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Abstract

An urban fractured-rock aquifer system, where disposal of storm water is via ‘soak holes’ drilled directly into the top of
fractured-rock basalt, has a highly dynamic nature where theories or knowledge to generate the model are still incomplete and
insufficient. Therefore, formulating an accurate mechanistic model, usually based on first principles (physical and chemical
laws, mass balance, and diffusion and transport, etc.), requires time- and money-consuming tasks.

Instead of a human developing the mechanistic-based model, this paper presents an approach to automatic model evolution in
genetic programming (GP) to model dynamic behaviour of groundwater level fluctuations affected by storm water infiltration.
This GP evolves mathematical models automatically that have an understandable structure using function tree representation by
methods of natural selection (‘survival of the fittest’) through genetic operators (reproduction, crossover, and mutation).

The simulation results have shown that GP is not only capable of predicting the groundwater level fluctuation due to storm
water infiltration but also provides insight into the dynamic behaviour of a partially known urban fractured-rock aquifer system
by allowing knowledge extraction of the evolved models. Our results show that GP can work as a cost-effective modelling tool,
enabling us to create prototype models quickly and inexpensively and assists us in developing accurate models in less time,
even if we have limited experience and incomplete knowledge for an urban fractured-rock aquifer system affected by storm
water infiltration. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Urban fractured-rock aquifer; Storm water infiltration; Groundwater level fluctuation; Evolutionarily self-organising modelling;
Genetic programming

1. Introduction

Urban storm water disposal via ‘soak holes’ drilled
directly into the top of fractured-rock basalt has
occurred in the Mt Eden area of Auckland, New Zeal-
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and for at least the past 60 years. This method brings
some benefits: (1) the decrease of surface water
contamination in urban streams, and (2) an increase
in recharge to the shallow aquifer. However, storm
water infiltration on a fractured-rock aquifer can
harm groundwater resources in two ways: (1) by chan-
ging natural groundwater flow patterns due to
increased volume of storm water; and (2) by elevating
pollutant concentrations and loadings.

Storm water moving through the numerous soak
holes may contain or mobilise high levels of contami-
nants, such as sediment, suspended solids, nutrients,
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heavy metals, pathogens, toxins, and oxygen-demand-
ing substances. Individually and combined, these
pollutants can reduce groundwater quality and threa-
ten beneficial uses as well as impact the ecology of
surface water at discharge areas.

Until recently few studies have been done to deter-
mine the effect of this disposal method on a given
aquifer system (Rosen et al., 1999; Rosen et al,
2000a,b; Hong and Rosen, 2001). Hong and Rosen
(2001) have applied an artificial neural network-
based pattern analysis to analyse the effect of the
storm water infiltration on the groundwater quality,
and to determine the response of the groundwater
quality variables due to the storm water infiltration
in an urban fractured-rock aquifer.

In order to better understand the impacts of storm
water infiltration on the groundwater level, predictive
groundwater models will be necessary for sustainable
groundwater management. Thus, this study aims to
develop a predictive model to identify the effect of
the storm water infiltration on groundwater level fluc-
tuation.

The fractured-rock aquifer system chosen for this
study has many complex and poorly known phenom-
ena. Theories or knowledge to generate the dynamic
model that is able to describe the dynamic ground-
water level fluctuation due to storm water infiltration
are still incomplete and insufficient to construct fully
physical-based models. Therefore, formulating an
accurate physical-based model, usually expressed in
the form of differential equations, requires time- and
money consuming tasks. Moreover, the resulting
model still has large sources of uncertainty such as
closure assumptions, unmodelled phenomena, empiri-
cal formulas, and uncertainty in the model input.

As an alternative to the physical-based modelling
approach, a new approach, which is called genetic
programming introduced by Koza (1992) as a self-
organising modelling tool, is implemented in this
work for understanding the dynamic of groundwater
level fluctuation affected by storm water infiltration.

Genetic programming (GP), a branch of the well
known field of evolutionary computation, belongs to
the class of artificial intelligence (Al) computation
algorithms. GP is exactly what the name implies: a
technique to evolve computer models automatically
by methods of natural selection (survival of the
fittest). There is a special form of GP, called symbolic

regression (Koza, 1992), where the induced models
are restricted to mathematical functions. The purpose
of symbolic regression is to develop mathematical
models that fit the input—output data to satisfy the
complex problem.

