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Abstract

A counterpropagation fuzzy-neural network (CFNN) is the fusion of a neural network and fuzzy arithmetic. It can auto-
matically generate the rules used for clustering the input data. No parameter input is needed, because the parameters are
systematically estimated by the approach of converging to an optimal solution. The advantages of the CFNN include the ability
to cluster, learn, and construct, and the model presented herein is used to develop a hydrological model. The CFNN can
automatically construct a rainfall-runoff model to forecast streamflow. The available streamflow and precipitation data of the
upstream of the Da-cha River, in central Taiwan, is used to evaluate the CFNN rainfall-runoff model. A comparison of the
results obtained by the CFNN model and ARMAX indicate the superiority and reliability of the CFNN rainfall-runoff model.
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1. Introduction

Real time streamflow estimation is always a bench-
mark problem of hydrologists and water resource
engineers, and has received a prominent focus for
many decades. One of the difficult tasks of reservoir
operation is inflow forecasting for preventing dam
failure. Thus, accurate streamflow forecasting is
extremely important for on-line reservoir operation.
Some sophisticated hydrological models, such as
deterministic catchment model (Kraijenhoff and
Moll, 1986) and geomorphologic instantaneous unit
hydrograph (GIUH) model (Rodriguez-Iturbe and
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Valdes, 1979), for describing the rainfall-runoff
process are usually very complicated. And a great
deal of work, such as field surveying and parameter
estimation, should be done before such models can be
applied. Obviously, such models show a lack of prac-
ticality and are very difficult to use for real time
streamflow forecasting in Taiwan, whose characteris-
tics of watersheds are erodible soils, high mountains,
steep slopes, subtropical climate, and heavy rainfall
during typhoons.

Neural networks and fuzzy systems are created to
simulate the nervous system and brain activity. The
notion of fuzzy sets was first introduced by Zadeh
(Zadeh, 1965) to represent vagueness in linguistics by
amathematical way. Recently, a rapid growth in the use
of fuzzy sets in hydrological modeling, such as rainfall
forecasting (Yu and Chen, 2000), groundwater
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Fig. 1. Structure of the forward-only CPN.

simulation (Dou et al., 1999; Schulz and Huwe, 1997),
and drought analysis (Pongracz et al., 1999; Pesti et
al., 1996). The prototype of a neural network was first
proposed by McCulloch and Pitts (McCulloch and
Pitts, 1943). Hebb designed the first learning law for
neural networks (Hebb, 1949). After that, a number of
neural networks, such as the backpropagation neural
network (Rumelhart et al., 1986) and fuzzy-neural
network (Nie and Linkens, 1994), were developed to
solve a wide variety of problems. Mathematically,
neural networks are information processes systems
to model the brain as a parallel computation. Neural
network is composed of a large number of intercon-
nected processing units (nodes), arranged in an input
layer, an output layer, and one or more hidden layers.
Each layer consists of several nodes. The input layer
contacts with the outside environment, the hidden
layer transforms the input or hidden layers to a hidden
layer by a nonlinear function, and the output layer is
the response of the network. Fig. 1 shows a 3-layer
feedforward neural network with n input, p hidden,

and m output nodes. The principal advantage of neural
networks is their adaptive nature, which learns from
the historical data to automatically adjust parameters,
in dealing with nonlinear problems. A physical model
is not needed when neural networks and fuzzy
systems are applied. They estimate functions from
training data and then construct numerical estimators
that can be applied to deal with streamflow prediction
(Chang and Suen, 1997; Shamseldin, 1997; Chang
and Hwang, 1999; Sajikumar and Thandaveswara,
1999, etc.), rainfall estimation (Kuligowski and
Barros, 1998; Zhang et al., 1997), and groundwater
modeling (Yang et al., 1997). In this study, a counter-
propagation fuzzy-neural networks (CFNN), which
couples neural network and fuzzy systems is used to
develop a rainfall-runoff model for streamflow fore-
casting during typhoon. The CFNN is, furthermore,
compared with a traditional stochastic forecasting
model, autoregressive moving average with exogen-
ous variable (ARMAX) model, for showing its
impression of performances.
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2. Forward-only counterpropagation network
structure

