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Abstract

The prediction of a time series using the dynamical systems approach requires the knowledge of three parameters; the time
delay, the embedding dimension and the number of nearest neighbours. In this paper, a new criterion, based on the generalized
degrees of freedom, for the selection of the number of nearest neighbours needed for a better local model for time series
prediction is presented. The validity of the proposed method is examined using time series, which are known to be chaotic under
certain initial conditions (Lorenz map, Henon map and Logistic map), and real hydro meteorological time series (discharge data
from Chao Phraya river in Thailand, Mekong river in Thailand and Laos, and sea surface temperature anomaly data). The
predicted results are compared with observations, and with similar predictions obtained by using arbitrarily fixed numbers of
neighbours. The results indicate superior predictive capability as measured by the mean square errors and coefficients of
variation by the proposed approach when compared with the traditional approach of using a fixed number of neighbours.
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1. Introduction

In the traditional approach of modelling hydrologi-
cal time series, the series is considered to be originat-
ing from a stochastic process, which, at least in theory,
has an infinite number of degrees of freedom. In such
cases, linear models of the Box—Jenkins type auto-
regressive moving average (ARMA) have been used
for the analysis and prediction by many researchers
over the years (Lawrance and Kottegoda, 1977; Box
et al., 1994; Jayawardena and Lai, 1989; amongst
others). However, it has been realized recently that
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certain types of time series, which appear to be evol-
ving from stochastic processes, can in fact be the
outcome of fully deterministic processes. By treating
the system that generates the time series as a determi-
nistic one, the available limited evidence suggests that
it is possible to make more realistic short-term predic-
tions. Such systems can exhibit stable properties,
which are predictable with certainty at times but
may become ‘chaotic’ under certain initial conditions.
The study of chaotic systems has drawn the attention
of many researchers in many disciplines in the recent
past (Farmer and Sidorowich, 1987; Abarbanel et al.,
1990; Sugihara and May, 1990; Smith, 1992;
Jayawardena and Lai, 1994; Sivakumar et al., 1999;
amongst others). The existence or otherwise of chaos
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has also been a topic of debate (Ghilardi and Rosso,
1990; Koutsoyiannis and Pachakis, 1996), and
subjected to different interpretations (Sivakumar,
2000).

In a deterministic system, predictions can generally
be made using an evolutionary equation in which the
future value is considered to be dependent upon
present and past values. The prediction process there-
fore involves an accurate estimation of the mapping
function, which transforms the present and past values
to the future value. In a chaotic system, the predictive
power is lost very quickly because of sensitivity to
initial conditions.

The mapping function can be estimated using local
models in which the function approximation at each
time step is done from data sets of the local neigh-
bourhood only in a piecewise manner, or global
models in which the function approximation is done
for the whole domain. Local models include linear or
polynomial function approximations in the local
neighbourhoods whereas global models are generally
of the polynomial type although radial basis functions
have also been used. The scope in this study is
restricted to local models only.

Earlier local models were based on the ‘zeroth
order’ predictor (Farmer and Sidorowich, 1987; Sugi-
hara and May, 1990) in which the prediction is done on
the basis of the behaviour of the series in the closest
neighbourhood of the vector time series X,, which
contains the current value x,. It is believed that better
predictions can be obtained if ‘higher order’ predictors
are used instead (Xia and Li, 1999). An important
question that arises then is how many neighbours
would be needed for a better model? In this paper, a
method to select the number of neighbours using the
generalized degrees of freedom (GDF) (Ye, 1998) is
presented and its validity is examined using time
series, which are known to be chaotic as well as real
hydrological time series. The results are encouraging
to the extent that the model selection based on the GDF
can be considered to be superior to the model based on
an arbitrarily chosen number of neighbours.

2. Embedding dimension

Before a prediction for a given set of chaotic data
can be made, its time delay and the embedding

dimension should be known. There are several
methods of estimating the embedding dimension
(Grassberger and Procaccia, 1983; Abarbanel,
1996), but the false nearest neighbour (FNN) method
(Abarbanel, 1996) is used in this study. The method
works as follows.

For a point X(¢#) at time level ¢, defined as

X(#) = (x(t), x(t — 7),x(t — 27),...,x(t — (d. — D7),
(D

in the reconstructed phase space of embedding dimen-
sion d., and time delay 7, there must exist another
point Y(s), defined as

Y(s) = (x(s5), x(s — 7),x(s — 27),...,x(s — (d, — 1)7))

at time level s # ¢, such that for every point in the
reconstructed phase space Z(u), defined as

Z(w) = (x(u), x(u — 7),x(u — 27), ...,x(u — (d, — 1)7))

at time level u # ¢
[Y(s) = X0)|| = |Z(u) — X@)||.

