,
the spatial variability of natural environment limits
the accuracy of applying exact flow theories.

The empirical approach for modelling hydrological
processes has advantages in that most of the system
properties can be ignored (Schaap and Bouten, 1996).
Normally, black-box models are constructed by
implementing more or less simple linear or non-linear
regression equations that couple input to output. As
long as the system does not behave in an entirely
chaotic manner, the black box model may well
provide an adequate description of the outflow. The
linear storage model is one such model. It describes
water flow through a hydrological entity in terms of an
exponential response of an output to a given input.
The rate of the response is the only variable that
must be found. Neural network models go one step
further because they do not make a priori assumptions
about the underlying mathematics. When properly
optimised using feed-forward back-propagation
networks or radial basis functions, neural networks
can approximate any continuous non-linear function
with any desired degree of accuracy (Hecht-Nielsen,

1991; Haykin, 1994). As such, neural networks are
well suited to implement input–output models (e.g.
precipitation and evaporation vs. drainage).

A field investigation of hydrological and geochem-
ical factors controlling leachate quality in a municipal
solid waste incinerator (MSWI) bottom ash monofill,
Landfill Lostorf in Switzerland, has found that
leachate quality is strongly dependent on hydrology
(Johnson et al., 1998). Because the landfill is subject
to transient periods of rainfall and evaporation,
successive wetting and drying cycles of the ash
occur, leading to time dependent rates of drainage.
There are strong indications of preferential flow and
tracer studies have shown that, during rain events,
between 20 and 50% of rainwater can pass through
the landfill within hours (Johnson et al., 1998). For
most components, concentrations of the leachate
drainage are diluted as a result of rain events whilst
others (Cu or Al), can increase by an order of magni-
tude (Johnson et al., 1999). Between rain events, the
leachate has a fairly constant composition. With an
average residence time of 3 years, it is probable that a
“quasi” equilibrium between the solid and aqueous
phase exists. Since the leachate composition can
change so rapidly during storm events, it is important
to be able, as closely as possible, to model the
response in discharge drainage to rainfall.

This paper should be considered as a comparative
study to determine which modelling approach best
predicts landfill drainage discharge in Landfill Lostorf
in response to rainfall and should provide information
as how to best model leachate drainage in cases where
little physical information is available. A follow up
work dealing with the ability of the models to simulate
chemical loads of the drainage water will be carried
out later.

We have chosen two empirical and two mechan-
istic approaches. A neural network approach was
chosen (Schaap and Bouton, 1996). A linear
storage model adapted from Huwe et al. (1994)
with preferential flow was selected as the second
empirical method. We chose the HYDRUS5 (Vogel
et al., 1996) program as the representative of a
class of programs that are mechanistic in nature
and are based on a one-dimensional isothermal
Darcian flow in a variably saturated rigid porous
medium. Darcian flow models are not applicable
to situations of preferential flow through porous
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media. For the landfill under investigation, the exis-
tence of preferential flow was a subject of dispute.
Depending on one’s tendency, observed data could
be interpreted to support either the presence of
preferential flow, or simply the existence of a
hydrologically responsive medium. Through model-
ling, by programs that account and ignore the
presence of preferential flow, it was hoped to estab-
lish more support in favour of one or the other
argument. A second mechanistic model with prefer-
ential flow, MACRO (Version 4.0, Jarvis, 1994),
was chosen to test the applicability of such a
model to a landfill system. Again MACRO
describes one-dimensional isothermal Darcian flow
together with preferential flow through macropores
under saturated conditions.

2. Data collection and treatment

2.1. The site

Landfill Lostorf, a MSWI bottom ash monofill near
Buchs AG, Switzerland, is situated in a disused gravel
pit. A liner consisting of 0.8 m opalinous clay support-
ing a gravel drainage layer (0.2 m) serves to collect
the leachate via high-density polyethylene (HDPE)
tubing into a shaft. Two geotextiles separate the
MSWI bottom ash from the drainage layer and the
drainage layer from the clay liner. The landfill has a
depth of 6 m and has been successively filled to this
depth from east to west in discrete stages (at 6–
9 month intervals). The landfill has three compart-
ments with separate leachate drainage. This is
achieved by the topography of the liner that is inclined
at a gradient of around 4% towards the compartment
boundary. The experiments were carried out on the
oldest compartment (5850 m2) of the landfill with
MSWI bottom ash produced in 1991. The surface of
the landfill has not yet been covered or cultivated so
there is direct contact between the atmosphere and the
disposed ash. Drilling in the landfill has shown that
though the ash is in general unsaturated, ponding does
exist. The extent of these formations is unknown. One
site of ponding, at the centre of the compartment, has
a pumpable water volume of between 100 and 200 l of
leachate within an hour.

