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Abstract

The normalized Fry method is a powerful and commonly used tool for measuring fabric in aggregates of packed grains. The significance of
these parameters is often unclear because the associated uncertainty is unknown. Basic statistical hypotheses, such as deciding if a sample has
a fabric, or if the fabrics of two samples are significantly different, requires knowledge of associated uncertainty.

For this study a bootstrap version of the normalized Fry method was developed. This program randomly selects normalized center-to-
center distances, with replacement, from the population of all possible center-to-center distances. For each sample 100 bootstrap normalized
Fry plots were constructed using different combinations of center-to-center distances. The variation of fabric parameters for these 100
analyses is used to estimate the uncertainty associated with the sample.

Results of bootstrap analyses of sandstones, oolitic limestones and synthetic data sets, show considerable variation in fabric parameter
uncertainty, apparently related to both lithology and the degree of fabric development. Fabrics with axial ratios less than 2.0 appear only to be
significant to one decimal place. The variation of fabric uncertainty makes it important to determine the uncertainty associated with
individual samples. The deformation model for a field example developed based on conventional normalized Fry plots needed to be
more complicated than deformation models that allowed for variation of fabric parameters. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The normalized Fry method (Erslev, 1988; Erslev and Ge,
1990) is a powerful tool for measuring fabric in various
types of aggregates of packed grains lacking other adequate
markers. This computer-based modification of the original
Fry method (Fry, 1979) allows the automated calculation of
a fabric ellipse from a graphical normalized Fry plot by
fitting an ellipse to the elliptical point concentration on
the normalized Fry plot (Erslev and Ge, 1990). This auto-
mation removes some of the subjectivity associated with
quantifying results from the method and allows fabric to
be summarized with two parameters, the axial ratio (R)
and orientation (¢) of the fabric ellipse.

Summarizing fabric with two parameters, however, has a
serious downside. Important information about the quality
of the data is lost because the degree of scatter of points on
the Fry diagram is not taken into account. A visual exami-
nation of normalized Fry plots shows variation in the scatter
of points in the maximum point concentration (Fig. 1).
Some plots show very distinct elliptical concentrations of
points, while on others the point distribution is very diffuse.
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Though ellipses can be fitted to all of these plots, clearly
ellipses fitted to plots showing distinct point concentrations
are more significant than ellipses fitted to diffuse point
concentrations. Yet once the ellipse is fitted there is no
way to recognize the quality of the original data if only
the axial ratio and orientation of the fabric ellipse are speci-
fied, as is commonly done in publications to save space.
Serious misinterpretation, or overinterpretation, is risked if
only the fabric parameters are used.

Even if normalized Fry plots are presented, a visual
examination can only produce a qualitative estimate of the
quality of the data. To be able to evaluate individual
samples, to compare pairs of samples, or to interpret
complete data sets, it is necessary to have a way to quantify
quality by determining the uncertainty associated with each
fabric parameter. Basic interpretations, such as deciding if a
sample has a fabric, or if the fabrics of two samples are
significantly different, requires knowledge of both the fabric
parameters and associated uncertainty. For example, if
fabric was measured in samples close to a fault (R=1.5,
¢ = 60) and further away (R= 1.3, ¢ =90) it might be
concluded that the difference was related to deformation
associated with the fault. But is this difference significant?
Or is the difference in fabric within the uncertainty asso-
ciated with the measurements? If the uncertainty is small the
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Fig. 1. Three normalized Fry plots showing different amounts of scatter.
(a) Well defined maximum point density ring, (b) less well defined maxi-
mum point density ring, (c) poorly defined maximum point density ring.

two measurements may be different (Fig. 2a), but if the
uncertainty is large the difference may not be real and
conclusions drawn may be misleading (Fig. 2b). In fact if
uncertainty is large enough the axial ratio of the fabric
ellipse may not be significantly different from 1.0, i.e.
there may not be a significant fabric in the rock.