The nearest neighbour X™() of X(¢), is then Y(s),
which can be written as

XMWy = ™), NG — D, N - 29, .,
)
AN = (d, — D).

The time level ¢ of XNN(t) has very little relation to the
time level at which X(r) appears.

The point X™(#) is called an ENN of X(7) if it
arrives in its neighbourhood by projection from a
higher dimension. This means that the embedding
dimension d., cannot unfold the attractor. If most
points in the phase space have false nearest neigh-
bours, then, the number d, would not be the embed-
ding dimension for the chaotic data. By comparing the
distance between the vectors X(7) and X"(r) in
dimension d. with that in dimension d, + 1, it is
possible to establish whether a nearest neighbour
is true or false.

This is checked using the approximate condition
that if X™(7) is the nearest neighbour of X(#), and
if: (according to the definition of Abarbanel, 1996)

Ix(t + d.r) — X"N(r + d.7)| -

[X(5) = XN = ©)
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Fig. 1. (a) Percentage of global false nearest neighbours for Logistic data. (b) Percentage of global false nearest neighbours for Henon data. (c)
Percentage of global false nearest neighbours for Lorenz data. (d) Percentage of global false nearest neighbours for Mekong data at Nong Khai.
(e) Percentage of global false nearest neighbours for Mekong data at Pakse. (f) Percentage of global false nearest neighbours for Chao Phraya
data at Nakhon Sawan. (g) Percentage of global false nearest neighbours for SST data.

then X™™(r) is an FNN of X(r). By checking for
every point in the phase space whether it has an
FNN, the percentage of FNN points could be
obtained. If for a certain d., the percentage of
FNN points is less than 5%, it is accepted as the
embedding dimension for the data set. For clean
data from a chaotic system, it is expected that the
percentage of false nearest neighbours drops from
nearly 100 in dimension 1 to zero when d. is
reached. Illustrations of this are given in Fig.
1(a)—(c) for the Logistic, Henon and Lorenz data
sets (Egs. (14)—(16)) which are known to be chaotic
under certain parameter conditions, and which have

embedding dimensions of 1-3, respectively. Fig.
1(d)—(g) illustrates the corresponding behaviour
for the real data used in this study.

3. Prediction by local method

To make a prediction in the neighbourhood of the
observed point X(#), a sub-space of dimension d,
within the embedding space of dimension d.(d} =
d.) is chosen (in this study, the equality condition is
assumed). The next signal x(¢r + 7) is then obtained
from the d; dimension components of X(#) via the
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Fig. 1. (continued)
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evolutionary relationship

x(t + 7) = COHPX() = (c1() (D) cu(®)
b1 (X)
b,(X)
X ,
bu(X)
“4)

where C(t) = (c;(?), cy(1),...,cy (1)) is a coefficient
vector that needs to be determined.

Here ®(X(?)) is a vector of M local basis functions,
which is assumed a priori. It could consist of poly-
nomials, or, in the case of sparse data and high

dimensions, radial basis functions. Linear basis
functions are special cases of the polynomials, i.e.

DX(1) = (¢1(X), b2(X), $3(X), ..., dy(X)"
=1, x(7),x(t — 1), x(t —27),...,

x(t = (d — D).

Here M =d, + 1.

To estimate the coefficient vector C(f), we employ a
set of N nearest neighbours, X' (1); r = 1,2,3,...,N of
X()

X'(t) =& @), x (¢ —7,....x"(t — (d — D). (5)

These will, at time level ¢+ 7, evolve to X'(t + 7)
which will be in the neighbourhood of X(# + 7). The
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coefficient vector C(?) is then determined by minimiz-
ing

N M 2

DK+ = cutp,X ), (6)

r=1 m=1

where x'(¢ + 7) is the evolved point at time level 7 + 7
of x"(¢) at time level ¢. This is known.

Once the basis functions are known, the above
minimization by least squares method is a linear
problem. The problem then is to determine the
number of neighbours N that will produce a superior
prediction.