The average yearly precipitation at the local Swiss

Meteorological Association (SMA) station (Buchs/
Suhr, approximately 2 km west of the landfill in a
comparable geographical location) for the period of
1987 to and including 1996 is 1060 mm. The average
rainfall maximum occurs between May and June. The
driest period is January–April. The summer rains tend
to occur in storm events of high rain intensity.

2.2. Discharge and rainfall

All leachate measurements, unless otherwise
stated, were made at the central pump shaft and
sampling point indicated in Johnson et al. (1998).
Automatic registration of drainage discharge, electri-
cal conductivity and temperature were made over the
periods, November 1993–February 1994, November
1994–November 1995 and May 1996–December
1996. Flowtec (DI 652) instrumentation, based on
changes in the magnetic field as a function of flow
rate, was used to measure discharge. Conductivity
and temperature were registered on-line with a
combined electrode (WTW LF 196). Average values
taken every second were saved to a data logger every
15 min. Because of rapid calcite precipitation in the
drainage system and onto the walls of the instrumen-
tation, the instruments had to be rinsed through on a
weekly basis. In addition, the drainage system had to
be flushed prior to the installation of the equipment in
each of the above-mentioned periods. Precipitation
measurements were made on site using a tilting-
siphon rain gauge. The on-site rainfall measurements
were compared to data collected by the Buchs/Suhr
SMA station.

2.3. Evaporation

Potential evapotranspiration from the surface of the
landfill was estimated using the hourly form of the
FAO Penman–Monteith equation (Allen et al.,
1994). Hourly values of global radiation, relative
humidity, pressure, wind velocity (at 2 m) and
temperature were obtained from the SMA at the
Buchs/Suhr site and in addition from on-site measure-
ments of temperature, relative humidity and wind
velocity in 1996.

The actual evaporation from the bare MSWI
bottom ash surface was estimated from the potential
evapotranspiration mentioned previously using an
empirical approach adopted from Black et al.
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(1969). The actual evaporation was assumed to be a
function of the surface wetting and thus the number of
days between rain events was indexed in order to
account for the drying of the surface. The potential
evapotranspiration (Epot) was then divided by the
square root of the number of days since the last rain
event, as suggested by Black and co-workers.
However, the values for actual evaporation estimated
in this way underestimated the evaporation. The best
fit was then sought between the difference in total
rainfall and total discharge for 1996 measurement
period and the actual evaporation (E) by indexing
rains of different intensity (2, 5 and 10 mm day21)
and by empirically changing the power of the day
index. It must be noted that no water is taken up or
released from the waste over this period. The best
agreement was found to be

E � Epot

d0:2 �1�

whered is the number of days after a 5 mm rain event.
It must be stressed at this point that such fitting is
entirely empirical. Using this empirical correction
approach, the total evaporation for the 1996 data
sets was corrected from 3960 to 2950 m3 and agreed
well with the difference between rainfall and
discharge�58602 2940� 2950 m3�: The agreement
for the 1995 data set was not as good. The evaporation
estimated from rainfall, minus discharge (3490 m3)
was higher than the corrected Penman–Monteith
value (3010 m3).

2.4. Data treatment

Using the data set 29 April to 31 December 1996
(5928 h), the models were calibrated and the para-
meters were optimised. The models were then used
to predict the discharge monitored in the period 1
December 1994 to 7 February 1995 (2125 h). Missing
discharge and conductivity data caused by instrumen-
tation failure or de-scaling, were linearly interpolated.
Such periods did not exceed 10 h and constituted less
than 1% of the data sets. The fit of the modelled to the
measured discharge was assessed both qualitatively
by visual comparison and quantitatively by estimation
of the sum of squares (SSQ).

3. Models and procedures

3.1. Neural networks

Feed-forward back-propagation neural networks
consist of an input, a hidden and an output layer all
containing “nodes”. The numbers of nodes in input
and output layers correspond to the number of input
and output variables of the model. The number of
hidden nodes can be chosen freely; the optimum
number depends on the complexity of the underlying
problem and is to be determined empirically (Hecht-
Nielsen, 1991).

