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ABSTRACT

The Precambrian-Cambrian (PC-C) boundary separates fos-
sils representing two discrete evolutionary phases. the Neoproter -
ozoic soft-bodied Ediacarian biotas and Cambrian small shelly fau-
nas. The biological discontinuity is suspected to have been a result
of mass extinction; however, recent discoveries of the Ediacarian
biotas in Cambrian sediments have led to an understanding that
the faunal change was gradual through the PC-C transition. Th/U
ratios, which are high in oxidizing conditions and low in reducing
conditions, show a considerable positive correlation with 813C val-
ues at all studied sites of the PC-C boundary. This correlation
indicates that reported 813C variation across the PC-C boundary
from numerous localities corresponds to redox variation in the de-
positional environment. The negative 813C anomaly that occurs
worldwide at the PC-C boundary, therefore, corresponds to the
widespread development of an oxygen-deficient shallow marine en-
vironment. This finding suggests that widespread oceanic oxygen
deficiency, which has been interpreted to reflect Phanerozoic mass
extinction events, also occurred immediately before the Cambrian
explosion.

Keywords: Cambrian, anoxic environments, bioturbation, mass ex-
tinctions, Iran.

INTRODUCTION

Stratigraphic separation of two markedly different evolutionary
phases at the Precambrian-Cambrian (PC-C) boundary has convention-
ally been recognized by (1) changes in the visible metazoan assem-
blages, due to contrasts between the Neoproterozoic soft-bodied Edi-
acarian biotas and Cambrian small shelly faunas (e.g., Brasier, 1989;
Lipps and Signor, 1992); (2) a change in the taphonomic condition,
with Ediacarian-type fossil impressions that are unique to the Neopro-
terozoic (e.g., Gehling, 1999); (3) changes in the trace fossil assem-
blages, due to the disappearance of distinctive and simple Neoproter-
ozoic trace fossils and the radiation of modern ichnofaunas in the
Cambrian (e.g., Crimes, 1994); and (4) increased intensity of overall
bioturbation in marine sediments in the earliest Cambrian, due to the
onset of extensive colonization of the active infaunal realm (Droser et
al., 1999). These hiological discontinuities have been attributed to mass
extinction (e.g., Brasier, 1989; Brasier, 1995) and/or closure of the
taphonomic window for soft-bodied organisms (e.g., Gehling, 1999).
Increasing evidence for stratigraphic overlap between the declining
Ediacarian biotas and emerging skeletonized invertebrate faunas in-
cludes discoveries of Ediacarian biotas in Cambrian sediments (e.g.,
Conway Morris, 1993; Jensen et a., 1998), which have led to an un-
derstanding that no mass extinction occurred before the Cambrian ex-
plosion (Jensen et al., 1998). On the other hand, mass extinctions,
caused by transgressive upward movement of predicted nutrient-
enriched anoxic bottom-water masses, have been suggested for the PC-
C boundary interval (Brasier, 1989, 1995). Evidence for such a strat-
ified ocean with 13C-depleted anoxic deeper waters includes (1)
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phosphogenesis and black shale deposition that appear during theinitial
stages of transgressive events and (2) dramatic fluctuation in $13C
throughout the PC-C boundary interval (Brasier, 1989, 1995). How-
ever, it is impossible to determine the degree of anoxia solely on the
basis of sedimentological criteria, and little is known about the extent
of the anoxia at any specific stratigraphic level. This paper presents
evidence for widespread oxygen deficiency in shallow marine environ-
ments at the PC-C boundary, just as oxygen deficiency also accom-
panied some of the Phanerozoic mass extinction events (Erwin, 1993;
Wignall and Twitchett, 1996; Hallam and Wignall, 1997).

GEOLOGIC BACKGROUND

The fossiliferous Valiabad and Dalir sections, 60 km north of Teh-
ran in the Elburz Mountains of northern Iran, preserve sedimentary
records from the late Proterozoic through the Cambrian (Hamdi et al.,
1989; Brasier et al., 1990; Kimura et al., 1997) (Fig. 1). The Soltanieh
Formation, containing the PC-C boundary, consists of peritidal flat car-
bonates and subtidal shales (Fig. 1). The sequence boundary at the top
or in the upper part of the Lower Dolomite Member (Fig. 1) is cor-
related to that at the Neoproterozoic-Manykayan (Nemakit-Daldynian)
boundary in Siberia (Brasier et al., 2000) and also to that in member
2 of the Chapel Island Formation at the PC-C stratotype in Newfound-
land, approximately 83 m above the PC-C boundary?.

