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Abstract

Troughs under threshold analysis has so far found little application in the modeling of minimum streamflows. In this study,
all the troughs under a certain threshold level are considered in deriving the probability distribution of annual minima through
the total probability theorem. For the occurrence of minima under the threshold, Poissonian, binomial or negative binomial
processes are assumed. The magnitude of minima follows the generalized Pareto, exponential or power distribution. It is shown
that asymptotic extreme value distributions for minima or the two-parameter Weibull distribution is obtained for the annual
minima, depending on which models are assumed for the occurrence and magnitude of troughs under the threshold. Derived
distributions can be used for modeling the minimum flows in streams which do not have zero flows. Expressions for the 7T-year
annual minimum flow are obtained. An example illustrates the application of the troughs under threshold model to the minimum
flows observed in a stream. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is important to determine the probability distribu-
tion of annual minimum flows defined as ‘the mini-
mum average discharge in a year for a certain duration
of d days’, in the studies related to water supply plan-
ning, water quality management, minimum release
policies, etc. Generally, observed series of annual
minima are used in choosing the probability distribu-
tion functions that has the best fit to the observations.
Two-parameter lognormal, Weibull and power distri-
butions, and three-parameter lognormal, Weibull and
logPearson type III distributions are among those that
have been widely used as the probability function of
minimum flows (Mc Mahon and Diaz, 1982; Vogel
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and Kroll, 1989; Onéz and Bayazit, 2001a). It is often
difficult to choose the best function because of the low
power of the available statistical goodness-of-fit tests.

In the similar subject of flood frequency analysis,
the series of peaks over threshold (POT) have been
used as an alternative to annual maximum flood
series. A peak over threshold series consists of all
the peaks above a certain threshold level, and there-
fore contains more information than the annual maxi-
mum flood series which has only one element each
year. The probability distribution of the annual maxi-
mum floods is derived from the assumed distributions
of the annual number of occurrences and the magni-
tudes of the peaks over threshold. The Poisson process
is the model usually assumed for the occurrence times
of flood peaks, whereas the exponential distribution is
generally used for the magnitude of exceedances
(Shane and Lynn, 1964), in which case the Gumbel
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Fig. 1. Definition of the terms in TUT analysis.

distribution is found for the annual maxima (Zelenha-
sic, 1970). Rosbjerg et al. (1992) and Madsen et al.
(1997) showed that the generalized extreme value
(GEV) distribution is obtained for annual floods
when the Poisson process is combined with the gener-
alized Pareto distribution for the magnitude of excee-
dances. Lang et al. (1999) presented a state-of-the-art
review of the POT modeling. In some cases it was
seen that the number of peaks occurring each year
was not a Poisson variate, its variance being signifi-
cantly greater than its mean (NERC, 1975; Cunnane,
1979; Ben-Zvi, 1991). Vukmirovic and Petrovic
(1997) and Lang et al. (1997) considered distributions
other than the Poisson distribution (binomial and
negative binomial) for the annual number of peaks.
Recently, Onéz and Bayazit (2001b) analyzed the
case when the binomial or negative binomial model
for the occurrence of peaks is combined with the
exponential distribution of peak magnitudes. They
obtained expressions for the probability distribution
of annual maxima, for the 7-year flood and its
sampling variance. Their results imply that the results
are almost identical to those obtained using the Pois-
son model when the ratio variance/mean of the annual
number of peaks over threshold is not much different
from one, which is usually the case for floods.

In this paper, frequency analysis of minimum flows
is performed by considering not only the annual

minima but also all the minima (troughs) under a
certain threshold level. This is to be called troughs
under threshold (TUT) modeling. It will be assumed
that the troughs are independent. Therefore, more than
one minimum on the same recession curve should not
be included in the analysis when the flow exceeds the
threshold level for a short period of time during a long
drought.

TUT modeling uses more information about the
minimum flows than the annual minima modeling
because it works with a larger number of observations.
It can be argued that it has more physical relevance
because it is based on models for the distribution of
the annual number of troughs under threshold and of
their magnitudes. For these reasons, it is expected to
give good estimates of the 7-year minima just as POT
modeling does for the floods.