All input nodesj � 1…J; with the input variables
x1…xJ, are connected to all hidden layer nodesc�
1…C by means of adaptable connections, or
“weights”, wjc which can vary between∞ and 2∞.
At hidden nodes, input values and weights are multi-
plied and summed (Eq. (2)). The resultRc is input to a
sigmoid function (Eq. (3)), yielding the hidden node
outputHc

Rc �
XJ
j�0

�wjcxj� �2�

Hc � 1
1 1 e2Rc

�3�

Eq. (2) also uses a “bias” value (x0) to offsetRc. Thex0

value is always 1 and connected to the hidden nodes
via the adaptable weightw0c.

The output nodesl � 1…Loperate in the same way
as the hidden nodes. The hidden node outputs,Hc, are
multiplied by the weightswkl (Eq. (2)), while the
model outputs�Ŷl� are produced in the same way as
in Eq. (3). Because of the use of a sigmoid function
(Eq. (3)),Ŷl ranges between 0 and 1, which means that
output values must be scaled to this domain. In this
study we have only one output variable (drainage at
time t 1 1). The weight matriceswjc andwcl represent
“knowledge” of the neural network. The initially
random weights obtain their final values in an iterative
calibration using the backpropagation algorithm
described by Rummelhart et al. (1986) or a Leven-
berg–Marquardt type optimisation (Marquardt, 1963;
Demuth and Beale, 1992).

Neural networks were implemented in MATLAB
by using the TRAINLM routine of MATLAB’s
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Neural Network Toolbox (Demuth and Beale, 1992).
Default calibration parameters were used but extra
code was added to avoid local minima during neural
network optimisation. In this modelling procedure,
net precipitation (precipitation minus evaporation)
determines the upper boundary condition and drai-
nage (qo) is a time-dependent non-linear function of
the net precipitation. A vectorH t with up to nine
partial sums of net precipitation of consecutive time
intervals betweent and t-4 weeks (see Table 1) was
designed. The lengths of these intervals were chosen
on an empirical basis. Shorter time intervals near time
t were selected to capture the dynamics of the
drainage (intervals 8 and 9 did not increase in length).
The maximum number of nine time intervals was
selected as a compromise between increased accuracy
and computational burden.

Three approaches were used to predictqo,t11 in
order to take the ‘state’ of the system into account.
In Level 1 the neural network determines the relevant
internal state from the net precipitation vector only

qo;t11 � f �Hc� �4�
In Levels 2 and 3, explicit hydrological information
about the landfill was added to the input data. In Level
2 net precipitation history and drainage at timet were
used to findqo,t11

qo;t11 � f �Hc;qo;t� �5�
In Level 3 net precipitation history and storage (W) at

time t were used to findqo,t11

qo;t11 � f �Hc;Wt� �6�
whereWt is a scalar containing the cumulative differ-
ence between net precipitation andqo,t. Hence,W
accounts for the storage of water in the profile;W �
0 at t � 0:

For Level 1, the number of elements in the vector
H t were increased from one to nine, extending the
time period of the data used from one hour to four
weeks. The nine neural network models were each
calibrated 10 times by invoking different initial
weights. Three and six hidden nodes were tested in
these procedures in order to assess the requirements
for the system being tested. The latter was found to
give slightly better results and was used in further
calculations. Levels 2 and 3 were explored in a similar
way as Level 1 by increasing the length of vectorH t

and addingWt or qo,t to the input data.

3.2. Linear storage model

The linear storage approach used in this study is a
simplified version of the “hydrologic catchment
model” of Huwe et al. (1994). The latter had been
adopted from the original work by Blau et al.
(1983). In the linear storage approach, the landfill is
assumed to be a single hydrological entity. The model
assumes the net input (qi, mm h21) to the landfill to be
rainfall (qr, mm h21) minus evaporation (qe, mm h21)
and minus the amount of water needed to bring the
landfill to its full water storage capacity level
(qres$ 0, mm h21)

qi � qr 2 qe 2 qres �7�
A value for the storage capacity, or the amount of
water that can be held by the landfill material against
the gravity is assumed, and the remaining water flows
through the landfill via the matrix and/or the prefer-
ential flow paths.

The amount of water in a 1-m2 column of the land-
fill material (Q, mm) is a function of the difference
between the net amount of water entering the landfill
(qi) and the amount of water leaving the landfill as
drainage (qo, mm h21).

dQ
dt
� qi 2 qo �8�
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Table 1
Length of intervals used for the net precipitation history vectorH t

and the results of Level 1–3 models as a function of the number of
periods in vectorH t. The SSQ values are average sum of squares
based on the successful neural network models