GP has the advantages that no a priori modelling
assumption has to be made. Moreover, this technique
can discriminate between relevant and irrelevant
system inputs, yielding parsimonious model struc-
tures that accurately represent system characteristics
(McKay et al., 1996) and provide us with a descriptive
solution. Due to its advantages, GP has successfully
been used for engineering problems with good results
such as process modelling and control (Bettenhausen
and Marenbach, 1995; Marenbach et al., 1997,
McKay et al., 1996; McKay et al., 1997; Willis et
al., 1997; Hong, 2001a,b), robot control (Banzhaf et
al., 1997), hydrological modelling (Babovic and
Abbott, 1997; Keijzer and Babovic, 1999; Whigham
and Craper, 1999), medical application (Gray et al.,
1996), and applications for financial system (Oussai-
dene et al., 1996).

Firstly, this paper presents an overview of GP that
includes the basic theory of GP, and a discussion of its
power as a new modelling tool. Secondly, the practi-
cal implementation technique of GP for general
modelling work is described in detail. Real data
taken from monitoring bores in a fractured-rock aqui-
fer are used to demonstrate how GP can automatically
evolve models with relatively simple, understandable
structures. The resulting models evolved by GP are
used to understand the effect of the storm water infil-
tration on the groundwater level fluctuation. This
shows the feasibility of using GP as an intelligent
self-organising modelling tool for an aquifer system.

2. Genetic programming
2.1. Basics of genetic programming

Evolutionary algorithms (EA) are stochastic search
methods that mimic the metaphor of natural biological
evolution. A variety of EA have been proposed. The
major ones are: Genetic Algorithms (Holland, 1975;
Goldberg, 1989), Evolutionary Programming (Fogel,
1994), Evolutionary Strategies (Rechenberg, 1973),
and Genetic Programming (Koza, 1992). Each of
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Fig. 1. An example of a function tree used in GP.

these constitutes a different approach. However, they
all are inspired by the same principles of natural
evolution and share a common conceptual base of
simulating the evolution of individual structures via
processes of selection, mutation, and reproduction.

GP, which has been introduced by Koza (1992) as a
method for genetically breeding populations of math-
ematical models (function trees), is an extension of
the genetic algorithms (GAs). Their main difference
is that individuals (models) in GAs are represented by
fixed-length strings (usually binary) whereas indivi-
duals in GP, which constitute a population, are symbol
string codes for mathematical models. These mathe-
matical models are coded as function tree expressions
and thus, GP evolves function trees to solve a specific
problem.

An example of a GP tree is shown in Fig. 1. The
binary arity functions, ‘*’°, ‘ +’°, ¢ —’ each have two
sub-trees. The sub-tree on the right containing * —’,
‘Z’ and 4, represents the arithmetic expression ‘Z-4’.
The tree as a whole represents f(X,Y,Z) =Y + 3X +
Z— 4.

In Fig. 1, the connection points are called nodes.
According to the position in the tree, these nodes are
classified into: (1) Inner nodes are known as functions,
I'y. These function nodes consume one or more input
values and produce a single output value (e.g. —, *,
/> etc.). These provide the internal cells in expression
trees. (2) Nodes at the end of points of trees (leaf
nodes) are called terminal, T. Terminal nodes repre-
sent external inputs, constants, and zero augment
functions.

For any particular problem, it is necessary to
specify the list of functions and terminals that will
be used to create the function trees. The solution
space to be searched is constrained by the choice of
function set and terminal set, together known as the
primitive set.

In GP, an individual or chromosome is an element

of the set of all possible combinations of functions that
can be composed recursively from a set I’y of basic
function and a set 7 of terminals. GP works on a
population of individuals (mathematical models)
applying the principle of survival of the fittest to
produce a better and better model for achieving a
solution. At each generation, new sets of models,
called offspring, are created by the process of select-
ing models according to their level of fitness in the
problem domain and breeding them together using
genetic operators (reproduction, crossover, and muta-
tion). These offspring (new models) then form the
basis for the next generation. This process leads to
the evolution of populations of models to produce
better and better model to a solution.

Six essential components need to be designed in
applying the GP for model induction:

2.1.1. Generating the initial population

In this work, the ‘grow’ method (Koza, 1992) is
used to create random individuals for the initial
generation. In this method creating random trees is
easily done by a recursive process: For the root
node select a random primitive from the combined
set of functions and terminals. If a terminal is selected
the process ends there. Otherwise, for each of the
functions arguments produce a random sub-tree by
repeating the same process. In practise, it is necessary
to set a limit on the size to which the tree can grow by
only selecting from the list of terminals after reaching
a certain depth. Also, since trees consisting of only a
single terminal are not likely to be very interesting
they are usually excluded by forcing the choice of
primitive at the root of the tree to be a function.