In order to evaluate the fabric measurements, the uncer-
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Fig. 2. Illustration of the importance of variation in fabric parameters in
making interpretations. Points falling within error bars are considered insig-
nificantly different. For the same measurements if the variability is small
the samples may be significantly different (a), but if variability is large
samples will not be significantly different (b).

tainty associated with each measurement must be deter-
mined. Ideally the uncertainty associated with a fabric
measurement could be determined by making multiple
fabric measurements from different parts of the same
sample. If enough measurements were made, the range of
fabric parameters could be used to determine the uncertainty
associated with fabric in the sample. In practice this
approach has serious disadvantages. Measuring fabric by
the normalized Fry method is a slow process. Repetitive
preparation and measurement of the same sample would
be extremely time consuming, greatly reducing the amount
of data that could be collected in any fabric study.

A more practical approach would be to estimate fabric
variability from a single data set so that data would only
have to be collected once from each sample. If a fabric
measurement is a simple one, variability can be determined
by standard statistical techniques. Fry plots, however, are
not simple, so derivation of a direct method for calculating
uncertainty would be complex and has not been done.
Instead the uncertainty can be estimated using a statistical
approach for resampling the same data set. Erslev and Ge
(1990) made use of their own resampling procedure to test
the reproducibility of the normalized Fry method, particu-
larly with regard to the number of grains that need to be
analyzed. This work was done to demonstrate the validity of
the normalized Fry method but was not used as part of the
method for analyzing fabric.
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Table 1

Original data set

Data subsets (randomly chosen from the original data set)

A B C D E F G H I J
1.1 1.4 1.4 1.4 1.2 1.4 1.2 1.2 1.4 1.4 1.4
1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.2 1.2 1.2 1.2
1.2 1.1 1.2 1.1 1.2 1.2 1.1 1.4 1.1 1.1 1.4
1.4 1.4 1.1 1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Mean = 1.23 1.2 1.225 1.275 12 1.25 1.15 1.25 1.225 1.225 1.3

Standard error = 0.054

Bootstrap estimate of standard error = 0.042 (standard deviation of the means of each data subsets)

For this study data resampling was carried out using a
more systematic statistical technique known as the bootstrap
in order to have a standard way of determining fabric uncer-
tainties. Bootstrapping (Diaconis and Efron, 1983; Efron
and Tibshirani, 1991) involves resampling the original
data set to create artificial data subsets that are used to
estimate the variability of fabric parameters. These artificial
data subsets are created by randomly selecting elements,
with replacements, from the original data set. Each subset
has the same number of elements as the original set but is
different because an individual element can be chosen once,
more than once, or not at all.

Table 1 presents a simple example of using the bootstrap
to estimate standard error. For this example the original data
set contains four elements. Ten subsets are generated by
randomly selecting elements from the original set (Table
1). The bootstrap approximation of the standard error is
the standard deviation of the means of each data subset
(Diaconis and Efron, 1983; Efron and Tibshirani, 1991).
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Fig. 3. Plot of fabric parameters of 100 bootstrap analysis subsets. R is the
axial ratio and Phi is the orientation of the long axis of the fabric ellipse.
STE is the standard error.

For this simple example the standard error of the original
data set can be calculated directly and compared with the
bootstrap estimate. Although in this example the bootstrap
estimate of standard error is not the same as the calculated
standard error (Table 1), the approximation would improve
with the use of more data subsets. The power of the boot-
strap is it can be used to estimate standard errors where
direct calculations are not possible, such as with normalized
Fry plots.

This paper applies the bootstrap to normalized Fry plots
in order to study the uncertainty associated with synthetic
(computer generated) and natural samples. This approach
will be used to investigate the significance level at which:
(1) fabric is developed in samples, (ii) fabric deviates from
assumed sedimentary compaction fabrics, and (iii) fabric is
different from samples in different structural positions.

2. Method

Normalized Fry plots were constructed for this study by
modifying the implementation of McNaught (1994) for
bootstrap analysis (for the remainder of this paper this
implementation will be referred to as conventional normal-
ized Fry analysis to distinguish it from the bootstrap
approach described below). Data were collected the same
way as for conventional normalized Fry analysis. Grain
boundaries were traced on photomicrographs and then digi-
tized using an image analyzer to determine the coordinates
of the centroid and the area of each grain from the tracing.
This list of centroid coordinates and grain areas is all the
data needed to construct a normalized Fry plot using this
approach. The polar coordinates of points on the normalized
Fry plot are determined by calculating the direction between
every possible pair of grains and the normalized center-to-
center distance (D,) between each pair (Erslev, 1988;
McNaught, 1994):

D, = Dm”/(A1” + 43?) (1)

where D is the distance between grain centers, and A; and A,
are the areas of each grain.