Interval Time intervals (h) SSQ of model results

Begin End Duration Level 1 Level 2 Level 3

1 t t-1 1 35.66 0.21 31.14
2 t-2 t-6 5 33.30 0.19 27.66
3 t-7 t-24 18 26.57 0.18 19.85
4 t-25 t-48 24 22.34 0.32 17.24
5 t-49 t-96 48 15.53 0.24 13.06
6 t-97 t-168 3 days 11.71 0.19 12.03
7 t-167 t-336 1 week 6.45 0.15 5.33
8 t-337 t-504 1 week 7.42 0.14 6.15
9 t-505 t-672 1 week 7.37 0.14 5.56



It is assumed thatqo is proportional toQ

qo � kQ �9�
wherek is a proportionality constant. Now

dqo

dt
� k�qi 2 qo� �10�

Integrating with respect tot gives the following
solution:

qo � qi b 2 e2k�t2t0�c 1 qo�t�0�e
2k�t2t0� �11�

whereqo�t�0� is qo at t � 0:
In accordance with the model developed by Huwe

et al. (1994), preferential flow was invoked. The water
available for discharge was divided into leachate
drainage (matrix flow) and preferential discharge by
a constant parameter. This parameter,f, was fitted by
trial and error. Both discharge components were esti-
mated using Eq. (11). Values of the first order propor-
tionality constants for the leachate drainage (kl) and
fast preferential discharge (kp) were also determined
by trial and error, as were the initial conditions. It was
assumed that below a residual water content (or
storage capacity) of 10%, no water left the landfill.

3.3. HYDRUS5

HYDRUS5 is a mechanistic model without prefer-
ential flow. The combination of Darcy’s equation and
the equation of continuity yields the well-known
Richards equation expressed as:

2u

2t
� 2

2z
K
2h
2z

2 K
� �

�12�

where u is the volumetric water content
(mm3 mm23), h the pressure head (mm),K the
hydraulic conductivity (mm h21), z(mm) a vertical
co-ordinate positive downward andt is time (h).
The initial landfill condition was expressed by a
known pressure head distribution over the vertical
depth of the landfill. The boundary condition at the
top of the landfill was depicted by a known flux
condition, while at the bottom a condition of zero
pressure head gradient was imposed to simulate a
freely draining profile. Initial and boundary condi-
tions applied to the flow through the landfill were
mathematically formulated as:

h�z; t� � hi�z� t � 0 �13�

2k
2h
2z

2 1
� �

� q0�t� z� 0 �14�

2h
2z
� 0 z� L �15�

where hi is the initial pressure head (mm),L the
depth of the bottom of the soil andq0(t) is the
prescribed flux (mm h21) at the surface. Eq. (12),
subject to the above initial and boundary conditions,
was solved numerically using the HYDRUS5 code
(Vogel et al., 1996).

The unsaturated soil hydraulic properties were
described by the following equations (van Genuchten,
1980):

Se�h� � u�h�2 ur

us 2 ur
� 1
�1 1 uahun�m h , 0 �16�

u�h� � us h $ 0 �17�

K�h� � KsS
0:5
e �1 2 �1 2 S1=m

e �m�2 h , 0 �18�

K�h� � Ks h $ 0 �19�
wherea is the inverse of the air-entry value (mm21), n
a pore-size distribution index,Se the effective water
content,m� 1 2 1=n; u r andu s are the residual and
saturated water contents (mm3 mm23), respectively
and Ks is the saturated hydraulic conductivity
(mm h21).

In HYDRUS5, initial estimates ofu r, u s, a andn
were taken from unpublished laboratory desorption
curves of intact MSWI bottom ash samples taken
from the Landfill Lostorf (Buchter, 1997). The values
were ur � 0:14mm3 mm23

; us � 0:42mm3 mm23
;

a � 0:0085 mm21 andn� 1:18: The SUFI program
of Abbaspour et al. (1997) was used to inversely fit the
unknown parametersa , n, u r, u s andKs as well as the
initial pressure head function,hi, as discussed later.
The goal (objective) function was expressed as the
sum of square differences between the 5928 h of
measured and simulated cumulative discharge from
the landfill.

3.4. MACRO, Version 4.0

The program MACRO (Jarvis, 1994) was chosen to
simulate flow through the landfill with a preferential
component. In MACRO, the equation of flow in
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unsaturated soil is also given by Richards’ equation
(Eq. (12)) plus an extra term (̂Sw) in the right hand
side to account for the exchange of water between
macro- and micropore domains. In macropores, a
simplified approach is used, where vertical fluxes
are predicted as gravity driven laminar flows. For
the surface boundary condition, the calculated net
precipitation R in a given time interval is divided
into an amount taken up by the micropores (Imi) and
an excess amount flowing into macropores (Ima):

Imi � R

Ima� 0; R # Imax

�20�

Imi � Imax

Ima� R2 Imi; R . Imax

�21�

whereImax is the infiltration capacity of the micropores

approximated by:

Imax� Dz1�ub1 2 u1�1 Dtqout�1� �22�

where the subscript 1 refers to the surface soil layer
andqout(1) is the water flow rate out of the first layer.
The subscript b refers to the conditions at the bound-
ary between soil matrix and preferential flow region
(Jarvis, 1994). As in the HYDRUS5, the initial
condition was furnished by a known pressure head
distribution to be discussed later.

