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Abstract

Asymptotic bias in large quantiles and moments for four parameter estimation methods, including the maximum likelihood
method (MLM), method of moments (MOM), method of L-moments (LMM), and least squares method (LSM), is derived when
a probability distribution function (PDF) is falsely assumed. The first three estimation methods are illustrated using the
lognormal and gamma distributions forming an alternative set of PDFs. It is shown that for every method when either the
gamma or lognormal distribution serves as the true distribution, the relative asymptotic bias (RB) of moments and quantiles
corresponding to the upper tail is an increasing function of the true value of the coefficient of variation (c,), except that RB of
moments for MOM is zero. The value of RB is the smallest for MOM and largest for MLM. The bias of LMM occupies an
intermediate position. The value of RB from MLM is larger for the lognormal distribution as a hypothetical distribution with the
gamma distribution being assumed to be the true distribution than it would be in the opposite case. For ¢, = 1 and MLM, it
equals 30, 600, 320% for mean, variance and 0.1% quantile, respectively, while for MOM, the moments are asymptotically
unbiased and the bias for 0.1% quantile amounts to 35%. An analysis of 39 70-year long annual peak flow series of Polish rivers
provides an empirical evidence for the necessity to include bias in evaluation of the efficiency of PDF estimation methods.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Flood frequency analysis (FFA) entails estimation
of the upper tail of a probability distribution function
(PDF) of peak flows obtained from either the annual
duration series or partial duration series, although the
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upper part of the PDF may usually be out of the range
of observations. The usual empirical approach is to fit
an a priori assumed PDF to the peak flow data, where
the fitting involves estimating the parameters of the
PDF, which, in turn, requires the knowledge of the
PDF. Thus, one tries to find and use the most robust
method of parameter estimation for a given sample
size. Unfortunately, the true PDF is not known and
even if it were known it might, in all probability,
contain too many parameters. These parameters
cannot possibly be estimated reliably and efficiently
from a hydrological sample, which is of relatively
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small size, meaning that strictly speaking such a PDF
cannot be applied. Therefore, the task of FFA reduces
to (1) choosing the PDF which can be derived either
by ‘at site’ or ‘regional’ analysis; and (2) finding and
using the most robust method of parameter estimation
which produces the smallest mean square error (MSE)
and bias in moments as well as in quantiles of interest
for a given sample size and the chosen distribution.

A number of two- and three-parameter PDFs have
been discussed in the literature for hydrologic FFA
(Hosking and Wallis, 1997; Singh, 1998; Rao and
Hamed, 2000). Although three-parameter probability
models are often recommended for FFA, two-para-
meter distributions were chosen in this study for two
reasons. First, the constraints with respect to the para-
meters representing location, scale and shape are very
rigid for hydrologic problems and even three para-
meters may be too many in case of normal hydrolo-
gical sample sizes when the regional flood
information is not exploited (e.g. Landwehr et al.,
1980; Kuczera, 1982; Strupczewski et al., 2001).
Second, the objective is to show the significance of
bias using simpler models which are still in use in
many parts of the world. Landwehr et al. (1980)
showed that the two-parameter Gumbel and three-
parameter lognormal distribution produced lower
MSE than the five-parameter Wakeby distribution.
For a sample size of 31, the share of bias in MSE
was found to be as high as 93% for 0.1% probability
of exceedance for Gumbel and up to 33% for the
lognormal. In a simulation study, Kuczera (1982)
found the two-parameter lognormal distribution as
the best model. The Gumbel distribution with its para-
meters estimated by either maximum likelihood
method (MLM) or probability weighted moments
(PWM) also displayed comparable performance.
This shows that a uniform consensus on the choice
of a model for FFA is lacking and the choice is criti-
cally important.

Several parameter estimation methods for these
PDFs have been developed (Singh, 1988; Rao and
Hamed, 2000). Since the statistics used in every esti-
mation method differ from each other, a method of
fitting a theoretical distribution to an empirical one
depends on the estimation method itself and in case
of MLE on the distribution function as well. The
differences in fitting may become crucial if an
assumed PDF differs from the true one while for

practical reasons the interest is in high accuracy of
estimation in a certain range of variability, i.e. in the
upper tail of the distribution. The MLM is considered
as the most theoretically correct method in the sense
that it produces the most efficient parameter esti-
mates. The secret of the high efficiency of the
MLM lies in its ability to extract greater amount of
information from the assumed distribution function,
which is required for the use of MLM. The question
then arises: do we possess sufficient knowledge to
assume a distributional form for statistical parameter
estimation? The assumption of a PDF results in
biased estimates of the distribution moments as
well as quantiles.

The objective of the present study is to analytically
derive asymptotic bias in moments as well as in large
quantiles and illustrate it with examples. A study of
asymptotic bias can serve as a basis to assess its
magnitude and give an idea about the bias for any
sample size, and whether the difference in the bias
due to various parameter estimation methods can be
counterbalanced by their efficiency of estimation. It
would also be useful to verify the correctness of
Monte Carlo experiments. The paper is organized as
follows. Providing a short review of flood frequency
modelling in Section 2, the problem of estimation of
bias and relative bias in flood statistical characteristics
is introduced in Section 3. Section 4 introduces PDFs
considered in the study. Section 5 discusses expres-
sing distribution parameters in terms of moments.
Section 6 is the largest one, dealing with the MLM
as an approximation method illustrated by an example
where the gamma PDF is taken as the true distribution
function while the lognormal distribution as the
hypothetical one. The opposite case is presented in
Appendix A. The method of moments (MOM) is
dealt with in Section 7 and the method of L-moments
(LMM) in Section 8. The least squares approximation
is discussed in Section 9. Section 10 discusses empiri-
cal testing and Section 11 concludes the paper.

2. Review of literature

There is vast literature on FFA and no effort is made
to review it here. However, a short discussion of four
aspects considered relevant to the objective of this
study is presented.
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Table 1
Statistical characteristics of six Wakeby specific distributions with
zero lower bound used by Landwehr et al. (1980)

PDF Statistical characteristics
I o ¢y [eN A

Wakeby-1 1.94 1.34 0.69 4.14 63.74
Wakeby-2 1.56 0.90 0.58 2.01 14.08
Wakeby-3 1.18 1.03 0.87 1.91 10.73
Wakeby-4 1.36 0.51 0.38 1.10 7.69
Wakeby-5 0.92 0.70 0.76 1.11 4.73
Wakeby-6 0.92 0.46 0.50 0.00 2.65

2.1. Flood frequency models

There is a wide range of flood frequency models
developed in hydrology (Greis, 1983). These can be
grouped into four types (Singh and Adrian, 2000): (a)
empirical, (b) phenomenological, (c) information-
based, and (d) physically based. A thought-provoking
critique of FFA models has been presented by Klemes
(2000a,b). Bras et al. (1985) compared three physi-
cally based flood frequency models, which generate
flood frequency distributions without the use of
streamflow records, and tested them on five different
river basins in the US. None of the methods compared
well with data-based methods. The most popular types
are empirical models which Cunnane (1985) classified
into annual maximum series, partial duration series,
and time series models. These models are based on
fitting a probability distribution to empirical data. A
number of probability distributions have been used for
FFA, and a discussion of these distributions is given in
Rao and Hamed (2000).

