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ROCK FAILURE

ON PREDICTION OF ROCK FAILURE ON THE BASIS OF RECORDING THE PULSES OF
ELECTROMAGNETIC RADIATION

M. V. Kurlenya, A. G. Vostretsov, G. 1. Kulakov, and G. E. Yakovitskaya UDC 622.381:550

The solution is considered for the problem on synthesis of optimal algorithm of failure prediction on the
basis of recording the pulses of electromagnetic radiation. Poisson’s nonstationary process is taken as the
model for radiant flow of pulses. Algorithms obtained ensure automatic trimming for the characteristics of
background radiation. The characteristics of algorithm efficiency and results of practical approbation are
given.

Failure prediction, electromagnetic radiation, crack accumulation model, Poisson’s event flow, threshold
function, nonrandomized algorithm

The effect of electromagnetic emission from the focus of failure is widely used by modern
scientists to study and predict rock failure [1 —3]. Different models for crack accumulation were
developed [4, 5]. Definition of the concentration criterion [6] was of great importance for failure
prediction. However, in scientific publications, there is practically no solution for the problem on
synthesis of optimal algorithm of failure prediction on the basis of recording the pulses of
electromagnetic radiation. The study in question makes up for this deficiency.

1. INTRODUCTION

It is established that the number of electromagnetic radiation pulses appearing during rock failure is
determined by the number of cracks arising in this process [2, 5]. Consequently, the intensity of such
pulse flow characterizes the intensity of cracking in the focus of failure, the peculiar feature of which is
development by stages [7—9]. In the first stage, microcracks accumulate. This stage is the longest and
determines the durability of sample under load [8]; it is characterized by approximately constant
intensity of cracking. In the second stage of failure, the avalanche increase in number of cracks occurs
(according to terminology adopted in [7] the main crack forms in this stage), but the sample is not
completely destroyed yet. In [7] the third “post-failure” stage, where the avalanche failure of sample
takes place, is distinguished as well. The duration of the second and third stages is much less than the
duration of the first one. Therefore, when revealing the first stage, it is important to make a decision
within the shortest period of time.

We assume the model of Poisson’s event flow as the initial model of crack accumulation. It is
known that in the first stage, the process of cracking can be considered approximately stationary, while
transition to the second and third stages is connected with the sharp change in intensity and
nonstationarity of the process [4, 9], which, in its turn, leads to the sharp change in intensity of
electromagnetic radiation pulse flow. Therefore, the instant of time, when the intensity of
electromagnetic radiation pulse flow sharply increases, is taken as the prediction characteristic.
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In connection with the fact that in the first stage the process of cracking is stationary only
approximately, deviations of its intensity from the mean value are possible at different intervals. To
take account of this feature, we divide the observation interval AT into n subintervals AT;,..., AT,,
within which the intensity of cracking and, consequently, the flow of electromagnetic radiation pulses
recorded are characterized by the constant intensity A;, i=1,..., n; in this case, they can differ from
each other at different intervals. We consider the process in question as the realization of Poisson’s
vector process consisting of n components. In the first stage of failure, the values of intensities of all
components do not almost differ from each other and have the “background” value. In going to the
second stage, the intensity of the nth component A, will greatly exceed the weighted-mean
(background) value with respect to the rest components. This can be conditionally interpreted as
appearance of the “signal component” in the nth component of Poisson’s flow of pulses. Thus, the
problem of failure prediction on the basis of recording the electromagnetic radiation pulses can be
formulated as the problem of signal component detection in many-dimensional Poisson’s flow of
pulses.

Below is given the solution of this problem for two variants: the first variant, when there are no
time limitations for observations, and the number of events recorded in each component is fixed; and
the second variant, when the time of observation is fixed.