2.1.2. Assignment of fitness

A crucial first step for evolving any model under
the GP is to design a fitness function that determines
how well a model is able to solve the problem. In
symbolic regression of GP, the fitness is a numeric
value assigned to each member of the population
based on the error between the model inducted by
GP and the actual data. The performance of each
model inducted is tested against a set of fitness
cases. Based on the fitness, models of the population
are selected for reproduction.
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Fig. 2. Roulette wheel selection: individual 1 will be selected for
reproduction with a probability of 50%.

2.1.3. Parent selection

Once this fitness measure is constructed, it is used to
select models. This is done in a probabilistic manner,
such that even the least fit model stands a small, but finite
chance of making it through to the next generation. The
process of selection ensures that models of higher fitness
are more likely to be chosen for reproduction than those
of lower fitness. The selection of parent models is based
on the principle of survival of the fittest, which governs
the extent to which a model can influence future genera-
tion. There are several ways of selecting models: fitness
proportionate selection, roulette wheel selection,
stochastic universal sampling, truncation selection,
etc. Roulette wheel selection has been used in this
work. Roulette wheel selection is a special case of fitness
proportionate selection. Models are chosen for repro-
duction with probabilities directly proportional to their

Parents
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Fig. 3. Crossover.

fitness. For example, if there is a population of four
models with the following fitness:

Model Fitness
1 0.8
2 0.4
3 0.2
4 0.2

then model 1 has a probability of 50% to be selected
for reproduction each time a model is selected (each
time the wheel is spun). In order to find the probability
for each model one has to calculate the sum of quali-
ties of all models and divide the quality of each model
by this sum. In this example for model 1, this would
be 0.8 divided by (0.8 +04+02+0.2=1.6)
equals 0.5 (Fig. 2). Thus, those models of greater
fitness are expected to receive more spaces in the
new population than are those of lesser fitness and
expected number of spaces filled by a model is
given by the example above.

2.1.4. Creating subsequent generations

Once an individual (a model) has been selected
from the current population, three genetic operators
(crossover, mutation, and direct reproduction) may be
applied. The choice of each operator is probabilistic,
with crossover probability P., mutation probability
P, and reproduction probability P.(= 1 — P, — Py,).

2.14.1. Reproduction. A single model is copied
unaltered to the new population.

2.1.4.2. Crossover. The function of the crossover
operator is to generate new or offspring models from
two parent models by combining information
extracted from the parents. This operator tries to
combine parts of two models in order to create a
superior model. In GP, this is done by selecting a
random sub-tree from within each of the parent
models, then swapping them over. Fig. 3 shows two
function trees in the parent models before and after the
crossover operation. This small difference between
parents and offspring models shown in Fig. 3 is vital
for the GP and allows selection pressure to drive the
evolution of the population.
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Fig. 4. Mutation genetic operation.

2.1.4.3. Mutation. Even though crossover comes up
with many new offspring it does not introduce any
new information into the population and the
population tends to become more and more
homogeneous as one begins to dominate. A
mutation feature is often introduced to guard
against premature convergence (to a non-optimal
solution). In GP, a single model is chosen and a
random sub-tree in it is replaced with a new,
freshly generated sub-tree, then that model is
placed in the new population.

In Fig. 4, the function tree (A) chosen is now
mutated. The sub-tree OLD is removed and replaced
by the sub-tree NEW, which has been randomly
generated, to produce the final function tree (C).

2.1.5. Reduction

After a population of new models has been gener-
ated through genetic operators, the population
contains individuals from two generations—parents
and offspring. During the reduction phase, a decision
must be made which models advance to the next
generation and which are discarded. In this work,
the concept of ‘generation gap’, which is defined as
how many percent of the old generation are replaced
by the new generation, is used. In this case, the
generation gap is 0.9, which means just 10% of the
old generation survives.

2.1.6. Parameter optimisation of models evolved

During the evolution of models, one of the most
important issues is the optimisation of the parameters
included in the models evolved. Generally, the models
generated by GP may include a number of internal model
parameters, thus the optimisation process of these model
parameters is required to prevent the possibility of
removing a potentially good model due to poor model
parameters. In an iterative genetic loop (Fig. 5), each
model generated by GP is adapted to the observed data
by optimising its internal model parameters using the
non-linear gradient descent algorithm. The optimised
models then replace the unoptimised model in the popu-
lation. After this step, a fitness value describing the
model performance of a model is evaluated. A similar
approach is found in the works of McKay et al. (1997),
Marenbach et al. (1997), and Greeff and Aidrich (1998).