In the macropores, gravity flow of water is assumed
and hence pressure headh is not needed, while in the
micropores retention and flow curves for a two-
domain case are of the types given by Brooks and
Corey (1964) and Mualem (1976), respectively,
expressed as:

hmi � hbS21=l
mi �23�
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Fig. 1. Comparison of: (a) measured and predicted drainage patterns (thick line); and (b) cumulative discharge for the 8-interval Level 1 neural
network model for the 1996 calibration data set.



Kmi � KbSn1212=l
mi �24�

Kma� Ks�ma�S
np

ma �25�
wherehb is the air entry pressure, assumed to be iden-
tical with the pressure head (mm) at the boundary of
micro- and macropores,l the pore size distribution
index in the micropores,Kb the hydraulic conductivity
at the boundary between macro- and micropores,n the
tortuosity factor in the micropores andnp an empirical
exponent accounting for pore size distribution in the
macropores.Smi andSmaare the effective saturations in
micro- and macropores, respectively, given by:

Smi � umi 2 ur

ub 2 ur
�26�

and

Sma� uma

ema
�27�

whereema is the macroporosity.
The landfill in MACRO was divided into 10 layers

(0–20, 20–40, 40–60, 60–100, 100–200, 200–300,
300–400, 400–500, 500–550 and 550–600 cm). The
values of the parametersu s andu r were adopted from
the results of the HYDRUS5 fitting procedure. The
parametersu i, ub, Kb, l , n and np were fitted with
the program SUFI as described above for HYDRUS5.
The values of these parameters in the different layers
were allowed to vary in three groups comprising the
top three layers, the middle three layers and the four
bottom layers. This grouping was based on the
observed heterogeneity in the landfill profile. Other-
wise, the parameters were assumed to be the same in
all layers. Initial values were adopted from the

MACRO manual (Jarvis, 1994) assuming physical
properties of a medium-grained soil, as were para-
meters that are not specifically mentioned here.
Shrinkage was not considered.

4. Results and discussions

4.1. Neural network simulations

Results for the 8-interval model calibration using
the Level 1 approach of the 1996 data set are shown in
Fig. 1a and b together with field values. The agree-
ment between model results and field data improves
with an increasing number of time intervals. The SSQ
is 33.3 with two time intervals (6 h of history) and
decreases linearly for interval 7 to a value of 6.45
(two weeks of history, Table 2). Adding intervals 8
and 9 (3 and 4 weeks of history) does not significantly
improve the prediction of drainage. The 8-interval
model time series predicts the total discharge over
the modelled time period well and shows the rapid
responses to rain events, though predicted values did
not become as smooth as the measured drainage. The
agreement between the predicted and measured
cumulative water volume is excellent. Oscillations
in predicted discharge were observed for the 2- and
4- interval data set (not shown). These were caused by
the daily evaporation pattern included inH t when
there is little or no measured precipitation. Sometimes
increases in drainage were simulated where none were
measured.

For Level 2, the drainage rate at timet was added to
the input data as explicit information about the inter-
nal state of the system. The neural network models
with measured drainage rates improved SSQ by a
factor of 50–100 in comparison with Level 1 (Table
1). The measured and predicted time series became
almost indistinguishable (not shown). The indepen-
dence of SSQ on the number of intervals indicates
that the history of rainfall is insignificant in compar-
ison to the drainage at timet. It should, however, be
noted that when the previously predicted drainage is
used to predict the next time step, the fit is poor. The
SSQ ranges from 400 to 110,000. This can be
explained by positive feedback. It may be concluded
that models of Level 2 are unreliable to simulate
drainage patterns, though they could still be useful
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Table 2
The results of statistical comparisons between measured and
predicted discharge

Model Calibration SSQ Validation SSQ

Neural network
model 8-interval,
Level 1

7.42 15.1

Linear storage
model

40.4 (29.4.96–31.8.96)
7.2 (1.9.96–31.12.96)

8.2

HYDRUS5 27.6 32.1
MACRO 10.1 41.1



to assimilate measured drainage data for real-time
application.