The counterpropagation network (CPN), which was
first introduced by Hecht-Nielsen (Hecht-Nielsen,
1987a,b, 1988), is of two types, full and forward-
only. The CPN was developed to provide an efficient
method for approximating a function y = f(x). The
full CPN works best only when inverse function f '
exists. To avoid this effort, the forward-only CPN was
designed to approximate y = f(x) when f ~!is not
necessarily needed. The forward-only CPN is adopted
to develop the CFNN. The architecture of the
forward-only CPN, shown in Fig. 1, shows the infor-
mation flows in the feedforward direction only. The
forward-only CPN consists of three layers: input,
hidden (Kohonen), and Grossberg layers. The input
layer with n nodes stores the input values, the Koho-
nen layer with p nodes clusters the input values with a
similarity measurement, and the Grossberg layer with
m nodes calculates the output by summing the
weighted Kohonen layer outputs.

The forward-only CPN has a hybrid learning
scheme. The learning of CPN can be split into two
stages, unsupervised and supervised. During the
learning processes, the weights (or parameters) of
the neural network will be adjusted automatically. In
supervised learning, each input pattern is associated
with a specifically correct target pattern. On the other
hand, unsupervised learning involves no critic to over-
see the learning process. Unsupervised learning is
used during the first stage for clustering the input
vectors to separate distinct sets of input data. During
the second stage of learning, the weight vectors
between the Kohonen and Grossberg layers are
adjusted by supervised learning to reduce the errors
between the CPN outputs and the corresponding
desired targets.

During the first stage, the distances between the
input vector x = ()cl,...,)cl-,...,xn)T composed of n
input nodes and all of the p Kohonen nodes with n
dimensions are determined to compete for the winner.
The winning node z; has the weight vector w; =
Wijs - Wi ...,w,y-)T closest to the input vector. The
winner-take-all operation that permits only the hidden
node being the most similar to the input vector to be
active at a time is implemented here to train the
weight vectors from input layer to Kohonen layer.

The winner’s weight vector is updated according to
(Rumelhart and Zipser, 1985)

(D

a(x; — w;) winning node,
0 otherwise,

where « is the learning rate subject to a > 0, x; is the
ith node of input vector, and wy; is the weight of the ith
input node to the winning node j. The competitive
signal, which is a binary variable assuming value 1
for the winner node presented and value O for the
winner node absented, sent from the winning node
to the Grossberg layer is 1, and the competitive signals
sent by the other Kohonen nodes are 0s’.

After the weight vectors from the input layer to the
Kohonen layer have been determined, the weight
vectors between the Kohonen layer and the Grossberg
layer are trained by

Amy = Z,B(y — my) 2

in which Z; is the competitive signal, 8 the learning
rate, yi the target, and 7 is the weight from Kohonen
node j to Grossberg node k. The output node k is given
by

P
%= mZ 3)
=1

where y;, is the kth computed output.

The CPN can compress the n input data to p sets
where in general p < n. It classifies the similar input
vectors as a single output cluster to build a look-up
table. Compared to other neural networks, the learn-
ing speed of CPN is extremely fast due to the simple
network topology and the efficient learning algorithm.
After the CPN is trained, all of the weights will be
kept fixing. Only input data is needed for the model to
operate when the CPN is used for predicting.

3. Fuzzy arithmetic

Fuzzy arithmetic provides a good approach to deal-
ing with ambiguity and uncertainty. It is a structured
numerical estimator and has successfully attracted a
growing interest in applications. Fuzzy arithmetic
combines rule base and fuzzy control to describe
complex nonlinear processes. The rule base is the
collection of rules. A rule contains two statements,
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Fig. 2. A rule base of reservoir operation.