The basic mechanics of GP for a specific problem
that required finding a mathematical model are based
on a repetitive computational process and can be
summarised as:

1. Initialisation: Generate an initial population of N
models (individuals) randomly. Generation K = 0
2. Genetic Loop: Repeat until termination criterion is
met (maximum generation K)
(a) Execute each model in the population
(b) Evaluate fitness of each model of current
population
(c) Generate a new population N by reproduc-
tion, crossover, and mutation of models from
current population Ng
(i) Select three genetic operators (P, P., Pp,)
probabilistically
(ii) Perform three genetic operators to gener-
ate new models
(iii) Repeat steps (i)—(ii) to generate a total of
M(= 0.9 X N) new models
(iv) (N — M) fittest models from the parent
population are added to M new models to
create whole new models of population for
the next generation equal in number to the
previous population, rather than replacing
the entire parent population with new models
(d) Go to next generation: K + 1

Fig. 5 shows a flowchart of these steps for the GP
paradigm.
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Fig. 5. Flowchart of the genetic programming paradigm.

3. Study area is New Zealand’s largest city with a population of
over one million people in the greater Auckland

3.1. Mt Eden aquifer system area. The geology of the shallow, unconfined ground-
water aquifer system is comprised of fractured-basalt,

The study area is in Mt Eden, which is an inner scoria and tuff, from small volcanic cones (Mt Eden,

suburb of Auckland, New Zealand (Fig. 6). Auckland Mt Albert, Three Kings) that were active about 20,000
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Fig. 6. Location of the Mt Eden aquifer in the Auckland metropolitan area.

years ago. Sandstone and siltstone sediments of the
Miocene Waitemata Group underlie the basalt. Wait-
emata Group sediments have relatively low perme-
ability and act as a barrier to groundwater flow
(Russell and Rodgers, 1977). Groundwater flows
through the fractured basalt in a shallow, unconfined
aquifer system that is channelled through topographic

lows in the Mt Eden area. The aquifer system has two
separate arms that meet at the Western Springs outlet
(Fig. 7). Land use in the catchment is mostly residen-
tial housing, but significant pockets of industry also
occur. The area includes some of the most heavily
travelled roads in New Zealand (Viljevac, 1998).
Disposal of storm water in the Mt Eden area of
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Western Springs Catchment
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3 - Selkirk

4 - Watson

5 - Volcanic

6 - Morvern
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8 - Bellevue

9 - Marsden

10 - Rocky Nook

11 - Meola

Fig. 7. Geologic map of the Western Springs catchment and aquifer showing the location of groundwater sampling sites.
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Table 1
Information on sampling bores (RWL = relative water level)

Watson Ave. Volcanic Rd. Bellevue Res.
Bore diameter (mm) 100 50 50
RL depth of well 15 11 31
RWL 28.18 26.41 342
Aquifer thickness (m)  38.3 24 34.3
Land use type Commercial Commercial Residential

Storm water and Storm water directly disposed into

Storm water directly disposed into

Storm water directly disposed into

rainfall drainage type ground mainly through the soak holes ground mainly through the soak holes ground mainly through the soak holes

Auckland, New Zealand is via ‘soak holes’ drilled
directly into the top of fractured-rock basalt. These
soak holes collect storm water and sediment runoff
from city streets throughout Mt Eden. There are
hundreds of these soak holes in the Mt Eden area,
many of which are up to 20 m deep, which provide
direct access of storm water infiltration below the
water table. Storm water disposal via soakage pits
has occurred in Auckland for at least the past 60
years, but until recently few studies have been done
to determine the effect of this disposal method on the
aquifer (Rosen et al., 1999).

The groundwater in this area has a relatively high
through-flow and is used for small business water
supplies and irrigation water for industrial uses such
as nurseries and golf courses in the region. Pump tests
conducted by the Auckland Regional Council indi-
cates that hydraulic conductivity ranges from 6 to
126 m/d, with an average of approximately 58 m/d.
On average, 2500 m*/d is contributed by rainfall
within the Three Kings crater (Thompson, 1998) and
Viljevac and Smaill (1999) have calculated a recharge
of 68,800 m?*/d for the whole aquifer based on the
present recharge including storm water soakage. A
calculation of pre-urbanisation recharge rates indi-
cates that recharge to the aquifer has doubled because
of the storm water soak holes (Viljevac and Smaill,
1999).