2.2. Choosing a flood frequency model

There are a number of methods by which to choose
a flood probability distribution, but the treatment
considering the resistance of methods with respect
to the distribution choice has not been investigated
as fully (Landwehr et al., 1980; Kuczera, 1982).
Mockus (1960) presented some of the elements in
selecting a method for frequency analyses of hydro-
logic data. Cunnane (1985) discussed factors affecting
the choice of a distribution for FFA, including the
method of parameter estimation, treatment of outliers,
inclusion of large historical flood values, data

transformations, and causal composition of flood
population. He concluded that distribution choice
could not be based on theoretical arguments alone
or one criterion. Gupta (1970) presented a method
for selecting among 10 commonly used FFA methods
to fit frequency distributions to hydrologic data.
Spence (1973) used the correlation coefficients for
selecting the best of four flood frequency distributions
for fitting annual flood flow data from 161 drainage
basins in Canadian plains.

Turkman (1985) proposed the Akaike’s informa-
tion criterion (AIC) for the choice of extremal models
and analysed its effectiveness in choosing the most
likely among the Gumbel, Frechet and Weibull
models. Mutua (1994) used AIC in the identification
of an optimum flood frequency model in Kenya from
the class comprised of seven three-parameter and two
five-parameter flood frequency models and for testing
the existence of outliers. Chong and Moore (1983)
used the residual sum of squares (RSS) to compare
two-parameter lognormal (LN2), three-parameter
lognormal (LN3), Pearson type 3 (PT3), and log-
Pearson type 3 (LPT3) distributions and selected the
distribution that produced the smallest value of RSS
for developing a regional curve. However, it was diffi-
cult to say which method was the best for regional
FFA.

2.3. Methods of parameter estimation

Popular methods of parameter estimation are the
MOM (Nash, 1959), PWM (Greewood et al., 1979;
Landwehr et al., 1979), LMM (Hosking, 1990; Hosk-
ing and Wallis, 1997), MLM (Douglas et al., 1976),
maximum entropy method (MEM; Singh and Rajago-
pal, 1986; Singh, 1998), and least squares method
(LSM; Snyder, 1972; Stedinger and Tasker, 1985).
Several studies have compared methods of parameter
estimation using the standard error of estimate as a
criterion. Landwehr et al. (1980) and Kuczera (1982)
presented an interesting evidence of the statistical
overparameterization. They showed that the knowl-
edge of the ‘true’ model is not sufficient to accept
such a model as data may be too short to calibrate
it. In their simulation experiments, Landwehr et al.
(1980) considered six specific Wakeby distributions
lower-bounded at zero as the parent (i.e. true)
distributions and a sample size of 31. Values of the
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Table 2

Share of bias (in %) in MSE computed by Landwehr et al. (1980)
for six variants of the Wakeby distribution shown in Table 1.
Sample size N = 31

True PDF Fitted Estimation Probability
PDF method of

exceedance

1% 0.1%

Wakeby-1 Wakeby LMM 0 1

Gumbel LMM 64 92

MLM 86 96

MOM 34 78

Lognormal MOM 14 35

Wakeby-2 Wakeby LMM 0 4

Gumbel LMM 34 76

MLM 48 86

MOM 22 64

Lognormal MOM 16 33

Wakeby-3 Wakeby LMM 0 0

Gumbel LMM 26 65

MLM 64 85

MOM 18 54

Lognormal MOM 10 20

Wakeby-4 Wakeby LMM 3 11

Gumbel LMM 12 38

MLM 11 0

MOM 8 33

Lognormal MOM 21 31

Wakeby-5 Wakeby LMM 0 0

Gumbel LMM 0 10

MLM 3 1

MOM 0 0

Lognormal MOM 0 0

Wakeby-6 Wakeby LMM 0 7

Gumbel LMM 85 89

MLM 92 93

MOM 81 87

Lognormal MOM 0 20

statistical characteristics, mean, standard deviation,
coefficient of variation, skewness and kurtosis (u,
T, ¢y, Cs, A) are given in Table 1. They found that
the five-parameter Wakeby as hypothetical distribu-
tion happened to be worse with respect to MSE of
upper quantiles than the three-parameter log-normal
distribution and the (two-parameter) Gumbel model.
The last one combined with MOM usually produced
the lowest value of MSE. Therefore, the model can be
a best one but the hydrologic data are too short to

acknowledge it. As shown in Table 2, the share of
bias in MSE for 0.1% probability of exceedance was
found to be negligibly small for Wakeby but as high as
96% for Gumbel and MLM and up to 33% for the
lognormal. It shows that the bias share of MSE can
be significant even for small samples for long return
periods and that the study of asymptotic bias has rele-
vance for the sample sizes encountered in practice. In
a similar simulation study, Kuczera (1982) found the
two-parameter lognormal as the best model and the
Gumbel distribution with its parameters estimated by
either MLM or PWM also displaying a comparable
performance. These studies indicate that the
constraints with respect to the number of parameters
are rigid for normal hydrological sample sizes and that
the doctrine of parameter parsimony should be
observed in the distribution choice.

There are numerous hydrologic studies dealing
with comparison of the accuracy of various methods
of parameter estimation for various distributions and
Monte Carlo simulated sample sizes. For choosing an
estimation method, the approach used in FFA follows
the findings based on the case of a known distribution
form, where the robustness of the methods is consid-
ered. A robust method performs well over a range of
situations and is able to withstand a certain amount of
abuse without breaking down. It is not necessarily the
best estimation method for any one model, and is
characterized in terms of stability and consistency of
parameter estimates. Stable estimates are character-
ized by small estimator dispersion or variance, while
consistency implies estimates converge in probability
to the ‘true’ value of the parameters as the number of
observation becomes large.

2.4. Model and sampling errors

Model errors are caused by the wrong choice of
the model, the wrong estimation of model parameters
and the inadequate sample size for parameter estima-
tion. Landwehr et al. (1980) showed that the
two-parameter Gumbel and three-parameter lognor-
mal distribution produced lower MSE than the five-
parameter Wakeby distribution. For a sample size of
31, the share of bias in MSE was found to be as high
as 93% for 0.1% probability of exceedance for
Gumbel and up to 33% for the lognormal. In a
simulation study, Kuczera (1982) found the
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two-parameter lognormal distribution as the best
model. The Gumbel distribution with its para-
meters estimated by either MLM or PWM also
displayed comparable performance. This shows
that a uniform consensus on the choice of a
model for FFA is lacking and the choice is criti-
cally important.

Bobee (1973) derived the sample error of T-year
events computed by fitting a Pearson type 3 distri-
bution. Condie (1977, 1986) expressed a 7T-year
event derived from LPT3 or LN3 distribution by
MLM as a function of parameters, which are
subject to sampling variance and covariance. By
comparison with MOM, MLM exhibited less bias
for LPT3 distribution. Condie (1986) derived
asymptotic standard error of estimate of the 7-
year flood event. A combined analysis of systema-
tic record and historical flood would give
upwardly biased estimate of the 7-year flood.
Censoring theory helped reduce the bias. Hoshi
and Burges (1981) derived for LP3 populations
the variance of the T-year event, when MOM
was used. Phien and Hsu (1985) used the asymp-
totic variance of the T-year event for evaluating
the performance of parameter estimation methods
for fitting LP3 distribution to a set of observed
data.

Wang and Singh (1994) derived the sampling
variance of a T-year flood estimated by curve
fitting using plotting positions and showed that
the error due to the plotting position contributed
more to the sampling variance than the error in
hydrologic observations and model Afitting.
Stevens (1992) showed for three hypothetical
populations that there was a considerable reduc-
tion in bias and variance of the extreme flood
(500-year to 2000-year) if historical data was
used, as opposed to basing the estimates on
gauge record alone.

Buishand (1990) discussed approximations to the
bias of a T-year flood and showed that small depar-
tures from the assumed model could have a large
impact on the variance of the flood. The ML estimate
of the T-year flood was highly biased. By applying
MLM and censored sample theory to LP3 distribution
for FFA, Pilon and Adamowski (1993) derived the
asymptotic standard error of estimate of the 7-year
flood.