>the premise and the conclusion. It is a logical impli-
cation: IF premise THEN conclusion. For example,
Fig. 2 shows the rule base of a reservoir operation.
H, O, and O are gage height, inflow and outflow,
respectively. The entry at the center of the rule base
defines the reservoir operation rule: ‘IF H= 165 and
Q0 =100 THEN O =90.” The rule base of reservoir
operation is composed of nine rules (3 different H
times 3 different Q).

Classical logic theory can only represent one color in
back and white (likes binary number 0 and 1). This logic
does not accord well in gray (likes binary system
containing no other number except O and 1). Fuzzy
logic, which can be used to represent vague concepts
lets elements be represented by degrees of membership.
The degree of membership is a positive real number in

the interval [0,1]. A membership function assigns a
degree of membership to an element and can be any
shape. Using the centroid defuzzification method to
map the crisp output from a space of fuzzy control
actions, the fuzzy control output can be determined as
follows:

IF x is M' THEN y/ 4)

D> M (x)y
Yy = i=1

S (5)
D> M)
i=1

in which Y is the fuzzy control output, M’ i(x) the degree
of membership of the ith rule, x the input, y’ the output of
the ith rule, and n is the number of rule. The fuzzy
control is suggested to reduce error when arule is chosen
(Nie, 1989). Fig. 3 shows how the membership function
works. It illustrates an example of the reservoir opera-
tion according to gage high only. When H = 167, the
degrees of membership, M l(H), M 2(H), and M 3(H) are 0,
1/3, and 2/3, respectively. The fuzzy control output of
reservoir operation (outflow) becomes (0 X 80 +
(1/3)100 + (2/3)120)/(0 + (1/3) + (2/3)) = (340/3).

4. The counterpropagation fuzzy-neural network
model

The CFNN is the fusion of CPN and fuzzy arith-
metic. A similar type of network was first proposed by
Nie (1993), who further investigated its adapting,

—— Membership function 1
— — Membership function 2
— - Membership function 3
1.00
S
= 067 A
0.33
0.00 Y
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Fig. 3. Membership function graphs of reservoir operation.
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Fig. 4. A schematic diagram of 2-3-1 CPN.

learning, and reasoning capabilities and applied to a
problem of multivariable control of blood pressure
(Nie and Linkens, 1994). Two modifications have
been made to aim at constructing a rainfall-runoff
model. First, the type of membership function is chan-
ged from triangular to Gaussian function, so that the
matching process could be more flexible and the
weighted averaging for the fuzzy output would be
more reasonable. The Gaussian function is a localized
function with the property of z(x) = exp(—|x —
w|[*/24%) — 0 as |x — w| — oo. Its membership degree
symmetrically and sharply decreases as the difference
between the x and the node centroid w increases, but
the membership degree is always larger than 0.
Second, A the tolerant interval, using in the original
model is a constant that would be gradually amplified
as the input data cannot be clustered into any rule
during the model’s application stage. This improves
the model performance, especially for those unusual
cases.

The CFNN can be split into two stages, training and
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Fig. 6. CENN learning model.

application. During the first stage, the CPN is used to
build the rule base. The fuzzy arithmetic is introduced
in the second stage to improve the performances. Fig.
1 also shows the architecture of the CFNN. Each
Kohonen node represents a rule. The connections of
input and Kohonen layers, w, represent the ‘IF’ state-
ment of a rule. The connection between Kohonen and
Grossberg layers is 7 that is, the ‘THEN’ part of a

i A

WJ

Fig. 5. Gaussian membership function.
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rule. Thus the statement of each rule is defined as: IF x
is w THEN y is 7 (Weigend et al., 1991). A 2-3-1
CPN is shown in Fig. 4. The simple network includes
three rules. The inputs of the network are gage height
and inflow; the only output of the network is outflow.
Consider Rule 3, that is: ‘IF H=168 and Q = 125
THEN O =120

A Gaussian function shown in Fig. 5 is used to
represent the degree of membership (Donald et al.,
1996). The function is defined as

c 2
- (x; — W[j)
=1

M (x) = exp i PE (6)

where w; = mean (center of rule j); A* = variance
(width square of rule j); and n = number of input
variables (x;).