The 313Cc4p, and 813C, values exhibit covariation throughout the
successions (Fig. 1) (Kimuraet al., 1997), indicating a primary isotopic
signature (Knoll et al., 1986). Both of the sections examined here show
similar 813C curves. A remarkable negative excursion of 313C.,y,
reaches a minimum of —7%o or —9%e. in the lower half of the Lower
Shale Member, which has been recognized worldwide in shallow water
carbonates around the PC-C boundary (see footnote 1), indicating 13C
depletion in shallow marine waters worldwide (Kimura et al., 1997).

Th/U VARIATION

Th/U has been used as a proxy for the redox conditions of the
depositional environment (Myers and Wignall, 1987; Wignall, 1994;
Wignall and Twitchett, 1996). Thorium is unaffected by redox condi-
tions and remains insoluble as Th#+. Uranium, however, exists as in-
soluble U4+ under highly reducing conditions, which leads to U en-
richment in sediments, whereas it exists as soluble U8+ under oxidizing
conditions, leading to U loss from sediments. Th/U ratios, therefore,
vary from 0—2 in anoxic environments to 8 in a strongly oxidizing
environment (Wignall and Twitchett, 1996). In the examined sections,
Th/U ratios reach minimum values of 1.0 or 1.5 at the $13C minimum,
and high Th/U ratios of 6.0 at the 313C,,q maximum (Fig. 1).

V/Sc VARIATION

Vanadium is also a redox-sensitive element that is preferentially
concentrated in sediments underlying anoxic or near-anoxic waters
(Emerson and Huested, 1991; Wignall, 1994). The degree of V enrich-
ment is most efficiently expressed if the V concentration is normalized
by scandium abundance, because both V and Sc are insoluble and V

1GSA Data Repository item 2001113, Lithostratigraphy, chronostratigra-
phy, geochemical and ichnofabric analyses, Figure A (plots of V vs. Al, Ti, Nb,
Th, and Sc abundances in examined shales from the Elburz Mountains, northern
Iran), and further evidence for widespread oceanic oxygen deficiency at the PC-
C boundary, is available on request from Documents Secretary, GSA, PO. Box
9140, Boulder, CO 80301, editing@geosociety.org, or at www.geosociety.org/
pubs/ft2001.htm.
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Figure 1. Stratigraphic columns, variations in ichnofabric indices (explained in Fig. 3), 8'°C,, 8'°C,,,, and Th/U ratios in PC-C
boundary strata at (A) Valiabad and (B) Dalir sections. Map shows locations of examined sections in Elburz Mountains in Iran, 1—
Valiabad; 2—Dalir; 3—Garmab. Data for 8'3C from Kimura et al. (1997), the symbols of which are explained in Kimura et al. (1997)
or Data Repository (see text footnote 1). Darker shaded area of 4.7-9.1 in V/Sc shows typical ratios of crustal rocks throughout
geologic period (Taylor and McLennan, 1985); dashed line at 7.79 in V/Sc is average measured ratio in examined sections in Iran.
Horizontal dotted area represents stratigraphic level where Th/U is ~2 or less. ED—Ediacarian; LD and LDM—Lower Dolomite Mem-

ber; LSM—Lower Shale Member; MD and MDM—Middle Dolomite Member; NP—Neoproterozoic; T—Tommotian.

varies in proportion to Sc, rather than other insoluble elements such as
Al and Ti (Fig. A; see footnote 1). At the negative 313C anomaly, V/
Sc ratios show a threefold increase above the background that is con-
sistent with average crustal values (Taylor and McLennan, 1985) (Fig.
1). In both sections, V/Sc is high (up to 23 at Valiabad and 22 at Dalir)
in the lower part of the negative 313C excursion and decreases toward
background values in the upper haf of the negative 813C excursion.