3. Asymptotic bias

The MSE of any statistical characteristic, Z, can be
expressed as

MSE(Z) = var(Z) + [Bias(Z)]? (1)

where var(Z) is the variance of Z and Bias(Z) is the
bias of Z. For a given sample size, the ratio of the two
terms in Eq. (4) depends on both the PDF model and
the parameter estimation method. An increase in the
number of model parameters (degrees of freedom)
increases the first term and decreases the second
one. For large samples, the standard deviation of the
Z estimate becomes small in comparison to the bias
caused by the wrong distribution choice (i.e. by the
model error) and therefore MSE approaches the
square of the asymptotic bias.

B(Z) = I\IIilrgo Bias(Z) 2

It should be remarked that the statistical theory is
based on asymptotic properties and only a limited
number of results are available for finite samples.
As a result, asymptotic formulae are used for small
samples if the theoretical approach fails and the
Monte Carlo assessment is not available. For this
reason, one can be dubious when dealing with the
asymptotic bias in hydrology for limited sample
sizes available. Evaluating the asymptotic bias caused
by the false distributional assumption, one should
realise that for a finite sample, the bias would likely
be a little greater. It is because even for the correct
distributional assumption, any estimation method is
not bias free for small samples. Applying the five-
parameter Wakeby distribution to six specific variants
of the Wakeby distribution with lower-bound at zero,
Landwehr et al. (1980) found for a sample size of 31
that the share of the bias in MSE was 1,4, 0, 11, 0 and
7%, depending on the parameter values of the parent
distribution (Tables 1 and 2). This shows that the
asymptotic bias can give an idea about the magnitude
of bias for any sample size. When dealing with small
samples, the bias caused by the wrong distributional
assumption with respect to any statistical characteris-
tic should be compared for a given estimation method
with one for the proper choice of the distribution. This
can be accomplished by simulation techniques the
discussion of which is beyond the scope of this
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study. An advantage of the analytical approach
applied here over the Monte Carlo simulation experi-
ments is, except for accuracy, the possibility of getting
functional relationships between the asymptotic bias
and population parameters, which in the simulation
approach has to be reproduced point by point. There-
fore, an analytically derived asymptotic bias can serve
to verify the correctness of Monte Carlo simulation
experiments for samples of various sizes. Further-
more, a comparison of the values of the asymptotic
bias got by various approximation methods may give
an idea whether the differences between them can be
counterbalanced by the difference in the efficiency of
estimation methods.

In order to derive the asymptotic bias (B) of Z
caused by the false (F) choice of the distributional
hypothesis (H), the knowledge of the true distribution
(T) together with the value of its parameters is neces-
sary. Then, the problem is defined as an approxima-
tion of the 7-function by the F-function and it,
therefore, remains no longer a statistical estimation
problem. Having approximated 7 by F, one can find
for any characteristic Z both the value of z of the
approximated function, i.e. z(H = T) and the corre-
sponding value of z of the approximating function, i.e.
z(H = F|T). Thus, the asymptotic bias of any statisti-
cal characteristic Z, B(Z), is defined as

B(Z)=zH=F|T)—z(H=T) 3)
and the relative asymptotic bias, RB(Z), as

2 H=F|T)—zH=T)
2H=T)

RB(Z) = 4)

where H, F and T stand for hypothetical, false and true
distributions, respectively.

It is clear that the bias depends not only on the
chosen PDF but also on the estimation method, and
this constitutes the subject of this study. Various esti-
mation methods can be analysed and compared with
respect to resistance to the false distribution assump-
tion. The MOM, the method of maximum likelihood
(MLM), the method of linear moments (LMM) and
the LSM are considered in this study. For the sake of
brevity, only the first three methods are illustrated by a
numerical example. However, any other method, such
as (weighted) least squares or entropy, can be easily
included. One can also use the estimation methods as

the approximation methods of one distribution func-
tion by another.

Since statistical moments of the PDF are of interest
in both regional and non-stationary approaches to
FFA, the analysis covers both the quantiles and the
first two moments, i.e. z = x,,, &, iL», Where p denotes
the probability of exceedance. Obviously our interest
is in quantiles of small probability of exceedance, i.e.
p < 10%.

To derive the bias, one distribution is considered
here as the true one (7") while another hypothetical
distribution as the false one (F). Among various
criteria applied for the assessment of a distribution
fit to the data, the L-ratio and its extension, AIC, are
frequently used. Therefore, the difference in the
values of the maximum of In L function per one
element of an infinite sample, denoted hereafter M,
between the case of the correct distribution choice
(H =T) and that of the wrong distribution choice
(H=F),ie.

AM(F|T) = Moo(T|T) — Mo(F|T) (5
where
. 1
MOO(T|T) = 1\%1_1}20 ﬁmax In L(T|T) (6)
and
1
My (F|T) = 1\1/1_1}010 ﬁmax In L(F|T) @)

is also of interest.

4. Set of PDFs

Only two-parameter PDFs are selected for analysis
in this study. All estimation methods are used as
approximation methods, except for MLM and
entropy. Thus, there is no mathematical restriction
to the selection of any PDF from a set of alternative
PDFs (APDFS) of annual peak flows, except the over-
lapping domains of the selected distributions. To use
MLM, the domains of T and F distribution functions
must be either the same or the domain of F must cover
the domain of 7, e.g. F = Gumbel [type and T =
Gamma.

It is convenient if APDFS consist of PDFs of the
same range, which is assumed here as (0, +0), i.e. the
range of the distribution of annual peak flows is
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regarded here as a priori information. The choice is
limited to PDFs with existing moments of all orders
for the whole range of parameters. We acknowledge
the existence of some pathological exceptions, which
have recently appeared in the hydrological literature,
such as the log-Gumbel or the log-logistic distribu-
tion; these distributions are, however, of more math-
ematical interest than of practical importance.

It is assumed that the parameters of any distribution
of APDFS can be explicitly expressed by the distribu-
tion moments. For convenience, let APDFS consist of
two-parameter distributions
o 00, 0 = (9,@, 99); j € APDFS 8)
where x is a random variable, ¢;(x) is the jth distribu-
tion function of x with parameter set 8. One can
argue that the unknown true PDF contains too many
parameters. To comply with it makes a bias dependent
on the number of parameters and therefore results less
transparent.

Let the set of APDFS consist, for simplicity, of the
two two-parameter distributions defined in a semi-
infinite domain (0, o) : the lognormal (LN)

. _ 1 b
1. 0) = — mexp[ IR IO

and the gamma (I")

A
ol 0 0) = xt ! exp(—a) (10)
where w, o, A and « are parameters, and I'(\) is the
gamma function. The case (H = LN, T = I and its
application are presented in what follows, while the
opposite case, i.e. (H = I, T = LN), constitutes the
subject of Appendix A. It may be noted that to extend
the results obtained in this study to three-parameter
lognormal and gamma distributions, it would suffice
to start with the matching of the lower bounds (or
scale parameters) of both distributions.

5. Parameters replaced by moments

In order to unify the distributions with respect to
parameters, the original set of parameters can be
replaced by moments using the relationships available
in standard statistical handbooks. Then, the density
function is denoted as ¢;(x;ay, uy) where «a; =

fl(j)(()(lj), Hg)) and w, = fz(j)((?(j), 03)) are, respectively,
the first moment about the origin and the second
moment about the centroid.