Fig. 6 summarizes the training processes of the
CFNN. The A is selected before the training of the
model. The center of the first rule is the first input.
After the first rule is built, the distances between input
data and the center of each rule have to be determined
as

n (172)
D; = [Z (W — x»z] (7
i=1

where D; = the distance between input data and rule.
The minimum distance between input data and rules is
given by

Dy, = min D; 8)

j=lp -

where D, = the minimum distance between input
data and z;. If Dy, is smaller than A, the center of
rule, w; and 7 has to be updated as

Wit = wi + alx, — wi] 9)

™ =1 + By, — ] (10)

where a and B are learning rates within the interval
[0,1]. If Dy, > A a new rule will be created and
wi " =Xx;, m; " = Y. The learning rates usually will
be reduced after the entire training data is presented.
The training processes will be iterated until the
number of rule is stable.

The CFNN can be applied after training. The appli-
cation procedure for the CFNN is shown in Fig. 7 and
can be summarized as follows:Step 1: Initialize
weights that are trained during the training stage.Step
2: Present input vector x.Step 3: Compute the
distances between input x and rules. Eq. (7) is used
to represent the distances.Step 4: Determine relative

distance, d;, which is given by

D;\?
4=(%) an

Step 5: Determine matching degree of rule j that is
defined as follows:

S; = exp(—d;) (12)

Step 6: Find the rule that is closest to the input vector
x. The input x can not be clustered, if the sum of
matching degree is less than a selected value, i.e.
1073 in our case. In such a condition, A will be
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Fig. 8. Locations of study watershed and gage stations.

automatically expanded. Repeat Steps 4 to 6 until the
input x can be clustered.Step 7: Compute activation.
The fuzzy output is deduced by the weighted aver-
aging, defined as

13)

5. ARMAX model

The autoregressive moving average with exogen-
ous variable (ARMAX) model (Yang et al., 1996)
for one-hour ahead flood forecasting is used as a
basis for comparison with CFNN. A general input—
output system of ARMAX can be written as follows:

A(g)y(1) = B(q)u(t) + C(g)e(?) (14)

where y(¢) is flood at time #; u(f) is exogenous rainfall
input at time ¢; e(¢) is white noise at time t; A(gq), B(q)

and, C(g) are parameters of autoregressive, exogen-
ous, and moving average parts as the following form:

AQ=1+aq '+ +aq" (15)
Bl@)=b, + by '+ +b,g """ (16)
C@o=1+cqg '+ +eq’ (17)

where c[l is back-shift operator; n, m, and r are the
order of autoregressive; exogenous; and moving aver-
age.

6. Application of the CFNN

The above methodology is applied to the upstream
of the Da-Cha River for predicting real time stream-
flow. The Da-Cha River is located in central Taiwan
with a total catchment size of 1236 km?. The length of
the Da-Cha River is about 140 km and the average
channel slope is 1/39. It is the steepest channel in
Taiwan. A series of hydraulic structures were
constructed to generate power. Locations of the
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Fig. 9. CENN structure for real time streamflow forecasting.

studied basin (area = 514 km?) and used gage stations
are shown in Fig. 8. A station for the streamflow data
is denoted by a triangle and the precipitation stations
by circles. Son-Mou gage station was established to
measure the inflow of the De-Chi Reservoir, the
upmost and pivotal reservoir in the Da-Cha River.
Accurate streamflow forecasting is extremely impor-
tant for the operation of the De-Chi Reservoir. The
streamflow (m3/s) and precipitation (mm/h) data used
here are gathered from Taiwan Power Company.