WIDESPREAD OXYGEN-DEFICIENT OCEANS

Both the low Th/U (<2) and the high V/Sc ratios suggest an
anoxic depositional environment in northern Iran during the interval
of the negative 513C excursion. Moreover, the Th/U ratios show a con-
siderable positive correlation with 313C,, which covaries with
313Cqp (Fig. 2). This correlation is observed in both northern Iran and
southern China throughout the PC-C transition (Fig. 2), suggesting that
it represents a paleo-Tethyan or global trend. Therefore, the reported
313C values from Neoproterozoic-Cambrian strata worl dwide appear to
correspond broadly to the redox conditions of the depositional envi-
ronment; high 313C corresponds to high Th/U and thus to oxidizing
conditions, whereas low $13C corresponds to low Th/U and thus to
reducing conditions. The negative $13C anomaly at the PC-C boundary,
therefore, indicates a widespread oxygen-deficient shallow marine en-
vironment. This view is further supported by reported lithological and
geochemical evidence at this stratigraphic level worldwide (see foot-
note 1).
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RESPONSE OF BENTHIC ORGANISMS TO OXYGEN
DEFICIENCY

An oxygen deficiency lasting much longer than organism life
spansis likely to have a significant impact on benthic organisms. How-
ever, the response of benthic organisms to this paleoenvironmental
change is not particularly well understood, because the coarse chron-
ostratigraphic division and the rarity of invertebrate fossils in the Neo-
proterozoic have prevented reconstruction of the variation in animal
diversity at high stratigraphic resolution (Sepkoski, 1992). Ichnofabric
analysis of shales may independently provide information on variations
in the intensity of overall bioturbation by benthic organisms throughout
any anoxic event. Our analysis, using newly established schemes for
fine-grained siliciclastic sediments (Fig. 3), shows that the degree of
bioturbation varies in a similar fashion at the microscopic and mac-
roscopic levels at both Valiabad and Dalir (Fig. 1). At Valiabad, at both
the microscopic and macroscopic scales, bioturbation decreases during
the lower half of anoxic deposition, recovers where V/Sc drops to the
background, and starts to decrease again with termination of the anoxia.
At Dalir, at both the microscopic and macroscopic scales, bioturbation
is sparse during the anoxic deposition and increases in the upper part.
In general, the degree of bioturbation tends to be low in the anoxic
environment, compared to the post-anoxic interval.

CAUSES OF THE OXYGEN DEFICIENCY AND ITS
BIOLOGICAL IMPLICATIONS

The cause of this oceanic oxygen deficiency remains controver-
sial. Similar and different palecenvironmental observations at the
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Figure 2. Relationship between 8'°C,, and Th/U

ratios. Solid symbols indicate Ediacarian-Many-
kayan data; open symbols indicate Tommotian-
Atdabanian data. Kunyang and Wangjiawan sec-
tions in Yunnan, southern China, are described in
Luo et al. (1984). Correlation coefficient (R?) is
0.70 (0.80, if several data out of trend are elimi-
nated from correlation). Shaded area represents
[6'%C,,4] = 1.775[Th/U]—36.300 + 2.537.