The first moments of the LN distribution are

2
@ ZeXp(;L-I- %) (11)

wr = [exp(a?) — 1lexpQu + o2)
(12)
= [exp(c?) — 1log

¢, =+/exp(a?) — 1 (13)

¢ =3¢, + ¢ (14)

where ¢, is the coefficient of variation, and ¢, is the
coefficient of skewness. Hence,

ol = ln[l + cz] (15)

and
ay

J1+ 2

where u and o* are the mean and the variance of In X.
For the gamma distribution, the first moments are

w=Ina; —0.50>=In (16)

A
a = (17)
A
= (18)
and
1
=5 (19)
Hence,
1
a=1= (20)
H2 apcy
2
1
A= % =5 Q1)
2 v

The expression for quantile x, of exceedance prob-
ability p is denoted as

X, = 8(ps oy, ) (22)
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which for the lognormal distribution takes the form

X, = exp(;u + o-tf,v) = exp(—o'2/2 + o-tf,v)al (23)
where tﬁ’ is the quantile of the order p of N(0, 1), o is
defined by Eq. (15), and p is probability of excee-
dence, while for the gamma distribution

Loy o)
X, = t”i ) - t”i ), (24)

where t{ is the lower limit of the integral:

— % - -t
pP= m J'l{l’ e dt (25)

To use parameter estimation methods for fitting one
distribution by another, an infinite sample is consid-
ered.

6. Maximum likelihood as approximation method
6.1. Finite sample size

For the ML estimation, it is usually more conveni-
ent to work with the log-likelihood function

N
InL =" In ¢;(x;; o1, o) (26)
=1

than with the likelihood function L. By differentiating
In L with respect to each of the parameters separately
and equating to zero, one obtains as many equations as
the number of parameters. Obviously, multiplication
of Eq. (26) by any number does not affect the solution.
Choosing (1/N) as a multiplier

1
A= —InL=
N

N
% Zl In ¢(0x;; a1, o) @
emphasizes the well-known fact that the ML-estima-
tion method involves sample averages. It is in contrast
with the POME method, which involves population
expectations. Consequently, the sample average of the
maximum likelihood function, M, is introduced

M =max A= max[lln L] (28)

[239Y25) [e3RY25)

Therefore, one seeks a solution of

a_/(lj) 1 i 1 a‘r"j(xwa(ll)’l’«z) .
Jdaj P (x,, ai’, w ) aa({)

29)
A 1 1 3@;()66(*3”#5”) —o
o N ; gqj(xi;a(lj),ug)) oug

(30)

for which (A)" < 0.

6.2. Infinite sample size

Going to the asymptotic case, i.e. when N tends to
infinity, the two cases are distinguished:

1. The hypothesized distribution is the right choice
H=T):

Mo(H =T) = lim M(H = T) 31)

2. The hypothesized distribution is the false one (H =
F) while the true PDF is known:

Moo(H = FIT) = lim M(H = F|T) (32)

While the first case is the subject of interest in the
classical statistical theory, the second case reflects
the reality with respect to the hypothetical distribu-
tion, which serves as an approximation of the true
unknown distribution. Every function of APDFS can
stand either for the true or false distribution in our
study. Doing so, we hope to be able to compare the
robustness of various estimation methods with respect
to the statistics of interest for the wrong choice of a
distribution function.

6.3. Known distribution function (case 1): H=T

The hypothesis is H=T = ¢ (x;; 1, o), k €
APDFS.
The asymptotic average of the In L function (27) is

= lim — Zln o =

N-»oo

E[ln ¢;] (33)



130 W.G. Strupczewski et al. / Journal of Hydrology 258 (2002) 122—148

The MLM-conditions then become:
0ALH=T 1 0l a1
( )Zlim Z n‘Pk:E[ n(Pk]

6011 N—oo N 8011 8011
© 9
- J IOk 4 =0
0 Bal
(34)
e N—oo N 1o Jo%)
© 9
= J T _ o
0 My
(35)

Since both the MOM and MLM estimates of para-
meters are asymptotically unbiased, there is conver-
gence of MOM and MLM estimates of any statistics
Z. Therefore, the solution of Eqgs. (34) and (35) is for
all k:

+ 00
() = jo ru (s . o) (36)

+ oo
pa = [ et ag pad 37)
and the asymptotic average of the In L function (27) is
+ o0
Au(H=T)= JO ¢, log g dx (38)
For illustration, consider the case of the gamma distri-
bution. The MLM Egs. (34) and (35) expressed in

terms of the original parameters for this distribution
take the form:

AoH=T =

el F):A—ngordxzo (39)
Ja o

aA""(Ha:/\T:F) zlna—¢(A)+Jlnx¢Fdx=0

(40)

or substituting logarithmically transformed Eq. (39)
into Eq. (40), we get

InA— (A) = lnjx¢rdx— Jlnxcprdx (41)

where (A) = d In I'(A)/dA is the digamma function,

while Egs. (36) and (37) take forms, respectively,

a|p = — (42)

o

A 1
m= 3 =5a (43)

The asymptotic average In L function (38) is

AH=T=D=Alna—InT\)+

- 1) Joo In xgor(x)dx
0

-« Jw xgor (x)dx 44)
0

Substituting Eqgs. (42) and (39) into Eq. (40) in Eq.
(44), we get M, = max A,

Mo c(H=T=D=-A+InA+ Q- D)
—InI(\) —Inaf (45)
where A is the function (21) of c5 .

6.4. Wrong choice of distribution function (case 2):
H#T

The hypothesis to be dealt with is:

H= 9"/()‘? aY),Mg)) and T = ‘Pk(x; P, M(zk))

(46)
Jj# k; j,k € APDFS
The asymptotic A value is
Aot = T = @) = | clog g dx “7)

with parameters derived from the MLM conditions:

0w (H # T) _E[ d1n goj]

Ga(lj) Ba(]j)
(43)
+ o0 l aQD
= J — —G@dr=0
0 ¢ Jday
0AL(H # T) _F d1n @
alu(i) B ou?
2 %)
49)

+ o0 l a(P
:J A dr=0
0 ¢ Iu,
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Solving them we get o/ and uY for given ol and

k
W

(o0 18) = (o 9) &0

Substituting both the exact value, i.e. true, and that got
by the ML-approximation into Eq. (3) defines the
asymptotic bias of statistic Z. For the moments, we
have

B(uy) = o = af’ (51)

B(uy) = pd — uf’ (52)

Similarly, the asymptotic bias of quantile can be
obtained from Eq. (3):

B(x,) = x¥ — x (53)

In general, the roots of Eqgs. (48) and (49) may differ
from the moments of the true distribution. It happens
when MLM and MOM are not equivalent for the
assumed distribution (H). Note that if H =
Normal distribution then for any 7-distribution

af = ngok dx = af? (54)
and

. 2
ud = J(x - o) g dv = (55)

that is, MLM of the normal distribution produces
unbiased estimators of the first two moments indepen-
dently of the form of the true distribution and the
asymptotic value of M, i.e. M, does not depend on
the true distribution form. The fact that for the normal
distribution the method gives asymptotically unbiased
estimators of the mean and standard deviation belongs
to the fundamental statistical statements. In general, if
the H-distribution belongs to the exponential type of
distributions (Kendall and Stuart, 1973, vol. 2, pp. 12,
26, 67), then the MLM and MOM are equivalent. The
Pearson distributions do not belong to this type except
as approximations which are sufficient to preserve for
H = Gamma unbiased MLM-estimator of the first
moment.

Let us exchange the places of the two distributions,
assuming ¢; to be the true distribution and ¢ to be the
false one. In general, the MLM as the approximation
method is irreversible, i.e. the solution of the inverse

problem to the one posed by Egs. (48) and (49) for
input data taken from the solution of Egs. (48) and
(49) differ from the input used in the previous
problem, i.e. if

(af =@, =b) = (af = ¢, = a) (56)
then
(o = c.nd = d)A(a = a,ud’ = b) (57)

Therefore, in general,
B(z(H = @[T = ¢)) # —B(H = ¢|T = ¢)) (58)

which is the distinguishing property of the MLM-
approximation.