Here the bootstrap approach differs from the conventional
normalized Fry analysis. Instead of plotting points repre-
senting all possible pairs of normalized center-to-center
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Fig. 4. Effects of number of increments used for bootstrap analysis on fabric determination. Estimated axial ratio for each bootstep (a) and estimated
orientation of fabric ellipse for each 100 bootsteps (b). Solid lines in (a) and (b) indicate the running mean of axial ratio and orientation, respectively.
(c) and (d) show the running calculation of standard error of axial ratio and orientation with each additional bootstep. Note all running calculations converge on

values well before the 100 increment.

distances, for the bootstrap approach normalized center-to-
center distances are selected randomly, with replacements,
from the population of all possible center-to-center
distances. Each iteration of the bootstrap process will use
a different randomly selected data subset. Note that this
differs slightly from the earlier bootstrap approach of
McNaught (1994) where individual grains, rather than
center—center distances were randomly selected.

Once the first bootstrap data subset has been chosen, it is
treated as a conventional Fry data set using the approach of
McNaught (1994). A first estimate of the fabric ellipse is
determined from the normalized Fry plot by imposing a
virtual circular grid over plot to locate the region of maxi-

mum point density in each radial sector. The normalized
center-to-center distances in that region are averaged to
determine the radial value of a point on the fabric ellipse.
The length and width of each grid region exceeds the
spacing between grid regions so points on the Fry plot lie
in several regions. This prevents splitting of regions of
maximum point density. Because the grid used to determine
the fabric ellipse is circular it will tend to underestimate the
fabric of elliptical maximum point density rings. This
problem is avoided by taking an iterative approach that
incrementally removes fabric until the axial ratio value of
the remaining fabric ellipse falls below an arbitrary thresh-
old (for this study 1.005). Combining the amount of fabric
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Fig. 5. Bootstrap results from analysis of synthetic data sets. Data set RDT consists of elliptical objects from figure 11b of Erslev and Ge (1990). Data set TS
consists of polygonal objects from figure 9 of McNaught (1994). Objects in each data set were rotated and copied to insure no initial fabric and then subjected
to synthetic deformation using a strain ellipse with axial ratios of 1.2, 1.5, 2.0. For data set RDT the orientation of the long axis of the strain ellipse was varied
for synthetic deformation (40, 60, and 80°). Ryy, and ¢y, are the parameters of the imposed synthetic fabric. R, and ¢,, are the measured fabric parameters.
The standard error for each measured fabric parameter is given in parentheses after the measured value.
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removed for each increment, the axial ratio and orientation
of the fabric ellipse can be calculated. This is the fabric
estimate for the first bootstrap subset.

The above procedure is repeated for each of the subsets of
randomly selected combinations of normalized center-to-
center distances, until 100 values of axial ratio and orien-
tation have been found. The standard deviations of the axial
ratio and orientation values approximate the standard error
of the axial ratio and orientation of the overall fabric ellipse.

3. Results
3.1. RAM77

The deformed oolite illustrated in figure 7.7 of Ramsay
and Huber (1983, p. 112) has become a defacto standard for
testing strain analysis methods, and serves as an excellent
illustration for interpreting bootstrap results. Bootstrap
results for normalized Fry plots are easiest to view by plot-
ting axial ratio versus orientation of each of the 100 subset
analyses (Fig. 3). The scatter of these points represents the
uncertainty associated with the measurement of fabric in
this sample. Quantitatively the standard errors for axial
ratio and orientation are 0.04 and 1, respectively. A
previously calculated axial ratio (1.69) and orientation
(157) for this sample (McNaught, 1994) was plotted in the
center of the cluster of points on this plot. Axial ratios
determined by Erslev and Ge (1990) using normalized Fry
analysis (1.64) and by Ramsay and Huber (1983) using
conventional Fry analysis (1.7) also lie within this cluster
of points representing uncertainty in this sample.

Crucial in this discussion is the decision to use 100 itera-
tions in the bootstrap process. The choice to use 100 data
subsets is arbitrary, but seems adequate because estimates of
standard errors stabilize before all 100 data subsets are
considered (Fig. 4). Additional subsets would probably
improve results, but computational time, which is already
considerable, becomes unreasonable.