Permian-Triassic (P-Tr) boundary may provide clues about the paleo-
ceanographic event at the PC-C boundary. The similarities at the P-Tr
boundary include a negative 813C anomaly (e.g., Jin et a., 2000), a
dysoxic shallow ocean (Wignall and Twitchett, 1996), a prolonged pe-
riod of anoxic deep ocean (Isozaki, 1997), and a regression-transgres-
sion couplet (Hallam and Wignall, 1999). A global ocean model sug-
gests that reduced ocean circulation, due to reduced latitudina
temperature gradient, causes anoxia throughout the deep ocean (Hotin-
ski et al., 2001). Such ocean stagnation, also proposed for the PC-C
boundary interval (e.g., Brasier, 1995), could have been important for
the anoxia and negative 313C excursion in the shallow ocean. Intro-
duction of poorly ventilated anoxic deep waters, enriched in 12C, into
the shallow marine environment would result in a negative 813C ex-
cursion (Knoll et al., 1996; Kimura et a., 1997). However, mass bal-
ance calculations (Kump, 1991) indicate that the estimated duration of
the negative 813C excursion at the PC-C boundary (=1 m.y. or more;
Grotzinger et al., 1995; Pelechaty et al., 1996) may be difficult to
explain by this interpretation. Sea-level rise, as observed in the Lower
Shale Member, could cause an upward movement of the oxygen-min-
imum zone (e.g., Brasier, 1989; Wignall, 1994; Hallam and Wignall,
1999), resulting in the swing to negative 513C, coupled with low Th/
U and high V/Sc in shalow environments. This is consistent with the
coincidence between transgression and the negative §13C shift in Iran
and Siberia (Fig. 1; Pelechaty et al., 1996). However, a similar trans-
gressive event in the early Tommotian of the early Cambrian (e.g.,
Brasier, 1995) does not yield a remarkable negative 813C excursion
such as that observed at the PC-C boundary (e.g., Brasier et a., 1990;
Kimura et al., 1997); thus, additional mechanisms are required for one
or the other of these episodes. Another strongly 13C-depleted C res-
ervoir is methane-hydrate stored in marine sediments, the amount of
which is clearly enough to cause a swing to negative 313C. Massive
release and further oxidation of the CH, (*2CH, + 20, - 12CO, +
2H,0) would contribute to the rapid development of a dysoxic shallow
ocean and a negative 313C shift in dissolved carbonates. Increased at-
mospheric CH, in the early Triassic, indicated by a prominent decrease
in 813C,4 of whole paleosol profiles (Krull and Retallack, 2000), sup-
ports the idea of mass CH,4-hydrate release at this time (Erwin, 1993).
On the other hand, the Antrim Plateau basalts in Australia, previously
hypothesized to have erupted at the PC-C boundary (Bartley et d.,
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Figure 3. Schematic diagrams of degree of lamination observed
at macroscopic and microscopic scales. Macroscopic scale (right
side): 1—no bioturbation, all original sedimentary structures are
preserved; 2—90%-99% of original structures are preserved; 3—
70%—-89%; 4—30%—69%; 5—10%—29%; 6—1%—9%; 7—completely
homogenized sediment. Microscopic scale (left side; mm/mm?):
1—total length of visible laminae is >8.5; 2—5.0-8.5; 3—3.5-5.0;
4—25-3.5; 5—1.5-2.5; 6—0.7-1.5; 7—<0.7.

1998), in support of the CH,-hydrate hypothesis (e.g., Katz et a.,
1999), has yielded a SHRIMP zircon age of 513 = 3.3 Ma (Hanley
and Wingate, 2000). This age is apparently comparable to the Boto-
mian biotic crisis and coeval oceanic anoxiain the late Early Cambrian
(e.g., Zhuravlev and Wood, 1996) but can have no relevance to the
much earlier PC-C boundary. An asteroid or comet impact (e.g., Becker
et a., 2001) could have been the climax in the environmental catas-
trophe at the P-Tr boundary, one that has not been reported from the
PC-C boundary. An iridium anomaly reported from southern China
(e.g., Hsu et a., 1985) is correlated not to the PC-C boundary but to
much later, the early Tommotian. Further evidence is, therefore, re-
quired to demonstrate an oxygen deficient ocean at the PC-C boundary.

The examined sections in northern Iran do not yield Ediacarian
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fossil biotas, unlike some other boundary sections around the world.
However, elsewhere, Ediacarian fossils are observed to disappear be-
neath the PC-C boundary at many localities (e.g., Brasier, 1989), ap-
parently immediately below the negative 313C excursion (Narbonne et
al., 1994). This apparent stratigraphic coincidence between the biolog-
ical discontinuity and the development of oxygen-limited, shallow ma-
rine deposition may imply a cause-effect relationship between them,
especialy because widespread dysoxia has coincided with some of the
Phanerozoic mass extinction events (Hallam and Wignall, 1997).

Ediacarian organisms were immobile, having maximized external
surfaces and passive circulatory systems (Seilacher, 1992). As aresult,
they would have been highly sensitive to environmental changesin the
ambient seawater. Persistence of environmental stress, related to oxygen-
deficient water, for significant periods, could have resulted in the ex-
tinction of certain benthic organisms, including some of the Ediacarian
biotas (Brasier, 1989, 1995; Kimura et al., 1997; Bartley et al., 1998;
Knoll and Carroll, 1999).
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