To illustrate, consider that the chosen distribution is
lognormal while the real distribution is gamma
(F =LN, T =1). As in the previous example, it is
more convenient to present derivations using the
original parameters of both distributions, i.e. (u, o)
and (A, @), and convert them into moments than to
operate directly on the moments given by Egs. (48)
and (49):

Ao 1 *
a_z—z(,u,—J lnxgordx)=0 (59)
o (o 0
CY/ 1 *
— _3|:0-2—J’ (]nx—/.l,)z(prdx:l:() (60)
Jo o 0

It is clearly seen from Eqs. (59) and (60) as well
as from Eq. (A8) in Appendix A that the approx-
imate distribution must have the same range as the
true distribution or its domain must cover one of
the true distribution.

Substitution of [ o In xch dx from Eq. (40) for the
gamma distribution into Eq. (59), gives

=) —Ina (61)

The variance of the logarithm of the gamma-distrib-
uted variable equals (Strupczewski, 1999):

r (Inx — w2¢" dx = g/(A) 62)
0

Therefore,

=y (63)
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Fig. 1. Asymptotic relative bias of ML-estimator of mean if lognormal distribution is applied to gamma distributed data.

and

M (H = LN, T = Gamma)

11
= —In2m — 5" Eln YA — P(A) +1n A
—1In a{
(64)

where A is a function of c{ given by Eq. (21).

6.4.1. Bias of mean
Substituting Egs. (61) and (63) into Eq. (11), we get

oY = Lex p[w>+ M]

1 (A)
= Xexp[ oo + "’—] r (©5)
Therefore, the asymptotic bias of the mean is
Blay) = ai™ — af
1 A
Z{Xex [lp(,\)+ &]—1}01{ (66)

where A is the function (21) of cr Its relatlve value is
displayed in Fig. 1 as the function of c . The relative
bias grows with increasing value of the coefficient of
variation, approaching zero for ¢, tending to zero and
being over 10% for c, greater than 0.82. In the oppo-
site case (Appendix A), i.e. when (H = I'; T = LN),
the mean is unbiased (Eq. (A7)).

6.4.2. Bias of variance
Substituting Egs. (61), (63) and (43) into Eq. (12),
we obtain

[exp(i/' (V) — Lexp[2y(A) + ¢/ (Mg
(67)

where A is a function of the coefficient of variation 05
defined by Eq. (21).

Therefore, the asymptotic bias of the variance
equals

2 A

r
B(wo) = p5" — ph

1
= {X[ﬁp(lﬁl()\)) — Hexp[2¢(A) + /()] — 1}M2F
(68)

Its relative value is shown in Fig. 2. The relative
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Fig. 2. Asymptotic relative bias of ML-estimator of variance if lognormal distribution is applied to gamma distributed data.

bias is an increasing function of the coefficient of
variation cVF and it reaches over 100% for cVF > 0.7.
It is approximately two order higher than one for
the mean. The relation of the opposite case, i.e.
(H=T, T=LN), is given by Eq. (A14) in Appen-
dix A and displayed in Fig. 3. The bias is of the
opposite sign, i.e. negative, and its value is one
order lower than the previously determined value,
which reflects the fact that the MLM estimate of
the mean for the gamma distribution remains
unbiased irrespective of what the true distribution
function is. For ¢, tending to zero, the relative bias
also approaches zero, as both distributions tend to
normal distribution.

6.4.3. Bias of quantiles
Substituting Eqgs. (23) and (24) into Eq. (53), we get

0N
’;Uf@)

B(x,) = x,];N - x,l; = exp(,u + a’tll,v) -

Expressing the parameters of the LN distribution by
those of the gamma distribution using Eqgs. (61) and
(63), the result is

1
B(s,) = — fexp[ 400 + Wiy | = s oel (70)

and the relative bias

exp[ ¥ + VOO, |
RB(x,) = T -
P
where A is the reciprocal of the squared variation
coefficient given by Eq. (21).

Therefore, the RB of the quantile is a function
of the coefficient of variation of the gamma-
distributed variable (c{) and the quantile order
(p) as shown in Fig. 4(a) and (b). Its value
grows rapidly with increasing value of the coeffi-
cient of variation and with the probability of
exceedance, and it exceeds 100% for p <2%
and ¢, = 1. The relation for the opposite case
relation, i.e. (H=1, T =LN), is given by Eq.
(A13) and displayed in Fig. 5(a) and (b). For ¢, =
0.2, the MLM-quantile bias curve is almost a
mirror reflection of that from Fig. 4(a) being a
dozen percent smaller in the relative absolute
values, while for ¢, = 1.0 the growth of the
MLM-quantile bias with ¢, is in negative values
not so rapid as all the values of RB lie in the
(—45%, —18%) interval for p <2%. The differ-
ences between the MLM-quantile in Figs. 4(a) and
(b), and 5(a) and (b) reflect the fact that the MLM
estimate of the mean for the gamma distribution
remains unbiased irrespective of what the true

1 (71)
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Fig. 3. Asymptotic relative bias of ML and LM methods’ estimator of variance if gamma distribution is applied to lognormal distributed data.

distribution function is. That is, the MLM-estimate case. Fortunately, there are some other PDFs
of the upper tail quantiles is more resistant with having this convenient property of equivalency
respect to the wrong choice of the distribution of MLM and MOM estimators in respect to the
function if the gamma distribution is taken as mean. One of them is described by Strupczewski

the hypothetical distribution than in the opposite et al. (2001).
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Fig. 4. Asymptotic relative bias of MLM, LMM and MOM estimates of quantiles if lognormal distribution is applied to gamma distributed data
versus probability of exceedance: (a) for coefficient of variation ¢,g, = 0.2; (b) for coefficient of variation c¢,g, = 1.0.
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6.4.4. Influence of wrong distribution assumption on

the value of the M, function

Since the ML-ratio test is frequently used for
choosing the best flood frequency model, it is inter-
esting to examine the sensitivity of the maximum like-
lihood function, M, to the wrong model choice as
outlined by Egs. (5)—(7). Substituting Eqgs. (45) and

(64) into Eq. (7), we get

AMo(H =LN;T = I

= AN — 1] — In T\ + %[m ') + Inm) + 1]

o ————__H=LN, T=LN

" ——H=Ga, T=LN
H=Ga, T=Ga
H=LM, T=Ga

0.7 0.e 0.

9 1.0
CwT

(72)

Fig. 6. Asymptotic value of ML as a function of the coefficient of variation for various combinations of (True; Hypothetical) distributions.
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where A is a function of the coefficient of variation c{

defined by Eq. (21).

To get rid of the first moment about the origin ()
in Egs. (45) and (64), it is convenient to compare the
functions M5 = [M,(-;+) + In a]. Their graphs are
shown in Fig. 6 both for T = I'and T = LN, while the
respective Egs. (A4) and (A13) are given in Appendix
A. It should be remarked that for small ¢,, RB of
quantiles is small and the difference between asymp-
totic ML values is small, which makes the ML ratio
weak for identifying the true PDF. In other words, the
standard deviation of each ML statistics will be
greater than the ML difference even for large samples.

7. Method of moments

The approximation by the MOM is widely used in
hydrological linear system theory, where two impulse
response functions of known form are fitted by the so-
called moment matching technique. The system
response for a polynomial signal is usually taken as
justification and for evaluation of the accuracy of the
approximation.

Distributions, which have finite number of lower
moments in common, are, in a sense, approximations
of one another. Some mathematical support for this
so-called principle of moments is given by Kendall
and Stuart (1969, vol. 1, Section 3.34, p. 87). They
approximate both functions by the finite series of
powers and use the principle of least squares to deter-
mine their coefficients. If two distributions have
moments up to order s equal, they must have the
same least-squares approximation of the first s coeffi-
cient of the polynomial expansion.