A CFNN model is established to model real time
streamflow prediction and is shown in Fig. 9. Qs
stands for the streamflow of Son-Mou, and Pc, Pp,
Pm, and Ps for precipitation of Chi-Chia-Yan, Pen-
Yuan-Shan, Men-Shan, and Son-Fon, respectively.
The subscripts -2, -1, t, and ¢ + 1 represent two-
hour-before, one-hour-before, present time, and one-

hour-ahead, respectively. The input layer has three
nodes representing the streamflow at Son-Mou,
and 12 nodes for the precipitation of the other
four rain gage stations. Only one node in the
Grossberg layer represents the one-hour-ahead
forecasting streamflow of the Da-Cha River at
Son-Mou station. The initial number of rules is
zero and will be automatically generated to
describe the complex hydrological processes. The
performances of CFNN and ARMAX are evalu-
ated and compared by the normalized root-mean-

square error (NRMSE), mean absolute error
(MAE), and relative mean absolute error
(RMAE) as

172
NRMSE = — [ Z(Q, Q,] (18)
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Table 1
Number of training data set and number of rule generated for
constructing models

Year Cumulative Cumulative
number of training number of
data sets rules

1983-1989 3183 1058

1990 4315 1497

1991 4894 1577

1992 5768 1899

1993 6624 2069

1994 7560 2366

1995 8590 2534

1 T
MAE = — > [0; - Qi (19)
i=1
MAE
0

in which o =standard deviation of measured

streamflow; Q; = measured streamflow; Q;=

forecasted streamflow; Q = mean of measured

streamflow; and 7 =total number of measured
streamflow. NRMSE indicates the closeness of
the forecasted streamflow to observed streamflow.
MAE and RMAE (Maidment, 1992) to represent
the prediction error. This implies perfect matching
when MAE =0 or RMAE = 0.

The streamflow is forecasted under the conditions
that any two of four hours and any three of four rain
gage stations have precipitation records. The forecast-
ing process is terminated when all of the rain gage
stations continue having no precipitation record for
12 h. The initial learning rate o« is 1/2. The a is

Table 2
Summary of the result of the CFNN and ARMAX

13.0

12.0 A

MAE

11.5 4

11.0

100 200 300 400 500 600 700 800 900 1000
A

Fig. 10. Effect of A on MAE for the rainfall-runoff model.

replaced with a harmonic series, 1/( + 1), until the
number of rules stabilizes. In this study, 8 is not
adjusted and is always 1/2. The available data sets
from 1986 to 1989 are used for establishing the candi-
date models. Each set consists of 15 data. Nineteen
values of A, which is updated from the initial value
100 with increments of 50 until 1000 are used to
construct the model. The flood data between June
and September 1990 (heavy rainfall season) is used
to determine the best A for model construction Fig. 10
shown that A =250 has the minimum MAE. Thus
A =250 is selected for constructing the rainfall-
runoff models and it will be fixed for the forecasting.

After A is determined, the streamflow data from
1990 to 1996 is used for verifying the streamflow
prediction of model. Owing to the new collected
data, the model is updated every year. Table 1
presents the number of training data and the number
of rules or hidden nodes generated for constructing
models. The training data of every year includes the
training data of this year and previous years. The new

Year 0 (m%/s) 0 (m%/s) NRMSE MAE (m%/s) RMAE
CFENN ARMAX CFNN ARMAX CFNN ARMAX CFNN ARMAX

1990 155.2 159.0 153.1 0.09 0.17 7.09 15.78 0.05 0.12
1991 23.0 242 24.6 0.11 0.28 1.38 3.27 0.06 0.17
1992 115.1 119.1 114.7 0.07 0.20 4.05 11.37 0.03 0.12
1993 48.1 49.9 49.0 0.09 0.20 1.46 5.27 0.03 0.12
1994 110.5 114.5 111.1 0.13 0.19 6.80 12.41 0.06 0.14
1995 345 35.6 35.8 0.14 0.31 1.40 434 0.04 0.14
1996 74.4 774 75.2 0.11 0.14 3.81 741 0.05 0.12
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Table 3
Results of underestimated streamflow