Level 3 tries to solve some of the positive feedback
problems of Level 2 by using storage of water in the
profile as a negative feedback. If the neural network
models of Level 3 would somehow over predict
drainage, this would lead to a decrease in simulated
stored water that in turn would immediately lead to a
decrease in the simulated drainage at the next time
step. Table 2 shows that the results of the Level 3
models are very similar to those of the Level 1
models. Values of SSQ decrease when more net preci-
pitation history is used. Storage history (similar to the
precipitation history) could further improve the
usability of Level 3 beyond that of Level 1. In our
analyses, we noted that Level 3 models provided a
relatively good description of drainage in the autumn
period, but sometimes poorly predicted outflow in

summer (not shown). The Level 1 approach is simple
and its use justifiable.

The model results of the 1995 test data set using the
parameters determined from the 8-interval Level 1
model calibration of the 1996 data are shown in Fig.
2a. The fit is quite good (SSQ� 15.1) (Table 2). The
most important features of the discharge have been
modelled, though the model data is not as smooth as
the measured data. Also, there is an over-prediction of
the total volume of water discharged of approximately
18% (Fig. 2b).

4.2. Linear storage simulations

Modelled total discharge is compared to measured
discharge for the 1996 data set in Fig. 3a and b. The
best fit was obtained with values ofkp � 0:02 h21

; kl �
0:0012 h21 andf � 0:6: Parameterkp was fitted on the
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Fig. 2. Comparison of: (a) measured and predicted drainage patterns (thick line); and (b) cumulative discharge for the 8-interval Level 1 model
neural network model for the 1995 test data set.



recession curve of the discharge response to an average
event (with a discharge peak of approx. 0.4 mm h21)
since it had earlier been found thatkp is proportional
to the maximum discharge associated with a rain
event (Johnson et al., 1998). Thus, using an average
value ofkp there is a tendency to overestimate small
rain events and underestimate large ones. A value ofkl

was obtained from discharge recession curves during
periods unaffected by rain events. The 1996 data set
was divided into two subsets, 29 April to 31 August
1996 and 1 September to 31 December 1996 and the
model calculations carried out with the above-
mentioned parameters. This was done because, as can
be seen from Fig. 3c and d, the discharge was over-
predicted for the summer data subset (SSQ� 40.4)
(Table 2) but gave a very good fit for the second data
subset (SSQ� 7.2). The reason for the difference in fit
between the two subsets is most probably due to
problems in dealing with water retention. This simple
model assumes that the bottom ash has a given retention
capacity. No water leaves the landfill before this given
value has been achieved and from that point on the land-
fill “reservoir” is full. This approach is clearly not
adequate for fully describing water flow, particularly
in dry summer months

The fit of the 1995 test data set (Fig. 4a) using the
parameters fitted for the 1996 data set was good
(SSQ� 8.2) and was comparable to the 1996 winter
data subset. The cumulative discharge was over-
estimated by 18% (Fig. 4b).

4.3. Simulations with HYDRUS5

It is important to initially emphasise that the simu-
lations with the mechanistic models in this study were
conducted with the minimum of required information.
The initial pressure headhi, as well as the parameters
a , n, u r, u s and Ks were first fitted on the measured
cumulative discharge assuming a uniform distribution
of the initial pressure head in the landfill. This simula-
tion led to a very smooth outflow response, not resem-
bling the measurements.

At the beginning of the simulation period in April
1996 the landfill was in a very dry state. In order to
obtain values for the initial water content, estimates
were made using the parameters obtained by the
initial fitting. The flow 3000 h beyond the end of the
simulation period was modelled without rainfall until
the discharge rates were equal to the measured
discharge at the beginning of the simulation period

C.A. Johnson et al. / Journal of Hydrology 243 (2001) 55–7264

Fig. 3. Comparison of measured and predicted drainage patterns (thick line) using the linear storage model for: (a) 28.4.96–31.8.96; (b) for
1.9.96–31.12.96; (c) cumulative discharge for the former period; and (d) cumulative discharge for the latter period.



in April. Using the pressure head values at this stage
as the initial values, the inverse estimation of the
hydraulic parameters was once again performed.
The results of simulations were greatly enhanced by
the new non-uniform-initial-pressure-head data. Fig.
5a shows the measured and simulated hourly
discharge as a function of time, while Fig. 5b illus-
trates the measured and simulated cumulative
discharge. Although there are major differences in
the hourly discharge rates of measured and simulated
data (SSQ� 27.6) (Table 2), the cumulative values
are rather closely matched. The estimated values of
the parameters werea � 0:013 mm21

; n� 1:11; ur �
0:15 mm3 mm23

; us � 0:28 mm3 mm23
; and Ks �

290 mm h21
:

Parameters obtained by fitting the 1996 discharge
data were tested by predicting the hourly discharge

rates measured in 1995 (Fig. 6a). Again, the simulation
smoothes the hourly observed fluctuation, indicating
that a fast flow component is missing in the model.
The agreement between modelled and measured
discharge is fair (SSQ� 32.1). The discrepancy in the
hourly discharge rates indicates the possibility of a fast
flow component conducted by preferential flow paths.