As both distributions, i.e. True and False, are in our
case two-parameter distributions, one can match their
first two moments:

jm(x)dx - sto,(x)dx _ (73)

| Fonar= [P = a 74)

Therefore, the moments of higher than the second
order may be biased only. There are no constraints
with respect to the range of both distributions
(Kendall and Stuart, 1969, vol. 1, Section 3.34,

p. 87) but the overlapping range enabling fit of the
first moment. The asymptotic bias of any statistics Z
caused by the false choice of the distribution, i.e. ¢;
taken instead of ¢y, determines the asymptotic bias of
the opposite case, i.e. taking ¢y instead of ¢; :

B(z(H = ¢(|T = ¢) = —B@H = ¢|T = @) (75)

To illustrate, consider an example. Substituting Eqgs.
(17) and (11) into Eq. (73), we get

A o’
— =explpn+ — (76)
o 2

and matching the coefficients of variation given by
Egs. (19) and (13)

% = exp(c?) — 1 (77)
Obviously, the first two moments are asymptotically
unbiased. Note that, if the indirect MOM for approx-
imation of I" by LN is applied, moments of all orders
of the original variable X will be biased but Eq. (75)
still holds. In any case, the bias should be related to
the true value of moments, i.e. to alF and ,U,ZF in this
case.

The asymptotic bias of the quantile approximation
(53) and its relative value can be determined by Eq.
(69) with all parameters derived by MOM (note the
difference from the MLM approach: w and o are
derived from Egs. (15) and (16) but not from Egs.
(61) and (63)). After substituting Egs. (15), (16) and
(21) into it, we get the asymptotic bias (4)

exp[z,l,vdln[l + c%]]
i1+ c3tl(e?)

Therefore, the relative bias of the quantile approxi-
mated by MOM is a function of the coefficient of
variation ¢, and the probability of exceedance p as
in the case of the MLM approximation. It is displayed
in Fig. 4(a) and (b).One can see that bias arising from
the ML-method and caused by the wrong distribution
assumption is for p < 15% greater than one due to the
MOM. The difference between them grows rapidly
with the increasing value of the coefficient of varia-
tion and decreasing probability of exceedance,
exceeding 300% for ¢, = 1 and p = 0.1%.

The RB caused by taking the gamma distribution

RB(x,) = ~1 (78)
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function instead of lognormal and MOM as the
approximation method is given by Eq. (Al5) and
shown in Fig. 5(a) and (b). It is a function of the
coefficient of variation ¢- and the probability of
exceedance p. It has a smaller absolute value than
either the one of the ML-method for p less than a
few percent or the one of the previous case (Fig.
4(a) and (b)). The difference, RBM™M(x,;c,) —
RBMOM(xp;cv), reaches 20% for ¢, =1 and p=
0.1%. That is, having a choice between the lognormal
and the gamma, the latter should be selected if the
MLM is to be applied.

8. Method of L-moments

As in MOM, the matching of the lower L-moments
of both distributions permits approximation of one
distribution by another. Let, once again, H =
g, ud) and T = gl o, ul), j # ks jik €
APDFS. The first two L-moments of the true distribu-
tion expressed in terms of the moments are:

A = al® (79)
Ao = () (80)
Similar relations can be written for the H distribution:
A = af 81
X = o () (82)
Matching the L-moments yields

a(li) = a(lk) (83)
&= [ ae(c)] (84)

Therefore, the mean is unbiased, while the variance
and quantiles are biased.

Furthermore, as in MOM, we have (oz(lk) =aq, ,u,(zk) =
b) & (a(lj) =c, ,u,g) =d), where a=c for the L-
moment matching, and Eq. (75) holds. It is noted
that the bias should be related to the true values of
moments.

Consider an example. As before, the chosen distri-
bution is lognormal while the real distribution is
gamma (F = LN, T = I). The first L-moment is iden-

tical with the first moment about the origin. Therefore,
the match of the first L-moment is equivalent to the
match of the first moment about the origin. Hence, the
first moment alLN obtained from the L-moment
technique remains unbiased. Substituting Eqgs. (11)
and (17) into Eq. (73), we obtain Eq. (76). Doing so,
with the L-coefficient of variation

N=4 (85)
where (e.g. Hosking and Wallis, 1997)

)

where
© ] 22
pw) = JW N exp[ -5 ]dz (87)
is the probability of exceedance for N(0, 1), and
r_ I(A+0.5)

= YY) (88)

we get the relation between A and o, which differs
from both the ML-relation (63) and the MOM-relation
(77). Expressing A and o by cVF and c%N, respectively,
we get the relationship between the coefficients of
variation of both distributions arising from the
L-moment method:

1((ef) "+os)

JAL((el) 2 +1)

ln[l + (2N )2]

=2]05-p
V2

. r LN . . .
i.e. ¢, © ¢, , which needs numerical solution.

To find the RB of variance, it is convenient to
reformulate Eq. (52) as:

Bus) = | () () |od (90)

Then, the asymptotic relative bias (4) takes the form:

v

N 2
RB(u,) = ( oy ) -1 1)

The value of RB versus the CVF together with the
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respective relation for MLM-approximation is
displayed in Fig. 2. RB(u,) for LMM increases
slowly and near linearly with CVF, reaching about
50% for c{: 1, while for MLM its increase is
rapid, reaching almost 600% for C‘I;: 1. Fig. 3
shows the relation for the case (H =1 T = LN).
Now both the biases are negative and the difference
between them is much smaller, slightly exceeding
10% for c =1

The bias of quantiles is defined by Eq. (69), which,
taking into account the equality of the first moments,

a%N = alr , takes the form:

r

1, (A)
B(x,,)zx;‘N—x;::I:exp( - 0.50 )— p)\ ]al

92)

Introducing the direct moments of both distributions
into Eq. (92), one gets the RB as

exp[ In(1 + (ch ))]

(D) ) (Y1 + ()

RB(x,) = -1 (93

In Egs. (90), (91) and (93), the coefficient of variation
of the lognormally distributed varlable AN s to be
computed from Eq. (89) for given c . Therefore, the
RB of the quantile is a function of the coefﬁc1ent of
variation of the ['-distributed variable, cv, and the
quantile order p. The result is displayed in Fig. 4(a)
and (b) together with the results of MLM and MOM
approximations. For cf = 0.2, all three RB(x,) func-
tions are close to each other (the maximum difference
is about 1.3%) with LMM and MOM being closer,
while for c{ = 1.0 the bias for MLM grows rapidly
being for p = 0.1% one order higher than the other
two which are still close.

For the case (H = I'; T = LN) (Fig. 5(a) and (b)),
this image is in a way mirrored for c{ = 0.2 : all three
bias functions run close to each other. However, the
LMM bias is now close to that for MLM. Unlike Fig.
4, the pattern from Fig. 5(a) occurs also in Fig. 5(b)
(for cf = 1.0). The closeness of all three biases is not
so tight as in Fig. 5(a) but they all increase (in absolute
values) in a very similar way.