Year Events Events underestimated Percentage of
events

underestimated

CFNN ARMAX CFNN ARMAX
1990 842 33 137 3.92 16.27
1991 370 21 40 5.68 10.82
1992 646 14 118 2.17 18.27
1993 590 14 70 2.37 11.86
1994 693 37 106 5.34 15.30
1995 725 16 98 2.21 13.52
1996 692 24 104 3.47 15.03

incoming data sometimes cannot be clustered into any
rule; then a new rule is generated. Thus, the number of
rules increases with the number of training data. A
rule base with enough rules could accurately cluster
the input data. The CFNN and ARMAX are applied
for the prediction of streamflow. Table 2 gives the
comparative results of two models. Apparently, the
CFNN has better performance than the ARMAX in
terms of smaller NRMSE, MAE, and RMAE. The
results of the streamflow underestimated and overes-
timated are shown in Tables 3 and 4, respectively. The
definitions of underestimation and overestimation are
that the differences between the forecasted and
observed streamflows are more than 10 and 5%,
respectively. These results show the CFNN can
predict streamflow more accurate than the ARMAX
and reveal that the CFNN can be used to forecast one-
hour-ahead streamflow. To provide a impression of

Table 4
Results of overestimated streamflow

Year Events Events overestimated Percentage of
events

overestimated

CFNN ARMAX CFNN  ARMAX

1990 842 34 92 4.04 10.93
1991 370 18 52 4.86 14.05
1992 646 24 61 3.72 9.44
1993 590 15 85 2.54 14.41
1994 693 29 96 4.18 13.85
1995 725 21 87 2.90 12.00
1996 692 30 92 4.34 13.36

1800 -
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~ 1400 A —o— Observed
o ——- ARMAX
g 12009 A —— CFNN
E: 1000 -
= 800
§ 600 -

@2 400 A
200 -
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1800 - Time (hr)
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= 800 A
§ 600 -
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200 -
0
0 10 20 30 40 50
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Fig. 11. Comparison of CFNN and ARMAX using four typhoon
events.

the accuracy of streamflow prediction using the
CFNN, four typhoon events including the largest
event have been extracted to show the performance
of the CFNN and ARMAX. Fig. 11 shows the
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Fig. 12. Accuracy and reliability of forecasted streamflow.

comparison of CFNN and ARMAX during four
typhoon events. Fig. 12 shows the accuracy of fore-
casted streamflow by the CFNN model. All the points
in the figure nicely fall around the line of agreement.
These results indicate the accuracy and reliability of
the model presented herein.

7. Conclusions

Neural networks have a complex connection struc-
ture and simple computing elements that can solve

problems with natural mechanisms. The fuzzy arith-
metic combines a rule base with fuzzy logic to form a
structure of fuzzy if-then rules. This study proposes
the CFNN, which is the integration of a neural
network and fuzzy arithmetic. The CFNN presents
three advantages: the ability to learn, construct, and
cluster. The membership function of original CFNN is
triangular, which, in this study, is replaced by Gaus-
sian function. The concept of automatically increasing
A for clustering input data in the application stage is
introduced. They improve the model performance,
especially the unusual events.
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The CFNN rainfall-runoff model is successfully
applied to forecast one-hour-ahead streamflow of the
Da-Cha River at Son-Mou. Compared to sophisticated
hydrological models, such as GIUH, the principal
advantages of the proposed method is that the
CFNN can automatically construct a rainfall-runoff
model and estimate the needed parameters by an
approach converging to an optimal solution. The
comparative results obtained by the CFNN and
ARMAX provide evidences that the CFNN can offer
a higher degree of reliability and accuracy than
ARMAX in streamflow forecasting.
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