4.4. Simulations with MACRO

Simulation with MACRO required knowledge of
the parametersu i, u s, Kb, l , n and np used in Eqs.
(20)–(27). Before inversely fitting the parameters,
and using parameters based on literature values the
simulation with macro was very poor. After fitting
the parameters we obtained the following average
values: ui � 0:24 mm3 mm23

; us � 0:28 mm3 mm;
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Fig. 4. Comparison of: (a) measured and predicted drainage patterns (thick line); and (b) cumulative discharge for the linear storage model for
the 1995 test data set.



Kb � 0:4 mm h21
; l � 0:36; n� 0:086 and np �

2:56 and a excellent agreement between simulated
and measured discharges (Fig. 7a, SSQ� 10.1). The
response to the net rainfall of the modelled discharge
is good, though there is a slight over-response to rain
events. The baseline flow, observed best during dry
periods, is slightly high and may be the cause of the
delayed response to the onset of rain after 4000 h.
Nevertheless, the modelled cumulative discharge is
in good agreement with the measured value (Fig. 7b).

The visual agreement between modelled and
measured discharge data is very good for the 1995
test data set (Fig. 8a), though the SSQ is 41.1. The
baseline flow of the model is close to but often lower
than the measured data and there is a discrepancy
between modelled and measured peak discharges.
This leads to an underestimation of cumulative
discharge by almost 15% (Fig. 8b). A reason for the

poor validation result may be that the parameters
obtained by inverse modelling may have been too
conditioned on the calibration data set, and not
widely applicable to other years with different
climatic conditions.

4.5. Preferential flow modelling

Fig. 9 illustrates components of the total discharge
for the 1995 test data set. Two components are
assumed to make up the total discharge: flow through
preferential paths and flow through the matrix
(leachate discharge). The relatively fast preferential
flow passes through the landfill without much contact
with the waste material; hence, the discharge water
has almost the same electrical conductivity as the
rainwater. In contrast, the flow through the matrix
becomes in intimate and prolonged contact with the
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Fig. 5. Comparison of: (a) measured and predicted drainage patterns (thick line); and (b) cumulative discharge for the HYDRUS5 model for the
1996 calibration data set.



waste material, dissolved salts, and contaminants. Fig.
9a shows the total measured discharge and the
leachate component of flow estimated using electrical
conductivity. As noted in Johnson et al. (1998), the
leachate component of flow appears to increase during
rain events as might be caused by a washout or a
piston-flow effect. The empirical linear storage
model and the mechanistic model MACRO both
predicted a peak-discharge response to the rain events
quite well. However, the leachate discharge compo-
nent of both models appeared to be much smoother
than that estimated from tracer studies using electrical
conductivity, though the linear storage model does
show a slight increase in leachate discharge, in
keeping with the conductivity results, in response to
a rainfall.

It should be noted, however, that electrical conduc-
tivity probably underestimates leachate discharge in

conditions where the water content of the MSWI
bottom ash is high (Johnson et al., 1998). The results
of tracer studies comparing electrical conductivity
and 18O/16O indicate that preferential flow is over-
estimated by electrical conductivity in winter months.
Under such conditions, a clear distinction between
leachate drainage and preferential flow becomes
difficult. Nevertheless, it is clear that neither of the
models exactly reflects the field data.

The use of electrical conductivity in the fitting
procedure may nevertheless be of value. Since many
contaminant concentrations are directly proportional
to electrical conductivity, such a procedure would
enable the modeller to quantify the contaminant
leaching process. For illustration a comparison is
made between cumulative leachate discharge esti-
mated from electrical conductivity and an estimate
based on the assumption that leachate discharge is
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Fig. 6. Comparison of: (a) measured and predicted drainage (thick line) patterns; and (b) cumulative discharge for the HYDRUS5 model for the
1995 test data set.



constant and approximately equal to the total
discharge under dry conditions. The latter is approxi-
mately three to four times smaller and would lead to a
significant underestimation of the leaching process. It
is therefore important to determine, as closely as
possible, the contribution of leachate discharge to
the total discharge.