2. SOLUTION FOR THE PROBLEM OF FAILURE PREDICTION AS THE PROBLEM OF SIGNAL
COMPONENT DETECTION IN MANY-DIMENSIONAL FLOW OF PULSES WITH UNKNOWN
INTENSITY

Variant 1. Let each of n components of the process observed represents homogeneous Poisson’s flow
of pulses with the intensity A;, i=l,..., n. The values of A, ,...,A, are indefinite a priory and can differ
from each other. The signal component can appear in the nth component of the process observed, then the
value of A, will exceed the weighted-mean value with respect to other components A ;, j <n. Thus, the
problem of signal-component detection can be formulated as the problem of statistical hypothesis testing

n-1

Hy: A, < Ay, there is no signal,

a
n-1 &
(D

H,: A, >—Z)\k, there is a signal .

The coefficient y in (1) shows by what factor the intensity of the nth component with the signal
component must exceed the mean value of intensity with respect to the rest components.

Let m; +1 pulses appear in the ith component of the process observed within the time of
observation. The interval of time between the appearances of the jth and (j — 1)th pulses in the ith

component of the process observed is denoted as t,.(j ) (j =1,..., m;). The joint probability density for

the values of t,-(j), j=1,.,m;, and i =1,..., n is subject to exponential law [10] and has the form

n n mip
(@8] (@8] (my) — /\'_ﬂ; E A (J) E
Wt ey £ s £, |‘1| , exp%—; k;zk H )
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Transform (2) to the form suitable for the solution:

Mo (my) \ _ 5 y = =
my — m;
w(t, sty ety )—l | Al exp D_E/\n -3 A &tnf g-
i=1 E k=1 ]=1 E

n-1 1k my
A B” t(J) y t(J) % .
RN
The density of probability distribution (3) is characterized by one-dimensional useful parameter

n-l .
4 A, with sufficient statistic 7, = Z t'/) and nuisance parameters A,..., A,_, with
n=l = J=1

€)

=2, -

my my
: o -, Y ) = _
sufficient statistics 7, Z ty — z t,” , k=1,., n—1.

The problem of signal-component detection in the nth component of the process observed is
equivalent to the problem of testing the complicated statistical hypotheses relative to the parameters of
probability distribution (3)

Hy: <0, AL, A, any (there is no signal), @

Hy: >0, A;,..,A any (there is a signal).

n-1
The sufficient statistics 7,..., T, bear all information about useful and nuisance parameters.

Therefore, the transfer from the initial sampling tl.(j ) j =1,..., m; to the sufficient statistics in synthesis

of the detection algorithm does not lead to the loss of information and optimal algorithm. The joint
density of probability distribution for the sufficient statistics is determined by the expression [10, 11]

my -1
E)\n nlz/\kg Tn Dnl/\mk (Tk _ﬂTl)mk_ID

O O
w(Ty,.., T,) = Dex 37, MO (5
(Ty (m —1)] | (e -1 D pD z +0 )

The problem on detection of signal component is formulated relative to distribution parameters (5)
and has the same form (4) as for the initial problem. In addition to it, distribution (5)
belongs to the exponential family and is characterized by (n— 1)-dimensional parameter
=LA,y A, 1 0(0,00)%x(0,00)x...x(0,00) containing (n—1)-dimensional interval at the
hypothesis H,. By completeness theorem [11], it will be complete. Therefore, the power function of
any detection algorithm is continuous relative to its parameters; and according to [11], uniformly the
most powerful unbiased algorithm of detection will take the form

g1, T,<C@,Ty,.,T,4),

¢(T1 ERAE) Tn):D (6)
50, T,2C(a,Ty,., T, ).

Here, C(a,T,,..., T,_, ) is the threshold function depending on the level of the false alarm probability o
and sufficient statistics 7 ,..., T,,—; and determined from the equation
E[¢(T1>---7 Tn)|19:0a Tla---a Tn—l]:aa (7)

where E[08 =0,T,,..., T,,_; ] is the conditional expectation at 3 =0.
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To solve equation (7), it is required to calculate the conditional probability density
w(Ty,..., T, |9 =0)

w(T,|2=0,T,...,T,)= . 8
! 1 ST o Tt 1970) ®
Let us find denominator in the right part of expression (8):
W(Tl 9eees Tn—l):IW(Tl IXXED) Tn )dTn ’ (9)
D

where D is the domain of determining the density w(7),..., T,) with respect to the variable 7.

mp
Starting from the fact that z t;k) >0 atany k =1,..., n, we find that the domain D is assigned by the
j=
system of inequalities
g . 0
0<T, <— T, . 10
n y%:{nlnn—l( k)E (10)

.....