3.2. Data

The three monitoring sites that were chosen for this
work are the Watson Ave., Volcanic Rd., and Belle-
vue Res. sites in Fig. 7. Groundwater level fluctuation
in the three monitoring wells was monitored using

automatic data loggers equipped with pressure trans-
ducers. All groundwater level data were recorded on a
1-h time interval for the period 16/09/1998-16/11/
1998. Rainfall records at 1-h intervals were available
at a National Institute of Water and Atmospheric
(NIWA) monitoring site, which is located near the
Watson Ave. site. Characteristics of the groundwater
monitoring sites are described in Table 1.

4. Application and results
4.1. Implementation aspects of GP

The data set consists of 891 hourly measured
input—output data points. The data was split into
two sets: (1) a training set including 60% of the
data, and (2) a test set including the remaining 40%.
The training set was used to construct a model. The
remaining 40% of the data were used to test the
constructed model in order to show how well a
model generalizes or predicts unseen data not used
during the training phase.

A crucial first step for evolving any model
under the GP is to design a fitness function
which determines how well an evolved model is
able to solve the problem. In symbolic regression
of GP, the fitness is based on the error between
the model inducted by GP and the actual data.
The performance of each function inducted is
tested against a set of fitness cases.

In our case, the fitness is a numeric value assigned
to each member of the population base on the error
between the function expressed by the actual and
predicted solutions. In this paper, the fitness
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Table 2

GP parameters for all simulations (GWL(k), GWL(k—1),
GWL(k—2), GWL(k—3), and GWL(k—4), represent the ground-
water level at time k, k—1, k—2, k—3, and k—4, respectively.
ra(k), ra(k—1), ra(k—2), ra(k—3),..., and ra(k—10) are the rainfall
at time k, k—1, k—2, k—3,..., and k—10, respectively)

Generations 50  Population size 300
Mutation probability, P, 0.25 Crossover probability, P, 0.65
Operators = Generation gap 0.9

GWL(k), GWL(k—1), GWL(k—2),
GWL(k—3), GWL(k—4), ra(k—1),
ra(k—2), ra(k—3), ra(k—4), ra(k—5),
ra(k—06), ra(k—7), ra(k—8), ra(k—9),
ra(k—10)

+, —, *,/, power, sqrt, log, exp

Terminals set 7

Functional set

calculation used is:

1

= 50T F RMSE/B’

N o (1)
> () = y(m))’

where RMSEY\| “=!
N

where B is the variance of the output variable over the
same data interval, 1-N, y(n) is the actual value, and
y(n) is the predicted value by GP inducted model, and
N is the number of the data.

Other crucial steps in applying GP to evolve a
population for solving a given problem are to: (1)
define the set of program primitives, namely the set
of terminals 7 and the function set I'y; (2) define the
fitness function f,, which assigns a fitness to each
individual program; (3) define the control parameters
(population size N, maximum number of generation
K, crossover probability P_, and mutation probability
P,; (4) define a search termination criterion in terms
of quality of solution to be obtained. Table 2 shows
common GP parameters used for all the modelling
processes in this work.

In this study, the GP program has been developed
with a graphical user interface that allows the user to
use the program in a sophisticated mouse point and
click environment of MATLAB™ . Some part of the GP
program was originally written in C*" and compiled
to generate C MEX files, which call C** files directly
from MATLAB. This has been done to increase the
performance of the simulation for the model evolution

process by GP program, reducing the simulation time.
Some part of the GP program was also adopted from
the work of McKay et al. (1996) and modified. All
simulations were done on a SUN engineering work-
station.

4.2. Simulation results and discussion

A multiple-input, single-output (MISO) GP model
was first developed for the Watson Ave. site. Gener-
ally, the groundwater level fluctuation is dynamic due
to rainfall events at a certain time instant that is a
combined effect of various processes initiated at
different moments in the past. Hence, the model of
predicating the groundwater fluctuation due to storm
water infiltration should be considered as depending
not only on the current value of input, but also on past
inputs. Thus, the numbers of past rainfall and past
groundwater level as time delay embedding are used
as inputs to the model.