9. Least squares approximation

The approximation of the 7-distribution by the H-
distribution, i.e. the determination of a(’) and ,u ) from

(k) and M(k) can be made at least in three different
ways

1. In the variable domain. Estimation of parameters
from a sample of size N is done by minimizing the
sum of squares of differences between the estimated
and observed values:

N

min " [§(p,)

ayp, o

— x(p)I (94)

m=1

where x(p,,) is the mth largest value in the sample, p,,
is its exceedance probability, and %(p,,) is the esti-
mated value. The continuous counterpart of Eq.
(94) is

min [ [ ) (st ) 09

2. In the probability domain.

N

1
min - > [P(5,) = Pl (96)

m=1

where p(x,,) and p(x,,) are the theoretical and empiri-
cal probabilities of the mth largest value, respective-
ly. The continuous counterpart of Eq. (96) is

min J [pj X; al ,,u2 ) pk(x a(lk)’M(zk))]de

(/) U)

7

3. In the density domain.

+ o0
j j k k
min, [, [l ) = e )
a7, My

(98)

which, in fact, leads to MOM (Kendall and Stuart,
1969, vol. 1, Section 3.34, p. 87).

“It is known that a function which is continuous in a
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finite range a—b can be represented in that range by a
uniformly convergent series of polynomials in x, say
S o P,(x) where P,(x) is of degree n. Suppose we
wish to represent such a function approximately by a
finite series of powers:

o(x) = > ax" (99)
n=0

The coefficients a, may be determined by the principle
of least squares, which makes

b
J (¢ — > ax") dx (100)

a minimum. Differentiating by a;, we have
b
2 -y g, x)x dx=0
| =S ax

or

b . b .
J gox'dx=a,-=J Zanx"ﬂdx (101)

If two distributions, ¢; and ¢, have equal moments
of up to order s, then they must have the same least
squares approximation, for coefficients a, are
determined by the moments by virtue of Eq.
(101). A similar line of approach may be adopted
when the range is infinite, the distributions in such
cases being, under certain general conditions,
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Table 3

Pertinent characteristics of annual flood data of 39 gauging stations in Poland

Basin/river Gauging station Drainage area  Average peak Coefficient of Skewness Winter floods
(10% km?) flow (m%/s) variation (c¢,)  coefficient (¢;) contribution (%)
No. Name
Vistula 1 Jawiszowice 0.971 149.4 0.637 1.258 25.7
2 Tyniec 7.520 719.1 0.600 1.573 40.0
3 Jagodniki 12.060 1126.4 0.551 1.298 443
4 Szczucin 23.900 1906.0 0.589 1.214 443
5 Sandomierz ~ 31.850 2485.4 0.533 0.827 51.4
6 Zawichost 50.730 32814 0.460 0.882 529
7 Pulawy 57.260 3003.6 0.436 0.778 57.1
8 Warsaw 84.540 2998.0 0.394 0.659 62.9
9 Kepa 169.000 3937.0 0.355 0.796 71.4
10 Torun 181.000 3916.7 0.368 1.094 74.3
11 Tczew 194.400 3962.6 0.404 1.294 77.1
Vistula/Sola 12 Zywiec 0.785 3014 0.729 1.819 25.7
Vistula/Skawa 13 Sucha 0.468 153.5 0.795 1.533 30.0
14 Wadowice 0.835 256.8 0.730 1.286 329
Vistula/Skawa/Wieprzowka 15 Rudze 0.154 53.0 0.762 0.816 45.7
Vistula/Raba 16  Stroza 0.644 219.0 0.787 1.373 314
17 Proszowki 1.470 459.8 0.739 1.135 329
Vistula/Dunajec 18  Kowaniec 0.681 250.9 0.748 2.388 429
19 Kroscienko 1.580 458.7 0.793 2.223 20.0
20 Nowy Sacz 4.340 933.6 0.750 1.498 31.4
21 Zabno 6.740 1161.0 0.734 1.537 329
Vistula/Dunajec/Czarny Dunajec 22  Nowy Targ 0.432 172.2 0.837 2.131 32.9
Vistula/Dunajec/Bialy Dunajec 23 Zakopane 0.058 37.9 0.885 2213 27.1
Vistula/Dunajec/Poprad 24 Muszyna 1.510 228.1 0.779 2.409 55.7
25  Stary Sacz 2.070 319.0 0.655 1.729 48.6
Vistula/Dunajec/Biala 26  Koszyce W. 0.957 267.4 0.724 1.210 40.0
Vistula/San 27  Jaroslaw 7.040 794.1 0.580 0.982 64.3
28  Radomysl 16.800 985.2 0.480 2.174 65.7
Vistula/San/Wislok 29  Tryncza 3.520 240.4 0.694 3.958 68.6
Vistula/Wisloka 30  Zolkow 0.581 167.2 0.812 1.953 443
31  Mielec 3.690 545.0 0.565 2.156 529
Vistula/Wisloka/Ropa 32 Kleczany 0.482 114.7 0.715 1.358 329
Vistula/Bug 33 Wyszkow 39.100 667.3 0.563 1.721 95.7
Oder 34  Miedonia 6.74 557.8 0.512 1.374 25.0
35  Trestno 20.40 1341.9 0.766 1.781 45.6
Oder/Warta 36  Konin 13.400 2554 0.626 2.417 84.3
37  Poznan 25.900 378.4 0.645 2.221 88.6
38  Skwierzyna  32.100 416.1 0.597 1.626 94.3
39  Gorzow 52.400 545.8 0.475 1.360 94.3

capable of representation by a series of terms such
as € ' P,(x). The same conclusion is reached.”
Therefore, the solution of Eq. (98) is

o) = o (102)
and

w = py (103)

10. Empirical testing
10.1. Annual flood data

Thirty-nine uninterrupted annual peak flow series
from Polish territory covering the period 1921-1990
were analysed. They are from drainage basins ranging
in area from 100 to 194,000 kmz, as shown in Fig. 7. A
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Fig. 8. Relation of sampling variation and skewness coefficients.

majority of the basins are from the south of Poland,
which is a mountainous part of the country. Some
pertinent characteristics of the data are given in
Table 3 and Fig. 8. These data were selected on the
basis of the length, completeness and homogeneity of
records. Each of the 39 data sets was non-parametri-
cally tested (Mitosek and Strupczewski, 1996) for
homogeneity and independence basing on WMO
(1988) guidelines. For stationarity of the mean and
variance, the Mann test was used (Mann, 1945),
while for detection of abrupt changes Lombard’s
test (Lombard, 1988) and Pettitt’s test (Pettitt, 1979)
were applied. Independence of elements in the series
was tested by the runs test (Fisz, 1963). In each case
the sample was found homogenous and independent at
5% significant level.

10.2. Fitting of PDFs

Seven two-parameter distribution functions,
namely, normal, lognormal, gamma, Gumbel
(extreme value type 1), Weibull, log-Gumbel and
log-logistic, were fitted by the ML method to the

data. The criterion of the maximum log-likelihood
value was used for choosing the best model
choice. From the above competing models, lognor-
mal was selected in 32 cases out of 39, gamma in
six cases, Gumbel in one case, and the remaining
four were not identified as the best model even in
one case.

Finally, it was decided to form a set of APDFS by
lognormal and gamma distributions. In Fig. 8 and in
all subsequent figures, the circles and triangles mark
the sample where LN and gamma were selected as the
best model, respectively.

10.3. Relative difference of moments

Since neither the true PDF nor the true value of
moments, i.e. values of the general population, are
known, the MOM estimate of moments were
regarded as the best approximation of the moments.
Taking additionally into account a limited size of
the random samples (see Eq. (1)), we will use the
term ‘relative difference’ for the empirical values
instead of ‘asymptotic relative bias’ giving credit
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Fig. 9. Relative difference of the ML-mean (Eq. (104)) assuming LN distribution vs. MOM-coefficient of variation.

to the 70-year long sample as big enough not
to mask the asymptotic properties of the bias.
Therefore,

(MLM) __ m(MOM)

o(m) = 104
and
(MLM) (MOM)
var — var
S = 105
(var) —— (105)

correspond to Eq. (4) for the mean and variance,
respectively. The scattering points in Fig. 9 of the
relative differences of the mean show a strong
similarity to Fig. 1 with respect to either the sign
of the differences, their range of variability or the
relation to the coefficient of variation (c¢,). A simi-
lar correspondence is observed with respect to the
variance, i.e. Fig. 10 compared with Figs. 2 and 11
with Fig. 3. The magnitudes of differences &(var)
of Figs. 10 and 11 differ considerably; this finding
is in conformity with the asymptotic differences
RB(var) shown in Figs. 2 and 3. Furthermore, a
growing tendency with the coefficient of variation
value is observed both for lognormal and gamma

distributions, which correspond to the increasing
functions RB(var) and (A14) as displayed in Figs.
2 and 3.