From (8) with regard to (9) and (10) we obtain

n-1
7! HHTk - Y7
W(Tn |'L9:O, Tl,..., Tn—l):

IW(Tn |19:0,T1,...,Tn_1)dTn =a
0

which can be presented in the following form:

C(a,T) 1 Tyer) (-l T Tt n-l k-1
I 7t |‘| HT —T T, =a [ O -Yr B ar . ap
0 ) b0 n-1"01

Equation (11) can be solved by numerical methods, however, in special cases, the solutions can be
analytical as well. As an example, consider the case m; =1,..., m,_, =1 corresponding to the situation

when prior to the beginning of failure, the separate cracks and electromagnetic radiation pulses appear
rarely. For this case, the threshold function has the form:

C(aaTla--a nl)__ l/mn mln(T1> ) n—1)>

and detection rule expressed in terms of the observed initial values of tl.(j ), j=lL..,m;, i=1,.,n

U my 1/m, _ (1) (1)
0 Zl(j) <0{ (n=D)ymin[¢,; " ..., ¢, .
’ n s
1 | 1 m H 7 y(1—al/m )
] E R Y R S Bl 1 1 (12)
0 Maooooalm (n —l)mm[t( AL
[p Zt(J) n-1
g =i y(1-a'/m)
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The analysis of algorithm efficiency (12) is reduced to the determination of dependence for the

probability [ of correct solution to the problem on signal-component presence upon the parameters
Al Ay,

Vmn (p—1) min t(l), Lty
B= Ea D 1/[,” = -5 >0§:1—Fz(0), (13)
a y(l—-a ") = g

where F, (1) is the integral function of random variable distribution

al/mn (n- l)mln[t(l), ,t(l)] Gl

— 1 (/)
Z - (l_al/mn Zt
avm (n-yminfz" ..., D e
Denote Z, = - and Z, = Ztn’ . Then [12],
y(l—a ") i
Fy(x)= IWZZ (x1)Fz, (x+x))dx, , (14)

where w, () and F, (D) are the probability density of Z, and the integral function of distribution
of Z,, respectively. Taking into account that Z, 20 and Z, 20,

An (Anxl )mn—l
(m, —D!

wz, (x1)= expiA,x; },

ya-a'™ )(x+x)H_
(n=1)a'' "

Fy (x+x,)=1-P Emin[tl(l),.., tD71 2

b, ya=abm ) B _
(n_l)al/mn

DIID

V Z/\k E(l almn ) (x+x))

0 (n_l)al/mn

M
|
[¢]
>
"CS
Moo

From (14) we obtain

O = —y Umy O
A, (A, V%ZIA" %1 “") R

BI e R e
B - (15)

ag™n
@'/ (g =1)+1]™
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where q=/\—”n_1 is the ratio of the value of pulse flow intensity in the first component to the
2
(n-1) &
weighted-mean value of intensity with respect to the rest components of the process observed. It is
evident from (15) that the probability of correct solution for the problem on signal-component presence
depends only on the parameter ¢, i.e., on the fact how much times the intensity of pulse flow in the
component containing the signal component exceeds the weighted-mean value of intensity with respect
to the rest components.
Figure 1 demonstrates the graphs of correct detection versus the parameter ¢ at different values of
m,. It is seen that as m,, increases, the probability of correct solution raises.
Variant 2. Let the observation time AT, =...=AT, =AT is fixed and identical for each
component; the rest initial data and hypothesis formulation are the same as for Variant 1.
We assume that in the ith component of the process observed, m; pulses i = 1, ..., n were recorded
within the observation time A7 . Their joint distribution of probabilities can be given in the form:

H < H B¢ =
. exp E_ ;/\iATEexp E;m, log()\,-AT)E |

|_| m;!
i=1
It is obvious from expression (16) that the parameters of probability distribution for the values of
my,..., m, depend nonlinearly on A, ,..., A, . Therefore, it is difficult to obtain the precise solution for
problem (1) when the observation time is fixed and » is arbitrary. As will be shown below, such
solution can be found for the case, when » = 2 and Yy is arbitrary. Nevertheless, the solution to the
problem of signal-component detection in many-dimensional flow of pulses on the basis of the initial
data my,..., m, (where m; is the number of pulses within the observation interval AT) is possible if we
formulate it with regard to the properties of (16) (formulation of (1) took into account the properties of
probability distribution of statistics for the times of arising the separate pulses).
Transform (16) to the form suitable for the solution to the problem of signal-component detection

H & B H O 1 ¢ H
exp E—;A,-ATaexp émn gog (A, AT) E;log(yIAiAT)%

P(mla---amn): X

n
|_|m,-!

i=1

P(my,..., m, (16)

-1
X exp gz log (A;AT) Eﬂi +Zf1 %ew {m, log (y,)}=

i=1

q q J 0 0 J
. 0 0
exp A AT 0 0
gzl 5 O B A, o m, O
=— vi"" exp Om, log o —g+S Bni +—-Hog (A,47)0 (17)
[m! A 0 p2 Fiog ™ J
= D Eyl /\i |:| D
=1

H g b 0 ]
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Fig. 1. Characteristics of the efficiency of algorithm for the signal-component detection in
Poisson’s flow of pulses

n—1

Distribution (17) is characterized by one useful parameter z9=log%\ " / %/1 n-l |_|)\ ; % and (n—1)
i=1

nuisance parameters [; =log(A;AT),i=1, ..., n— 1. The problem of signal-component detection can
be formulated as the problem of testing the complicated statistical hypotheses relative to (17):

H,: 9<0, UY; O0(—co,+0), i=1,..,n—1, thereisno signal,
(18)
H, : 3 >0, U; O(=co,+0), i=1,.,n-1, thereisasignal.

We compare the formulations of detection problem in the form of (18) and (1). Expression (1)
assumes the comparison of the intensity A, with the arithmetic mean value of the intensity with respect
to the components A,,..., A,_;. The coefficient y shows how much times the intensity of the nth
component must exceed the mean value of the intensity with respect to the rest components, if the
signal is present. According to expression (18), it is required to compare the value of the intensity A,
with the geometric mean value of the intensity with respect to the components A, ,..., A,_, in order to
make a decision on signal presence; the coefficient y; shows how much times the intensity of the nth
component must exceed the geometric mean value of the intensity with respect to the rest components,
if the signal is present. When n =2 and Y, =Y, the formulations of hypotheses (1) and (18) coincide.

Distribution (17) belongs to the exponential family and has sufficient statistics U =m,,

and T ={¢t|,.., t,}, t; =m; + M ,1=1,..., n—1; with the hypothesis H,, it depends on

(n — 1)-dimensional parameter {x,; } whose domain of values contains (n — 1)-dimensional interval.
Therefore, by completeness theorem [11], it is complete. The power function of any algorithm is
continuous, and according to [11], uniformly the most powerful unbiased algorithm of detection has the
form

01, u>C@,T),

d

oU. )=y, U=C(a.,T), (19)

[]
Ho, U<C(a,T) .
Here, C(a,T) is the threshold function depending on the level of the false alarm probability a,
sufficient statistic 7, and 0 < <1. The value of C(a,T) and the constant { are determined from the
equation
E[¢WU,T)|9=0,T]=a, (20)

where E[[(JJ =0, T'] is the conditional expectation at 3 =0.
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To solve (20), it is required to calculate the conditional probability

~ _p(U,T|9=0)
p(U|8=0,T)= PUaCEN Q1)