4. Selection of the nearest neighbours

In regression analysis, the degrees of freedom play
a central role in selecting the appropriate statistical
model. The degrees of freedom appear in many
model selection criteria such as Mallows C,
(Mallows, 1973), Akaike information criterion
(AIC) (Akaike, 1974; Wong and Li, 1998), and Baye-
sian information criterion (BIC) (Schwarz, 1978). Yet
these model selection criteria are asymptotic in nature
and do not take into account the modelling procedure
which can often be very complex. Ye (1998) proposed
the GDF, which can handle such complex modelling
procedures of which the so-called ‘data mining’
approach is one example.

The GDF can be defined as the sum of the sensitiv-
ities of each fitted value of the model to perturbations
in the corresponding observed value. Ye (1998)
argued that the GDF is non-asymptotic in nature and
is hence free of the sample size consideration. The
GDF can be applied to many modelling situations
such as artificial neural networks (ANN) and the
prediction of chaotic data using the nearest neighbour-
hood approach. Given X(#), our objective in the latter
application is to choose locally the best set of nearest
neighbours in the prediction of x(t + 7) using the
GDF. The assumed local relationship is linear.
Contrary to common practice with a fixed number
of nearest neighbours, we believe that for each X(7),
a ‘best’ set of nearest neighbours should be able to
provide superior predictions. The reasons are obvious
since a fixed number of nearest neighbours either may
not be enough or may be too many (in which case

over-fitting the noisy data could occur) for a particular
local environment.

Using the local prediction method introduced
earlier, the future values of the data series can be
obtained. Here we show how to choose the best
number of neighbours by using the GDF method.

Suppose that we have the following relationships
for N neighbours of X(7)

Y=CX+V, @)
where
Y=+ 0,320+, .., N0+ 1)

is the response vector of unknown values of X(¢ + 7)
at time ¢ + 7, V is a row vector of error values

C=(c1®, 2D, ...,cp(0)

and
H(X) (XD 1 (XM)
HHXH P XD b (X")
X =
du(X") (X duX™)

If the basis function is linear, then,
1 1 1
x@) () PO

e —(d - Fe—d-Dn) - M- - Do

If p, the mean vector of Y, is estimated by the fitted
value [i,
p=CX, ()

then the estimates of C and [i are obtained by the least
squares method as

Cc=yx'xxH! 9)
and
p=YX'xx"Hx. (10)

For different values of the number of neighbours N,
there will be different fitted vector functions fi, which
in general will be at variance with the observed values
Y. A better model is one, which has a smaller
variance.
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To estimate the value of o for a given number of
neighbours, we need its GDF D. Ye (1998) defined it as

N
D= ) hi(p), (1D
i=1
where
OE [ (Y
hi(p) = M. (12)

dy;

Here f,(Y) and Y; are the ith components of vectors
I(Y) and Y, respectively. The function E,[4;(Y)] can
be thought of as a smoothing of the fitted value fi;. The
GDF is the sum of the average sensitivities of the fitted
value f;(Y) to a small perturbation in y;.

If the assumed local relationship is linear as in this
study, then, the GDF simplify to the trace of the
smoothing matrix as follows

Dw=mm=2m=2%% (13)
where H = (1;;),5, = X(X"X) 'X", and y; and /i,; are
the ith components of Y and fi. Therefore, the GDF in
this case are the sum of the sensitivities of the fitted
values [i; with respect to the observed values y;. Eq.
(13) is easier to compute although Egs. (11) and (12)
have more generality. In this study, only Eq. (13) is
used. A general algorithm to calculate D by Eqgs. (11)
and (12) has been given by Ye (1998).

The sum of squared residuals for a chosen number
of neighbours, RSS, is then expressed as

RSS=(Y-p)Y - )" (14)

An unbiased estimation of the variance o is given as

»_ RSS (Y- -@)'

~ N-D N-D '
This provides a tool to evaluate the goodness of the
model with the chosen number of neighbours.

By comparing the estimations of variances o for
different number of neighbours, the best one can be
selected. It is then used for prediction. The following
procedure is used in this study:

o s)

e for N=2d,+1,...,2d; + 10, obtain 10 local
models for every N;

e for each model, obtain D and o2, using Egs. (13)
and (15);

e choose N* from among N which has minimum o-?;

e use N" to construct a local model and predict the
next signal x(¢ + 7);

e obtain lead-time predictions recursively for the
desired number of time steps.

The number of neighbours N = 24, + 1,...,2d, +
10 used in our procedure is not the only choice. In
general, N must be larger than d;. However, if N is too
large, there may be some neighbours that are far away
from X(¢) and would not lead to a better model. Our
computing results show that the best range of N for a
better model is between 2d, + 1 and 2d, + 10.