3.2. Synthetic data

The bootstrap approach was tested on two groups of
synthetic data sets with known imposed strain. Data sets
in the first group (RDT) are made up of computer-generated
elliptical objects (figure 11b of Erslev and Ge (1990)). Data
sets in the second group are made up of computer-generated
polygonal objects (figure 9 of McNaught (1994)). This
second data set was developed to approximate aggregates
of nonelliptical grains. The original objects in each data set
were rotated and duplicated to ensure no initial fabric. Then
each set was subject to the indicated synthetic plane strains
(Rsyn = 1.2, 1.5, 2.0) by adjusting coordinates of the centers

of each grain. In addition, for the RDT data sets, the orien-
tation of the principal axes of synthetic strain was changed
in each case.

Conventional normalized Fry results (R, ¢.) closely
agree with the imposed axial ratio and orientation of the
synthetic deformation (R, ¢gym) (Fig. 5). Bootstrap results
cluster around the imposed synthetic deformation for each
set. The standard error for axial ratio increases and the stan-
dard error for the orientation decreases with increasing
imposed synthetic deformation (Fig. 5). Histograms of boot-
strap estimates of axial ratio and orientation show a gener-
ally symmetric distribution (Fig. 6), except for data sets with
no imposed synthetic fabric.

3.3. Sheeprock Thrust sheet

The bootstrap approach to normalized Fry analysis can be
illustrated by a field example from the Sheeprock Thrust
sheet in Utah. The Sheeprock Thrust is a major thrust in
the Provo salient of the Sevier Belt of the North America
Cordillera. The thrust carries a thick section of Proterozoic
and Early Cambrian quartzites in its hanging wall (Mukul
and Mitra, 1998). The uniform lithology of the hanging wall
strata provides an excellent area for studying deformation
associated related to thrust emplacement without the
complications of lithology variations. The strain in these
quartzites has been studied in detail (Mukul, 1998; Mukul
and Mitra, 1998).

For this study six samples were selected from the much
larger data set of Mukul (1998) and were analyzed using the
bootstrap normalized Fry approach. Three of these samples
serve as a good illustration of the method because, when
they are viewed down plunge, they represent the fabric that
exists in a vertical profile above the horizontal thrust. Quali-
tatively, the fabric is weakest away from the fault (Fig. 7a)
and strongest in the sample closest to the fault (Fig. 7¢).

To compare the interpretations of the fabric in these
samples, each was analyzed using both the conventional-
and the bootstrap-normalized Fry methods. Quantitative
results from the conventional normalized Fry method (Fig.
8) show an increase in axial ratio from R = 1.06 away from
the fault to R = 1.80 near the thrust. The long axis of each
fabric ellipse verges in the transport direction (to the east).

The basic interpretation made from this data is that fabric
develops because of increasing shear closer to the fault.
Developing a deformation model to explain this data
requires more than fault-parallel simple shear because the
measured orientations and axial ratios of the fabric ellipses
cannot be produced by simple shear of an initial circular
marker (Fig. 9). The three data points from the Sheeprock
Thrust sheet lie below the a = 1 curve. Instead the defor-
mation model requires additional deformation increments.

Fig. 6. Histograms of bootstrap estimates of axial ratio and orientation for synthetic data sets RDT and TS. Vertical axis for each is the number of bootstrap
estimates in the given range. Total number of measurements for each histogram is 100.
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Fig. 7. Photomicrographs of thin section cut in the transport plane from
samples taken above the Sheeprock Thrust. (a) Sample 33S, furthest from
thrust, (b) Sample 37S, (c) Sample 478, closest to thrust. For the relative
positions of samples see Fig. 8.