10.4. Relative difference of quantiles

Since the true PDF is not known, no estimation
method is bias-free. Therefore, the average of quantile
estimates of the two distributions, i.e. of LN and I,
obtained by the same method is taken in the denomi-
nator of Eq. (4) instead of the true value:

(LN) _ x(F)
d(x,) = —r P (106)
O.S(XE,LN) + xf,n )

A comparison of results of MLM and MOM presented
in Fig. 12 for probability of exceedance p = 0.1% and
in Fig. 13 for p = 1% shows a greater relative differ-
ence for the MLM quantiles than for the MOM quan-
tiles. That is, for small probability of exceedance, the
sensitivity of MOM-estimate of quantiles to the distri-
bution assumption is smaller than it is for the MLM-
estimates. This finding is in conformity with the
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Fig. 10. Relative difference of the ML-variance (Eq. (105)) vs. MOM-coefficient of variation for assumed LN distribution.

theoretical findings on the two distributions obtained
for the asymptotic case and presented in Figs. 5 and 6.

11. Conclusions

An analytical method for evaluation of the resis-
tance of the estimates of moments and quantiles by
various estimation methods with respect to the distri-
bution choice has been proposed and illustrated using
two two-parameter distribution functions. Both the
theoretical and empirical findings using the gamma
and lognormal distributions show that the bias caused
by the wrong distribution choice cannot be disre-
garded in evaluation of the efficiency of estimation
methods in FFA. The RB of the MLM-estimate of
moments can be considerable and grows rapidly
with increasing value of the coefficient of variation,
while the MOM estimates of the two first moments are
asymptotically bias free. Since the lognormal and
gamma distributions converge with each other and
with the normal distribution for the coefficient of
variation tending to zero, the RB of the MLM-
estimate of moments tends to zero for ¢, — 0.

Similarly, the MOM estimate of the quantiles of

upper tails is more resistant to distribution choice
than is the MLM estimate. The bias of LMM estimates
lies between these two. A comparison of the statistics
involved in the A-function of other two-parameter
distributions of the range (0, o) might exhibit similar
results for them.

Since MLM used as the approximation method is
irreversible, the asymptotic bias of the MLM-estimate
of any statistical characteristic (see Eq. (58)) is not
asymmetric as is for the MOM and LMM. The MLM-
estimate of the upper tail quantiles is more resistant
with respect to the wrong choice of the distribution
function if the gamma distribution is taken as the
hypothetical distribution than in the opposite case. It
comes from the fact that the MLM estimate of the
mean for the gamma distribution remains unbiased
irrespective of what the true distribution function is.
That is, having a choice between the lognormal and
the gamma, the latter should be selected if the MLM is
to be applied. In fact, there are some other PDFs
having this convenient property of equivalency of
MLM and MOM estimators in respect to the mean.
Analysis of the loss of the asymptotic ML value due to
a wrong distribution choice points out the weakness of
the ML-ratio for identifying the true PDF.
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The results of analysis performed on 39 70-year
long annual peak flow series of Polish rivers are in
agreement with theoretical findings and provide,
therefore, an empirical evidence for the necessity to
include bias in evaluation of the efficiency of PDF
estimation methods. When dealing with random
samples of hydrological size, one should take into
account both terms of MSE (given by Eq. (1)) in
numerical simulation experiments.
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Appendix A. MLM approximation of lognormal
distribution by gamma distribution

For lognormal distribution (9), the ML-asymptotic
estimates of the two parameters are equal to the first
moment about the origin and the second central
moment of logarithmically transformed variable,
respectively:

w= Jm In x¢"™N(x)dx (A1)
0
and
o? = Jw (Inx — w2 (A2)
0

The asymptotic maximum log-likelihood function (6)
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is
Myo(H=LN,T =LN) = —Inv27w — % —pu—Ino
(A3)
Substituting Eq. (16)
Mo(H=1N,T =LN) =
X e (A4)
— InV2m — 5 —Ino+ - —In o™

where o* is determined by Eq. (15) with ci‘N instead
of c,.
The asymptotic A-function for (H = I', T = LN):
AouH=T,T=LN)=Alna —InI[(A\)+
0 o (AS)
(A — 1)J In xo "N (x)dx — aJ xe™N(x)dx
0 0
MLM-equations:

Ml =LT=LN) _ A —Jx¢LNdx=0 (A6)
Ja «a

Substituting Eq. (17), we get
af = ai (A7)

This means that the mean is not biased for any 7-
distribution if the gamma distribution is assumed
instead of another distribution, say lognormal distri-
bution: B(a;) = 0. For T = LN, we have «; given by
Eq. (11).

The second MLM-condition reads:

IAH=T,T=LN) _
EN B

(A8)
In o — (A) + JlnxgoLNdx= 0

Substituting logarithmically transformed Eq. (A6), we
get

In A — (A = lnjxchN dx — Jln xo™N dx (A9)

Furthermore, we can replace the first term of the RHS
of Eq. (A9) by logarithmically transformed Eq. (11)
and the second term by Eq. (A1), getting:

2
InA— () = % (A10)

Introducing the direct moments of the lognormal
distribution as

In A — (M) = %m[l + (cVLN)Z] (A11)

and the moments of the gamma distribution as

—2Incl - lp((c{)_z) = %111[1 + (CEN)Z] (A12)

which is the relationship between the ML-approxi-
mated coefficient of variation of the gamma distribu-

tion, 05 , and its true value for the LN distribution, c]V“N.

A.1. Asymptotic ML function, M,

Substituting the MLM-solutions given by Egs.
(A6), (A7), (A8) and (A9) into Eq. (AS), we get Eq.
(7) in the form:

Mo(H=T,T=1LN)=

2
AMnA—1) —InTA) — (A — 1)‘77 —In AN
(A13)

Then, by Egs. (A9) and (15) both A and o’ can be
expressed by the respective function of CVL N only. To
get rid of the first moment about the origin («;) in Eqgs.
(A4) and (A13), it is convenient to compare the func-
tions M(H=-T=)=M,H=-T=")+1nq.
The graphs of both functions vs. cIV‘N are shown in
Fig. 6.

A.1.1. Bias of variance

Substituting Eqgs. (17), (18) and (12) into Eq. (4)
gives the RB of variance:

1

RB = —F— —1 Al4
where in the ML method A is the function (A9) of o,
or, using the direct moment, the function (All) of
ctN(X). Therefore, the RB of variance given by Eq.
(A14) can be determined from the coefficient of varia-
tion (c-N) only (Fig. 3).

A.1.2. Bias of quantiles
Substituting Eqgs. (24) and (23) into Eq. (52) and
expressing «; by Eq. (11), we get the relative
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asymptotic bias (4) of quantile as

1h(\)
A

RB(x,) = exp(0.50'2 —ot) ) -1 (A15)

where A is determined by Eq. (A9) and o is the func-
tion (13) of the coefficient of variation. Noting Eq.
(15), we see that the relative bias of quantile is a
function of the coefficient of variation of the True-
distribution, CVLN, and the probability of exceedance,
p (Fig. 5(a) and (b)).
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