Initially, a MISO GP model was initialised with 16
input variables given by:

G/VVL(k +1) zf(GWL(k), GWL(k — 1),
GWL(k — 2), GWL(k — 3), GWL(k — 4),
ra(k), ratk — 1), ra(k — 2), ra(k — 3), ra(k — 4), (2)

ra(k — 5), ra(k — 6), ra(k — 7),

m@—SLm@—9Lm&—lm)

where G/VVL(k + 1) is the predicted groundwater level
at time k + 1. GWL(k), GWL(k — 1), GWL(k — 2),
GWL(k — 3), and GWL(k — 4), represent the ground-
water level at time k, k — 1, k — 2, k— 3, and k — 4,
respectively. ra(k), ra(k — 1), ra(k — 2), ra(k — 3), and
ra(k — 4) are the rainfall at time k, k — 1,k — 2,k — 3,
and k — 4, respectively. f{(-) is a model inducted by GP.

For a given data set of Watson Ave., 10 runs were
performed with different randomly generated initial
models so that each run takes a different genetic
loop to evolve the better performing models. For
each run, an initial population of 300 candidate
models was created using the functional and terminal
sets in Table 2. In this work, the terminal set is the set
of 16 input variables (e.g. past ra and past GWL) that
are expressed in Eq. (2). Through the genetic loop
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Fig. 8. The progression of the mean fitness in the run 4.

process shown in Fig. 5, the better performing models
that have high fitness values tended to be promoted
quickly and diffused into subsequent generations to
evolve better and better models, while models that
were not as good gradually died out. As this happened,
the failure rate of new offspring virtually dropped to
zero and the grading of models became more refined.
This genetic loop process was carried out for 50 genera-
tions. Eventually, a range of different better performing
models emerged, each capable of predicting the ground-
water level with varying degrees of accuracy.

All evolved model’s execution outputs were saved
in a data file containing the best performing model at
the end of each generation and also RMSE with the
population mean fitness. Most of the 10 runs gener-
ated good prediction models, but the best performing
model appeared in run 4. Fig. 8 shows the progression
of the mean fitness value, which designates a value
averaged over all models evolved of a given genera-

Table 3
Best performing top five models evolved for Watson Ave. site

tion, over the 50 generations at run 4. The mean fitness
value is zero in generation 0. Thus, the graph of mean
fitness starts at generation 1 giving a value of 0.173.
The graph of mean fitness rises after generation 5
indicating convergence of the search process of better
performing models. It reaches the highest value at
generation 25. Convergence is accelerated by the
combination of the Roulette wheel selection and the
low mutation rate. It was found that if the mutation
rate P, was over 0.5, the convergence was slowed and
the loss of better performing models was observed.
This was due to a negative influence of the high muta-
tion rate on the crossover. The good results are
obtained with a mutation rate of 0.25 in this work.
The overall best performing top five models that GP
evolved after run 10 are displayed in Table 3. The top
five models are sorted by the lowest RMSE. The
models as expressed in Table 3 are exactly as evolved
by the GP software without any simplification. The

Rank Models evolved

[ N R S

[0.00001436] X ra(k—2)+[0.00002744] X ra(k—1)+GWL(k)

[0.00001392] X ra(k—3)+[0.00002549] X ra(k—1)+GWL(k)

[0.00002584] X ra(k—1)+[0.00001738] X ra(k—4)+GWL(k)
[—0.0007843]+sqrt([0.005603] X ra(k—3))+GWL(k)

—[99.81]+ {ra(k—3) X [—0.00003717] X (log(GWL(k))} X GWL(k))+GWL(k)
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Fig. 9. Observed data versus output of the model evolved by GP at Watson Ave. site.

following model was evolved as the best performing
model at generation 25 in the 4th run after 50 genera-
tions were completed:

GWL(k + 1) = 0.00001436 X ra(k — 2) 5
+ 0.00002744 X ra(k — 1) + GWL(k)

The model evolved from Eq. (3) has a RMSE on the
training set of 0.0031 m and an RMSE on the testing set

of 0.00326 m. The model evolved from Eq. (3) also has
the 98.54% of R-squared on the training set and the
97.87% of R-squared on the testing set. The RMSE
value of 0.00326 m and 97.87% of R-squared for the
testing data indicates very satisfactory performance of
this model evolved indicating that the accuracy is extre-
mely good. Results obtained from the best performing
model on data for the training set are shown in Fig. 9.
Results for the testing set are also plotted in Fig. 10. The
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Fig. 10. Observed data versus output of the model evolved by GP at Watson Ave. site.
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Fig. 11. Comparison of predicted values and observed for Bellevue Res. testing set.

small difference between the RMSE on the training and
testing sets shows that the best performing model has a
great generalisation capability. The maximum error was
0.0423 m and occurred at one of the transition points of
the groundwater level due to a rapid increase in rainfall.
Generally, the residual errors with an average of 0.0029
were very small and thus an excellent prediction has
been obtained.