In this study, o-*(N) is used as the criterion to select
the best model for prediction although there are other
criteria to evaluate the goodness of a modelling proce-
dure. The performance of this approach is illustrated
by the following numerical examples.

5. Application

The proposed method is first used to predict some
theoretical functions, which are known to become
chaotic under certain parameter conditions. These
include the Lorenz map, the Henon map and the
Logistic map. They are, respectively, defined by the
following equations:

dx d
E=a’(y—x), —y=—xz+rx—y,

dr (16)
% = xy — bz,
x,=1- ax,z,l + bx,_»; a7
x, = 3.85x,_ (1 — x,-1). (18)

The Lorenz map (Eq. (16)) becomes chaotic for o =
16, r =45.92 and b =4 and the Henon map (Eq.
(17)) for a = 1.4 and b = 0.3. By solving the Lorenz
equation for the x-component by the Runge—Kutta
method with a time step of 0.01 for the assumed initial
values of xy = 12.5, yy = 2.5 and z5 = 1.5, a series of
discrete data [x(r), t=1,2,3,...100,001] is gener-
ated. Then, by using a time delay 7= 10, a new
data series [y(s) = x(1 + s7), s =1,2,...,10000] is
obtained. This is the Lorenz data series used in this
study. The remaining data series were generated using
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Table 1
Summary of data and prediction error indicators ((Data)-1: predicted by fixed number of neighbours; (Data)-2: predicted by chosen number of
neighbours; Mekongl: data at Nong Khai; Mekong?2: data at Pakse)

Data set Length Time Embedding Origin for Mean square Mean square Coefficient Coefficient
of data, delay, dimension prediction error for error for of variation of variation
N T 20 steps 50 steps for 20 steps for 50 steps
Henon-1 20 000 1 2 10 000 705 % 107% 5841073 104x 1077 961 x 107°
Henon-2 20 000 1 2 10 000 676 x107* 533% 1073 100x 1077 872x 1073
Logistic-1 20 000 1 1 10 000 262% 1073 278 % 1073 5621073 597 %1073
Logistic-2 20 000 1 1 10 000 0 0 0 0
Lorenz-1 10 000 1 3 9000 130x 1073 383 896 x 107° 273 %1072
Lorenz-2 10 000 1 3 9000 416x 1073 901 x 107! 287 % 1073 561 % 1073
Mekong]1-1 4292 1 3 4000 496 x 10" 496 x 10" 454%107° 361 %1073
Mekong1-2 4292 1 3 4000 420%x 107" 253 % 10* 385%x 1077 184 x107*
Mekong2-1 4292 1 2 4232 163 x 10* 306 x 10° 177x107* 586 % 1072
Mekong2-2 4292 1 2 4232 265 % 103 369 x 10° 288 % 1077 707 %X 1073
Chao-1 5844 1 3 5700 310 10" 491 % 10" 272x 1074 547x107*
Chao-2 5844 1 3 5700 133x 10" 152 % 10? 117x107* 169% 1073
SST-1 1380 1 3 1100 216 969 6291073 200 1072
SST-2 1380 1 3 1100 300 107! 301x 107! 874%x107* 621x 1074

initial values xy = 0.3 and x; = 1.2 for the Henon
map and x, = 0.43 for the Logistic map.

The hydro meteorological data sets used in this
study include the daily discharges of Chao Phraya
river at Nakhon Sawan (15.67°N and 100.2°E, basin
area, 110 569 km?*, GRDC #2964100) in Thailand for
the period April 1978—March 1994, the daily
discharges of Mekong river at Nong Khai (17.87°N
and 102.72°E, basin area, 302 000 kmz, GRDC
#2969090) in Thailand, and of the same river at
Pakse (15.12°N and 108.80°E, basin area,
545 000 km?, GRDC #2469260) in Lao for the period
April 1980-December 1991, and the monthly mean
sea surface temperature (SST) anomaly over the
region bounded approximately by 6°N-6°S and
180°-90°W for the period January 1872—December
1986, which has been defined as S-Index by Wright
(1984) and used to identify climatic anomalies attrib-

uted to El-nino and southern oscillation. The first
three data sets were obtained from the GRDC in
Germany and the last one from a table compiled by
Wright (1989). A few missing records of the data sets
were replaced by the long-term averages. All the real
data sets used were noise reduced by methods
described in a separate study (Jayawardena and
Gurung, 2000) before using them in the modelling
and prediction described in this study.