Joint distribution of the sufficient statistics P(U,T) can be obtained from expression (17) if we
take into account that Jacobian of transformation {m,,..., m, } - {U, T} is equal to unit, and m, =U,

ml' :ti_ U ,i=1,..., I’l—l'
n—1
0 O 1 ( )D 0
U O exp(U; ) U
0 logy, ; 0= 0
exp [exp ) + + 0 exp (U0
0 n-l n-l =T 0
g & : :
[] ol O
p(U,T)= = E nY eXPD9U+ZIJi 0. (22)
n—1 U ¢
E O i=1 O
U! i
i=1 n=1
Let us find denominator in the right part of expression (21):
p(T[9=0)=% p(U,T[§=0), (23)
D

where D is the domain of admissible values of the variable U. Summation in (23) is performed with
respect to all m, from D. Starting from the fact that m;, =0 at any k=1, ..., n, we determine that D is
assigned by the system of inequalities

0sU<(n=-1)min(¢, .., t,;) . (24)
From (22) with regard to (23) and (24) we obtain

w(U |9 =0,T)= . (25)

[

. [

n—-1 U Bn—l)mln(tl ..... th-1) yk 0
ol E,- ——E — 0
i=1 n-1 r k Ao

[l

L

k=0
SR

Substituting (25) into (20), we have the equation for determining C(a,7T) and ¢ :

O

OoOd

ylc(O”T) (n=1)min(t{ .., £n—1) VIU
¥ + Z
— c(a.T) v=c@r)+ e U
C(a,T)!l_l i1 ’ U! it
1= n-= - n=1H
(n=1)min(¢{ ..., ty-1 ) yk =a . (26)
1

& mo k
i=1 Con-l
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To determine the probability [ of correct detection, it is required to find the expectation of the
decision function ¢ (U,T)=¢ U, t,,....,t,.;) of algorithm (19), using the joint distribution of
probabilities P(U,T):

B O n-l ( )D O
n—1) min| - H CXp .ui U _ [
~ 0 0 (n-1) (21 soves Iy I)D D log 1 - |:| n-1 |:|
B= Cexp D-exp% 0D exp (M) X
n-1 .
120,720 U=C(a,T) U U QA O
U
0 H @ = H
(27)
n-1

O O

Y exp [19U+ Z U;t; E E

x =l ¢(U,t,,.., t,o1)0-

! !;lﬁf‘ﬁﬁ e

Consider in detail the structure and characteristics of algorithm (19) at n = 2. Its structure expressed
in terms of the components of the initial sampling has the form:

Dla m; >C(a7ml +m2) )
H

¢(my,my)=0@, my=C(a,m +my), (28)
EO, my <C(a,m1+m2).

The threshold function C(a, m; + m, ) and randomization parameter { depend on the prescribed
level of the false alarm probability o, value of sum m; +m, and are determined as the solution of
equation (26) which at n = 2 has the form:

O N[

y=C(a,m|+my )+1|:| Yy DDl+yl Dl+y1 |:|

(29)
H m; +m, HH Vi Bf(mfm’fmz)B Hﬂl’fmz-C(a,mﬁmz) .
YEca,m, +my) B0y, O Ol+y: O ’
+
where B’h 2 H T Hare the binomial coefficients and a is the prescribed level of the

O oC(a,my+my)[0
false alarm probablhty. If we examine only nonrandomized algorithms of detections (assuming that
Y =0), then to determine the threshold function, it is required to solve the inequality

max ’”liﬂz B"l T HB Vi HVB ! Erl " <a . (30)

Cla,m+my) _cq bemyynd ¥y OOty O O+y, O

Since the initial sampling has the integral character, then the threshold function found leads to
some oscillations of conditional probability of false alarm when the values of statistic m; + m, change

(Fig. 2).
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Fig. 2. Dependence of the conditional probability of false alarm on the value of statistic
m; +m, at a =0.01; y; =1 (nonrandomized algorithm of detection)

We emphasize that the conditional probability of false alarm depends only on the sampling volume
m, +m, prescribed level of the false alarm probability a, and the parameter y,, but it does not
depend on the parameters of distribution of the initial sampling A;, A, .