A number of additional deformation increments are pos-
sible, including dilation (non-plane strain), stretching in
the transport direction, and vertical shortening (sedimentary
compaction). One possible simple model calls for early
sedimentary compaction, increasing with depth, followed
by simple shear above the fault, with increasing amounts
of shear closer to the fault. This model is by no means a

West East

Sample 33S
R=1.06 ¢=38

~100 m

Sample 37S
R=1.44 ¢ =31

Sample 47S
R=1.80 ¢ =27

N N
Sheeprock Thrust Fault

Fig. 8. Summary of conventional normalized analysis of samples above the
Sheeprock Thrust. Positions of fabric ellipses represent the position of
samples relative to the thrust as determined from down plunge projections.
R is the axial ratio of fabric ellipse and ¢ is the orientation of the long axis
of the fabric ellipse relative to the fault.

unique solution, but it does explain the measured deforma-
tion using deformation increments that can be reasonable
considered geologically possible for this area.

The deformation model above, however, is based on the
result of conventional normalized Fry method and is only as
good as the original data. But is the variation between fabric
measurements significant, and if so, how significant is it?
Are all the steps in the deformation model significant, or are
we adding steps to explain noise in the data rather than
actual deformation in the rock? Bootstrap analysis allows
us to address these important questions.

Bootstrap normalized Fry analysis was performed on the
same raw data used for the conventional normalized Fry
analysis above (Fig. 10). The three samples show minimum
overlap in axial ratio (Fig. 9). Sample 33S, the sample
furthest from the fault, does not appear to have a significant
fabric (its axial ratio is not significantly different than 1.0)
using an arbitrarily selected 90% confidence interval, and
appears to be significantly different from the other two
samples (Fig. 9). Samples 37S and 47S both have a signifi-
cant fabric. A simple statistical z-test of the two sample’s
axial ratios suggests that the axial ratios are significantly
different at the 90% significance level. There is no signifi-
cant difference in fabric ellipse orientation between the two
samples. This small data set from the Sheeprock Thrust
sheet indicates a significant fabric is only developed in the
lower part of the sheet. There is a significant increase in
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Axial Ratio

Fig. 9. Graph of axial ratio and orientation of a strain ellipse produced by
combinations of simple shear (dashed curves, y = 0.25, 0.5, 0.75, 1.0) and
stretch parallel to the shear direction (solid curves, @ = 0.8, 0.9, 1.0, 1.1,
1.2, 1.3, 1.4, 1.5) (Sanderson, 1982). Because we are only dealing with axial
ratios for this study, positive stretches are equivalent to two-dimensional
compaction perpendicular to the shear plane. Data for the Sheeprock Thrust
shown. Triangles represent results for conventional normalized Fry analy-
sis. Boxes represent results of bootstrap normalized Fry. The mean values
are located at the center of each box. The sides of each box = *1.65
standard error for axial ratio and orientation.

fabric intensity approaching the fault but there is no signifi-
cant change in fabric ellipse orientation, though the lower
two fabric ellipses are inclined to bedding by a significant
amount.

Modeling the fabric determined by the bootstrap
approach is relatively straightforward. Because the fabric
ellipses are significantly inclined to bedding and verge in
the transport direction it seems likely that fault parallel shear
is responsible. None of the fabric ellipses are significantly
different (at the 90% confidence level) from the curve that
represents simple shear, so all three fabric measurements
could be explained by different amounts of fault parallel
simple shear. This is not the only deformation model that
is possible; the data is also consistent with a two-stage
history involving different amounts of vertical compaction

followed by fault parallel shear. The exact combination of
these two components can vary, but the data restricts pos-
sible combinations. More complex deformation models are
also possible, but the bootstrap approach to normalized Fry
analysis has placed constraints on which models are
allowed. Further, this approach makes possible the distinc-
tion between steps in the deformation model that are
required to explain the data, and steps in the deformation
model that are allowed by the data.

4. Discussion

The bootstrap approach presented here provides a
systematic way for evaluating the variability associated
with normalized Fry plots. Because the method makes use
of the same data files used by the conventional normalized
Fry method it does not require additional time collecting and
entering data, though it does require additional computer
time. Using this approach gives a standard way to evaluate
and compare fabric data.

Standard errors for both axial ratio and orientation of the
fabric ellipse depend on both the axial ratio of the fabric
ellipse and the lithology of the sample (Fig. 11). Patterns for
synthetic data (data sets RDT and TS) indicate that the
standard error for axial ratios increase (Fig. 11a) and the
standard error for orientation decreases (Fig. 11b) with
increasing axial ratio. This pattern is also followed by the
Sheeprock Thrust sheet data sets, with the exception of one
sample. This sample, 37S, the intermediate fabric sample,
appears to have a bimodal distribution of grain shapes (Fig.
7b). Some of the grains appear to have developed a
preferred orientation while others remain more or less
equal dimensional, as if deformation was further along in
some grains than others. If this occurred it would complicate
the distribution of center-to-center distances, leading to
higher standard errors for axial ratio.