6. Results and discussion

The prediction process of a time series by the dyna-
mical systems approach requires knowledge of three
parameters; the time delay 7, the embedding dimen-
sion, d., and the number of nearest neighbours, Ng.
The time delay may be chosen as the lag time at which

Fig. 2. (a) Actual and predicted values of X(#) for Logistic map (prediction-1: using fixed number of neighbours; prediction-2: using chosen
number of neighbours; origin for prediction; # = 10000). (b) Actual and predicted values of x(¢) in Henon map (prediction-1: using fixed
number of neighbours; prediction-2: using chosen number of neighbours; origin for prediction: = 10 000). (c) Actual and predicted values of
x(f) in Lorenz equation (prediction-1: using fixed number of neighbours; prediction-2: using chosen number of neighbours; origin for
prediction: 1 = 9000). (d) Observed and predicted discharges in Mekong river at Nong Khai (prediction-1: using fixed number of neighbours;
prediction-2: using chosen number of neighbours; origin for prediction: = 4000). (e) Observed and predicted discharges in Mekong river at
Pakse (prediction-1: using fixed number of neighbours; prediction-2: using chosen number of neighbours: origin for prediction: t = 4232). (f)
Observed and predicted discharges in Chao Phyraya river at Nakhon Sawan (prediction-1: using fixed number of neighbours; prediction-2:
using chosen number of neighbours; origin for prediction: t = 5700). (g) Observed and predicted sea surface temperature anomaly (S-Index)
(prediction-1: using fixed number of neighbours: prediction-2: using chosen number of neighbours; origin for prediction: t = 1100).
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Fig. 2. (continued)

the auto-correlation falls below a threshold value,
which is commonly defined as 1/e, specially if the
auto-correlation function is approximately exponen-
tial (Tsonis and Elsner, 1988). Another suggestion is
to take it as the lag time at which the auto-correlation
first becomes zero if it crosses the zero line (Mpitsos
et al., 1987). From a mathematical point of view, 7, is
arbitrary (Kantz and Schreiber, 1997, p. 130). Schou-
ten et al. (1994) used a value of unity for 7, for conve-
nience. A possible problem that may arise in the
incorrect choice of the time delay is that if it is too
small, the data would not be independent, and if it is
too large, the series may become over-smooth thereby
losing some information. Despite numerous sugges-
tions, there is no rigorous method of determining an
optimal value for 7. In this study, a value of 10 was
assumed for the Lorenz data set (N = 10000), and a

value of unity was assumed for all the other data
sets.

A precise estimation of the embedding dimension is
needed only when determinism has to be explored
with minimum computational effort. For practical
purposes, the product of the embedding dimension
and the time delay is more important than their indi-
vidual values (Kantz and Schreiber, 1997, p. 34). The
embedding dimension gives only the lower limit of
the number of dimensions needed for the faithful
reconstruction of the phase space. Any dimension
value greater than the embedding dimension would
also be equally satisfactory. Choosing a large value
however would be redundant. In this study, an esti-
mate of the optimal value of the embedding dimen-
sion is obtained by the FNN method described earlier.
Plots of the percentage of FNN points with the
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dimension for all the data sets used in this study are
given in Fig. 1(a)—(g).

The third parameter, Ng, needed for the prediction
process is also the focus of this study. It can vary from
a single nearest neighbour which gives rise to the
zeroth order model (Farmer and Sidorowich, 1987)
to more than one nearest neighbour (Smith, 1992) in
which case the number has to be determined by some
means. In this study, arbitrarily fixed Ny (Fig. 3(a)—
(g)) as well as N chosen on the basis of the GDF have
been used. In the latter case, the number of neighbours
for different prediction times varied over a wide range
(Lorenz data, 7—14; Henon data, 6—13; Logistic data,
6—12; Chao Phraya data, 7-16; Mekong! data, 7-16;
Mekong?2 data, 7-16 and SST data, 7—-16); see also
Fig. 3(a)-(g)-