The same simulation procedure as that adopted for
Watson Ave. site was applied to evolve models for
Volcanic Rd. and Bellevue Res. sites. The same GP
parameters and terminal sets as shown in Table 2 were
used. When our GP algorithm was applied to Bellevue
Res. site, the following best performing model at
generation 5 in the 6th run after 50 generations was
evolved:

GWL(k + 1) = 0.00002786 X ra(k — 2) + 0.0000235
xra(k — 1) + GWL(k) )

Table 4
Top five best performing models evolved for Bellevue Res. site

The model evolved in Eq. (4) has an RMSE on the
training set of 0.0033 m and an RMSE on the testing
set of 0.00346 m. Fig. 11 displays the observed and
predicted groundwater level on the testing set fitted by
Eq. (4). Table 4 shows the overall best performing top
five models that GP evolved after run 10 for the Belle-
vue Res. site.

For Volcanic Rd. site, the best performing model at
generation 6 in the 3rd run after 50 generations was:

GWL(k + 1) = 0.00003354 X ra(k — 2)
+0.00003333 X ra(k — 1) + GWL(k)

The model evolved in Eq. (5) has an RMSE on the
training set of 0.00341 m and an RMSE on the testing
set of 0.00354 m. Fig. 12 shows the observed and
predicted groundwater level for the testing set using
the evolved model of Eq. (5). The overall best
performing top five models that GP evolved after
run 10 are displayed in Table 5.

&)

Rank Models evolved

[ R R S

[0.00002786] X ra(k — 2) + [0.0000235] X ra(k — 1) + GWL(k)

[0.00003547] X ra(k — 3) + [0.00002283] X ra(k — 1) + GWL(k)

[—0.2265] + [0.00002821] X ra(k — 2) + [0.00003002] X ra(k — 1) + [1.007] X GWL(k)

[0.00002757] X ra(k — 2) + [0.00003046] X ra(k — 1) + [1.006] X GWL(k)

[—0.001139] + [0.00001677] X ra(k — 3) + [0.00001729] X ra(k — 2) + [0.0000294] X ra(k — 1) + GWL(k)
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Fig. 12. Comparison of predicted values and observed for Volcanic Rd. testing set.

From Figs. 10—12, the predictions of the models
evolved for the three monitoring sites closely follow
the observed groundwater level patterns with high
levels of accuracy, giving similar RMSE values. It
can be seen that the models evolved by GP represent
the dynamic characteristics of the Mt Eden ground-
water system and serve as a good predictor.

Sensitivity analysis was done to show how changes
in the rainfall will affect the groundwater level using
the top performing models evolved by GP for three
sites. Result of a sensitivity analysis for three sites is
shown in Fig. 13. Fig. 13 shows graphically the range
of variance of the expected groundwater level due to
the variance of the rainfall intensity. The range of
29.31-29.35 m is an expected groundwater level at
Watson Ave. site due to the range of 0—9 mm/h of
variance of the rainfall intensity. This result shows
that an increase of 0—9 mm/h in rainfall intensity

Table 5
Top five best performing models evolved for Volcanic Rd. site

would produce approximately 4 cm increase in
groundwater level at the Watson site. The sensitivity
analysis for Bellevue Res. site (Fig. 13(C)) shows a
similar result as that observed for the Watson Ave. site
showing that an increase of 8 mm/h in rainfall causes
the groundwater level to rise approximately 4 cm at
the Bellevue Res. site. For the Volcanic Rd. site, the
sensitivity analysis indicates that the groundwater
level response due to increase in rainfall is expected
to be a little greater than the other two sites, and the
change in groundwater level would be 6 cm per 9 mm/
h change in rainfall intensity.