Care needs to be taken in interpreting data sets with low
axial ratios. The distribution of bootstrap estimates of axial
ratio in these data sets (RTD1 and TS8301, Fig. 6) is asym-
metric since values of axial ratios cannot be less than 1.0.
This can lead to an underestimate of standard error, though
the standard error is much larger than the difference between
the calculated axial ratio and 1.0, which is an indication
that the sample lacks a fabric.

Lithology appears to be the other important factor in
determining standard errors (Fig. 11). Analysis of synthetic
elliptical objects of data set RTD produces the lowest stan-
dard errors. The deformed oolite from figure 7.7 of Ramsay
and Huber (1983), which is made of natural elliptical
objects, also falls along the trend for elliptical objects.
Analysis of synthetic data sets of polygonal objects (data
set TS) produces higher standard errors, especially for axial
ratios. Four of the samples from the Sheeprock Thrust sheet
follow this trend, suggesting the synthetic data is not a bad
approximation for some natural polygonal aggregates.
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Fig. 11. Relationship of standard errors for axial ratios and for orientation to the measured axial ratio. Lines connect data points for synthetic data. RTD is the
elliptical data set, TS is the polygonal data set. Ram77 is the deformed oolite in figure 7.7 of Ramsay and Huber (1983), Sheeprock are the samples from the
Sheeprock Thrust sheet, including three samples from elsewhere in the Sheeprock sheet.

In general caution is needed in interpreting any individual
normalized Fry plot. From the limited data in this study it is
doubtful that axial ratios determined by normalized Fry
measurements of natural aggregates are significant to
more than one decimal place, and for aggregates of irregu-
larly-shaped grains the significance may be much less.

The importance of taking into account the variability
associated with fabric measurements made by the normal-
ized Fry method when developing deformation models was
illustrated by the Sheeprock Thrust sheet field example. A
more elaborate deformation history was proposed based on
the conventional normalized Fry analysis rather than on the
bootstrap normalized Fry approach. The variability asso-
ciated with the fabric parameters allows for simpler expla-

nations of fabric development. While unique deformation
histories could not be worked out from the limited set of
available fabric data, constraints on deformation history
could be developed. This may be the most important aspect
of use using the bootstrap approach; it allows recognition of
which part of a deformation model is required by the data,
and what part of the deformation model is permitted by the
data. For the samples from the Sheeprock Thrust sheet all of
the fabric can be explained by different amounts of fault
parallel simple shear, but the evidence does not exclude
the possibility of other components of deformation, such
as preshear vertical compaction or stretching in the transport
direction.

Though it is convenient to discuss variability in terms of
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confidence intervals because it allows for discrimination
between ‘significant and insignificant’ results, it is impor-
tant to recognize that the selection of these cutoffs is
arbitrary. If a lower confidence level was chosen more of
the results could be considered ‘significant’, likewise if a
higher confidence level was chosen more of the results
could be considered ‘insignificant’. The main goal of the
bootstrap approach should not be determining whether
results meet some arbitrary level, but to provide a way to
evaluate study results. More important than the confidence
interval of a single study is comparison of confidence inter-
vals between studies. Results from studies using higher
confidence intervals should be given more weight.

5. Conclusions

Results of bootstrap analyses show considerable variation
in fabric parameter uncertainty, apparently related to both
lithology and the degree of fabric development. For the
natural samples measured in this study the standard errors
for the axial ratio of the fabric ellipse varied between 0.05
and 0.2. The standard errors for the orientation of the fabric
ellipse was generally less than 10°, except in cases of very
weak fabric. Axial ratio measurements appear to be signifi-
cant to only one decimal place.

Bootstrap analysis of normalized Fry plots provides a
method for estimating the uncertainty associated with fabric
measurements. This information is important for evaluating
the quality of data, and can be an important guide in making
structural interpretations. For the field examples presented
in this study, allowing for variability in fabric measurements
permitted adoption of a simpler deformation model.
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