For all the data sets used, the method in which the
number of neighbours is chosen on the basis of the
GDF gives better predictions in the short term when
compared with the method in which the number of
neighbours is fixed. A summary of the results is
given in Table 1, which shows the mean square errors
and coefficients of variation for 20 steps as well as for
50 steps of lead-time prediction. For the 20-step lead-
time, the values of the coefficient of variation using
chosen Ny are generally one order less than those
using fixed Np. For the longer lead-time of 50 steps,
the error indicators are larger in magnitude and there
is no particular pattern of variation relative to the fixed
neighbour method. This illustrates the inherent unpre-
dictable characteristic of non-linear deterministic
processes for long lead-times.
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Fig. 3. (a) Number of neighbours used in prediction-2 for Logistic data (prediction-1: using fixed number of neighbours (six); prediction-2:
using chosen number of neighbours; origin for prediction: = 10000). (b) Number of neighbours used in prediction-2 for Henon data
(prediction-1: using fixed number of neighbours (eight); prediction-2: using chosen number of neighbours; origin for prediction:
t = 10000). (c) Number of neighbours used in prediction-2 for Lorenz data (prediction-1: using fixed number of neighbours (eight); predic-
tion-2: using chosen number of neighbours; origin for prediction: t = 9000). (d) Number of neighbours used in prediction-2 for Mekong data at
Nong Khai (prediction-1: using fixed number of neighbours (eight); prediction-2: using chosen number of neighbours; origin for prediction:
t = 4000). (e) Number of neighbours used in prediction-2 for Mekong data at Pakse (prediction-1: using fixed number of neighbours (eight);
prediction-2: using chosen number of neighbours; origin for prediction: t = 4323). (f) Number of neighbours used in prediction-2 for Chao
Phraya data at Nakhon Sawan (prediction-1: using fixed number of neighbours (eight); prediction-2: using chosen number of neighbours; origin
for prediction: + = 5700). (g) Number of neighbours used in prediction-2 for SST data (prediction-1: using fixed number of neighbours (eight);
prediction-2: using chosen number of neighbours; origin for prediction: r = 1100).

The comparisons of predictions by the two methods
are shown in Fig. 2(a)—(c) for the Henon, Logistic and
Lorenz data, and Fig. 2(d)—(g) for the Chao Phraya
data, Mekong data at Nong Khai, Mekong data at
Pakse and SST data, respectively (In some cases, the
actual and predicted-2 coincide in the scale of the
graph, and therefore do not show two distinct lines.
This can also be seen in Fig. 4.).

Fig. 4(a)—(g) shows the variation of the cumu-
lative mean square error with the number of lead-
time predictions for the different data sets. These
clearly indicate that predictions are possible in
the short term, but the predictive power is not
long lasting. Another point of importance in this
kind of predictions is the effect of the predicting
origin. Several origins have been tried for the
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Fig. 3. (continued)

data sets, and for most cases, the results are still
valid.

7. Conclusion

In this study, a new criterion, based on the GDF
method, for the choice of the number of neighbours
needed for a ‘better’ local model of a time series is
introduced. With the examples used, it can be
concluded that the GDF criterion certainly leads to a
better model despite the fact that only linear basis
functions have been used in this study.

The first three examples use time series, which

are known to be chaotic and therefore deterministic.
As shown by the error indicators, the superior
predictive capability of the proposed approach is
well demonstrated. The method is then applied to
practical hydrological time series, which may have
evolved from deterministic processes. The results
again are quite convincing. The main finding in
this study is that the number of neighbours needed
for modelling in the phase space is best determined
by the GDF method. It is also conjectured that
hydrological time series could perhaps be modelled
better by the dynamical systems approach. It can
only be substantiated after comparison with others
methods.
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Fig. 4. (a) Cumulative mean square errors for Logistic data (prediction-1: using fixed number of neighbours; predicted-2: using chosen number
of neighbours; origin for prediction: = 10000). (b) Cumulative mean square errors for Henon data (predicted-1: using fixed number of
neighbours; predicted-2: using chosen number of neighbours; origin for prediction: t = 10 000). (c) Cumulative mean square error for Lorenz
data (prediction-1: using fixed number of neighbours; prediction-2: using chosen number of neighbours; origin for prediction: t = 9000). (d)
Cumulative mean square errors for Mekong data at Nong Khai (prediction-1: using fixed number of neighbours; prediction-2: using chosen
number of neighbours; origin for prediction: # = 4000). (e) Cumulative mean square errors for Mekong data at Pakse (prediction-1: using fixed
number of neighbours; prediction-2: using chosen number of neighbours; origin for prediction: ¢ = 4232). (f) Cumulative mean square errors
for Chao Phraya data at Nakhon Sawan (prediction-1: using fixed number of neighbours; prediction-2: using chosen number of neighbours;
origin for prediction: t = 5700). (g) Cumulative mean square errors for SST data (prediction-1: using fixed number of neighbours; prediction-2:
using chosen number of neighbours; origin for prediction: t = 1100).
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