Looking at the models evolved in Tables 3—5, one
of the most interesting results is that they provide
information on which input variables and model struc-
tures GP evolved are important to achieve the high
levels of accuracy. From Tables 3-5, GWL(k),
ra(k — 1), ra(k — 2), and ra(k — 3) among the terminal

Rank Models evolved

1 [0.00003354] X ra(k — 2) + [0.00003333] X ra(k — 1) + GWL(k)

2 [0.00001959] X ra(k — 2) + [0.00002438] X ra(k — 1) + [1.002] X GWL(k — 1)

3 [0.00002151] X ra(k — 1) + [1.0018] X GWL(k) + [7.389¢ — 008] X ra(k — 1) X ra(k — 2)

4 [—0.2978] + [0.00001687] X ra(k — 3) + [7.584e — 006] X ra(k — 2) + [0.0000248] X ra(k — 1) +[0.9921] X GWL(k)
5 [0.00002095] X ra(k — 3) + [0.00002776] X ra(k — 1) + GWL(k)
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Fig. 13. Sensitivity analysis results: (A) Watson Ave., (B) Bellevue
Res., and (C) Volcanic Rd.

set dominate the structure of the better performing
models. With information of an understandable
model structure, the following knowledge for this
urban fractured-rock aquifer system can be extracted:
(1) The time delay between a change in the rainfall
intensity and the observed response in the ground-
water level is 2 h, (2) The time span over which a
momentary rainfall change persists in affecting the
groundwater level is 2—-3 h, and (3) The change in
groundwater level would be approximately 4—6 cm

per 9 mm/h change in rainfall intensity through sensi-
tivity analysis.

It is also worth noting that an inspection of models
evolved from Tables 3-5 reveals that most of models
evolved by GP are linearly correlated with rainfall.
These models evolved with a degree of linearity in
the rainfall term providing the most accurate predic-
tion results, indicating that there is likely to be a linear
relationship between groundwater fluctuation and
storm water infiltration during rainfall periods.

From Egs. (3)—(5), GP evolved the best performing
model as functions of GWL(k), ra(k — 1), and ra(k —
2) having similar model coefficients for three moni-
toring sites. This shows that this model structure can
be used as a general model for predicting the ground-
water level fluctuation with the averaged model coef-
ficients in this aquifer system.

The general mathematical modelling approaches
first require a form of specified model structure and
then their parameters are then optimised by the opti-
misation algorithm. From Tables 3-5, GP evolves
both the model structures and the model constants
simultaneously by its ability to self-organise the
system. Thus, an advantage of GP is that in principle,
it does not require any form of specified model struc-
ture selection in the model parameter estimation
process.

Furthermore, the main advantage of the GP for
modelling processes is the ability to produce models
that build an understandable structure using function
tree representation; i.e. a formula. With this informa-
tion of an understandable structure, the models
evolved can be compared to observed knowledge
and judged as to whether they make sense. The trans-
parency of the models evolved in Tables 3-5 can
allow the activity of what-if scenario simulation for
resource management planning.

5. Conclusions

In this paper, our results have demonstrated the
applicability of GP to analyse and identify the
dynamic behaviour of the groundwater level due to
change in rainfall intensity in an urban fractured-rock
aquifer.

The fractured-rock aquifer system chosen for this
study has a highly dynamic nature where theories or
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knowledge to generate the model are still incomplete
and insufficient. Instead of a human developing the
mathematical model, the GP can self-modify, through
the genetic loop, a population of function trees in
order to finally generate an accurate model that
predicts the groundwater level fluctuations due to
changes in rainfall intensity.

GP is not only capable of predicting the ground-
water level fluctuation due to storm water infiltration
but provides insight into the dynamic behaviour of a
partially known fractured-rock aquifer system by
allowing knowledge extraction of the evolved models.
Our results show that GP can work most efficiently
where the possible model is unknown and the under-
standing of the resulting model is important.

The greatest benefit in GP lies in the flexibility of
the model induction process combined with the ability
to integrate mathematical models and logical struc-
tures into a self-organising system. GP can find
from simple linear to complex non-linear relation-
ships in input—output data. It is easy to use because
it in principle does not require any form of specific
pre-defined model and automatically constructs math-
ematical models directly from the data set. Thus, it is
cost-effective, enabling us to create prototype models
quickly and inexpensively. GP assists us in develop-
ing accurate models in less time, even if we have
limited experience and incomplete knowledge. By
introducing the knowledge of the human expert and
modifying the functional sets, the human expert can
guide the GP process to derive more sophisticated
models.

Due to great advantages of the GP technique imple-
mented in this work, there is a great deal of potential
using it as a general modelling tool, suitable for a
variety of other complex process systems such as
hydrological and environmental processes.
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