4.6. Model comparison

The comparison of empirical and deterministic
approaches to modelling landfill drainage has shown
that the empirical approaches can give better fits
(Table 2), though it is unlikely that the models devel-
oped in this paper can be applied directly to other
sites. The neural network approach is a flexible tech-
nique that may be adapted as a data-assimilation or
predictive tool. Problems may arise, however, due to
the non-linearity of the landfill system, whereby a

certain internal state in the landfill (i.e. the water
content) can produce different rates of discharge for
similar rain events. This is certainly the case for the
linear storage model. While the interpretation of the
winter 1996 data set and the prediction of the winter
1995 data set are both good, interpretation of the
summer 1996 data set is poor because, with the
same parameter values, the rate of discharge is over-
estimated. The changing water content of the landfill
body appears to cause problems for both these empiri-
cal approaches, though the neural network approach
has a greater development potential.

The relatively poor fit of HYDRUS5, the determi-
nistic model without preferential flow, shows that
indeed a portion of the flow is conducted through
preferential paths and that it must be taken into
account. An interesting observation here is that
inverse parameter fitting could not be of a substitute
for the accounting of an important hydrological
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Fig. 7. Comparison of: (a) measured and predicted drainage patterns (thick line); and (b) cumulative discharge for MACRO model for the 1996
calibration data set.



process, as it is often believed to be. Although the
quantity of flow passing through preferential paths
may not be important to the long-term water balance
of a landfill, it appears to play a significant role for the
adequate prediction of instantaneous flow and for
the chemical loading of the water. However, taking
account of preferential flow increases the number
of unknown parameters pertaining to the physical
properties of the landfilled material. It has become
generally accepted that such data must be fitted.
Fitting greatly improved the results in our case, but
it also means that, because of the possibility of covar-
iance, the values of the individual parameters have no
physical meaning in themselves when fitted in this
way and should not be assessed individually. Further,
the mechanistic models would greatly benefit from
improved monitoring procedures. Knowledge of the
initial and boundary conditions, pressure head or

water content data from the landfill profile as a func-
tion of time could be profitably used for long-term
prediction purposes.

Since most questions relating to landfill leachate
are related to chemical loading, an assessment of
preferential flow using a suitable tracer would be an
important step forward, whether an empirical or
mechanistic approach is employed. It is not possible
to exclude one approach in favour of another. The
choice of approach depends on the type of answer
sought and should be chosen with care. Finally, it is
realised that prediction of drainage discharge is only
an intermediate step in the analysis of a landfill. The
important end result is the prediction of chemical
transport mobilised in the ash formation of the land-
fill. Since the relationship between discharge and the
chemical load that it carries is not straightforward due
to different flow pathways and, hence, the different
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Fig. 8. Comparison of: (a) measured and predicted drainage patterns (thick line); and (b) cumulative discharge for the MACRO model for the
1995 test data set.



residence time of the water within the landfill, direct
projection of the drainage results to the transport is
not possible. A model producing good drainage
discharge results based on calibration of hydraulic
or other model parameters may not necessarily
produce a good prediction of the chemical load in
the drainage water. For this reason our description
of the performance of the models as good or poor
must be understood within the context of this paper
which was to simulate the dynamics of the drainage

discharge. Analysis of the chemical transport will be
discussed in a separate work.

5. Conclusions

In this article, we tested the ability of a neural
network model, a hydrological linear storage
model, and two mechanistic models with and with-
out preferential flow to simulate hourly discharge
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Fig. 9. Comparison of (a) measured total discharge and leachate drainage (matrix flow) with (b) modelled total discharge and leachate drainage
using the linear storage and (c) modelled total discharge and leachate drainage using the MACRO model for the 1995 test data set.



patterns of a landfill near Buchs, Switzerland. We
found after calibration, the discharge predicted by
the functional models to match more closely the
discharge behaviour of the landfill. The linear
storage mode, however, could not cope with the
non-linearity of the system that was caused by
seasonal changes in water content of the bottom
ash material. The fit of the neural networks
model to the data improved with increasing prior
information but was less smooth than the measured
data. The program HYDRUS5 could not capture all
the dynamics of the discharge from the landfill due
what is believed to be a preferential component,
but MACRO which includes a preferential compo-
nent, performed much better. The model MACRO,
however, produced the worst validation results indi-
cating that the parameters obtained by inverse
modelling may have been too conditioned on the
calibration data set and not widely applicable to
other years with different climatic conditions.
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