If (m1+m2)B Vi ! H>9 and
Ol+y, il +y, O mytmy +1 14y, my +tmy +1

Ca, my+m,) and , we can use approximation of binomial distribution (30) by normal

distributions with the mean (m; +m,)[y, /(y; +1)] and dispersion (m; +m,)[y, /(y, +1)]U

1/Cy, +D] [12]:

(Xamlﬂm)—ﬂm+mzﬁL——&F*U mJUm+mnBylEEI
O+y, l+y, El]

1 m; +m
<V mrm, , then to calculate

(31)
O
D H (ml"'”’lz)ylEB
DC(a,m1+m2)+1_—
% O 1+y,
a - -F
O
B O (my +my)yi H 1 E
1 g (L+y)  H+y,
Y= H H H H’
+ +
DC(a,m1+m2)+l—MD Dc(a,m1+m2)—(ml mz)y1D
FD 1+y1 D_FD 1+y1 0
D 0~ 0 0
O [Omtm)yi g 1 E 0 0O [(mtmy [ E 0
. (+yn)  H+y, =2 (+yn H+vig B

where [x] is the integral part of number x, and F ! (1-a) is the inverse function to the integral
function of standard normal distribution of probabilities with the zero mean and unit dispersion.
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Fig. 3. Dependence of the correct detection probability 3 on the parameter ¢ when the false
alarm probability o =0.01 («¢) and a =0.001 (b) and at different values of background
component intensity A;AT

Figure 3 shows the dependence of correct detection probability [ of algorithm (28), where the
threshold function C(a, m, +m, ) and randomization parameter { are calculated according to (31),
on the ratio of flow intensities in the second and first components ¢ =A, /A, at different values of the
false alarm probability, and the first component intensity. The dependences are obtained by method of
simulation of algorithm (28) on a computer.

As is seen from Fig. 3, the probability of correct detection of algorithm (28), unlike algorithm (12),
depends not only on the ratio of the intensities of Poisson’s flow components but also on the value of
background component intensity. In this case, the false alarm probability (in Fig. 3, it is the domain
g <1) does not exceed the prescribed level o .

3. PRACTICAL APPROBATION OF ALGORITHMS

Practical approbation of algorithms for failure prediction was performed under laboratory
conditions during failure of marble samples; in this case, algorithms (12) and (28) were taken for
realization (they were tested simultaneously on the same samples). In experiments, parameters for (12)
were assumed as follows: n =7, m; =...=mg =1, m, =10, a =107, and y =1. Algorithm (28) was
realized at @ =103, y, =1, and AT =40 ms.

All in all, more than 100 experiments were conducted. In order to check the value of false alarm
probability, the tested sample was subjected to uniaxial compression by constant load that is certainly less
than that one during which the failure occurs. False alarms were not recorded.

In order to check the prediction efficiency, the marble samples were subjected to uniaxial
compression with the constant loading velocity equal to 10 N/s. The use of algorithms (12) and (28)
ensured the stable detection of variation in cracking intensity by 12—15 electromagnetic radiation
pulses. At this loading velocity, the failure was predicted for 10—20 s prior to its beginning.

CONCLUSIONS

1. The problem of failure prediction is formulated as the problem of testing the statistical
hypotheses relative to the parameter of flow intensity of electromagnetic radiation pulses arising during
rock failure.

2. Two optimal prediction algorithms are synthesized — at fixed number of pulses recorded and at
fixed observation time. The algorithms determined ensure the maximum probability of correct solution
to the problem on variation in pulse flow intensity when the value of false alarm probability is fixed.

3. Practical approbation of algorithms demonstrated the possibility of their use for the rock failure
prediction.

The study was conducted with financial support from the Russian Foundation for Basic Research,

Project Codes No. 99-05-64611 and No. 99-01-00624.
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