In this study the generalized Pareto distribution,
which contains the exponential distribution as a
special case, is chosen for the magnitude of the differ-
ences between the threshold level and troughs. Pois-
son model is assumed for the occurrence of minima
under the threshold level x,. The probability distribu-
tion F,(x) of the annual minima is derived applying
the total probability theorem. The generalized Pareto
distribution is also combined with the binomial or
negative binomial models for the occurrence of the
troughs under the threshold. As an alternative
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approach, the power distribution for the magnitude of
troughs Y under the threshold is combined with the
Poisson, binomial and negative binomial models,
respectively, for the occurrence of minima under the
threshold level. Expressions for the T-year annual
minimum are obtained in each case. Finally, the use
of the derived distributions is illustrated in an exam-
ple.

The study is restricted to the case of streams with no
zero flows, because the distributions assumed for the
minima below the threshold cannot model zero
minima properly. However, the derived distributions
can be used for the conditional probability distribution
of non-zero flows in ephemeral streams which are
common in arid and semi-arid regions (Wang and
Singh, 1995; Smakhtin, 2001).

2. Probability distribution of annual minima

The probability distribution function F,(x) of the
annual minima X can be derived using the total prob-
ability theorem. If Fy(y) is the probability distribution
function of the magnitude of troughs Y under the
threshold level x, (Fig. 1), we can write

PX>x)=1=F(x) =) Pm=0i[l - FyI 1)
i=0

where P(m = i) is the probability mass function of m,
the annual number of troughs under threshold.

Eq. (1) expresses that when each of the i minima
Y1, Y5, ..., Y; under the threshold in a year is greater
than x, the smallest of them (annual minimum X) will
exceed x. The probability of this event is P[X > x] =
PIY, > x,Y, > x,....Y; > x] = [[p=1 P(Y,, > x) =
[1-— Fy(x)]i because the troughs are assumed inde-
pendent. Summing over i from O to oo, the probability
distribution F,(x) of the annual minima is obtained by
the total probability theorem.

2.1. Generalized Pareto and Poisson distributions

Let us first assume that the occurrence of minima

under the threshold is Poissonian:
Pm=i=e¢ "uli! i=0,12,.. )

where u = E(m) is the mean of m.
It will be assumed that u = x; — y, the difference

between the threshold level and a trough, follows the
generalized Pareto distribution:
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For k = 0, u has no upper bound. For £ > 0, it has an
upper bound equal to a/k, which agrees well with the
distribution of troughs under threshold because u
cannot exceed x.

The distribution of the magnitude of the minima
corresponding to Eq. (3) is:

Fy(y) =1— Fy(u)

-
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For k = 0, the exponential distribution is obtained for
the magnitudes of minima. Combining Eqgs. (1) and
(2) and the second term of Eq. (4), we obtain the
probability distribution of the annual minima when
the occurrences of the minima are Poissonian and
their magnitudes are exponential:
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X = X

where x{, = x, — a In w. This distribution is known as
the Type I extreme value distribution for minima
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(Ono6z and Bayazit, 1999). 1 — F,(xy) = exp(—u) =
P(m = 0) is the probability that the annual minimum
is greater than x;.

For k£ # 0, combining the first (or the third) term of
Eq. (4) with Egs. (1) and (2), the following distribu-
tion is obtained for the annual minima;

00 k|
— i xo_.x
F =1- i1 =11 -k
() ée ,u,zI: ( - ) ]

i=0

e\ Kk
=l—e“exp{,u[l—<l—kx0 x) ]}
@
x//_x 17k
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where o' = a/p* and x§) = xy + a/k(1/* — 1). For
k < 0, this is known as the Type II extreme value
distribution for minima, where x < x, (On6z and
Bayazit, 1999). Again, 1 — F,(xy) =exp (—u) =
P(m = 0) is the probability that the annual minimum
exceeds x.

For k > 0, Type III extreme value distribution for
minima is obtained, where x, — a/k = x = x, (Onéz
and Bayazit, 1999). For k =0 and k < 0, x has no
lower bound. This is not desirable because the annual
minimum can have no negative value. On the other
hand, the annual minimum has the lower bound x, —
a/k for k > 0. This may not be desirable for streams
which has very low minima.

(6)

2.2. Exponential and (negative) binomial distributions

The Poisson distribution has a variance equal to the
mean. When the variance is significantly lower
(higher) than the mean, the binomial (negative bino-
mial) distributions may be used. The binomial distri-
bution has the probability mass function

1

where the mean of m is E(m) = p7y and the variance of
m is Var(m) = p(1 — p)v.
For the negative binomial distribution the probabil-

ity mass function is

y+i—1Y)\ .
Pm=1i)= ( )p'(l -p)? i=0,1,2,...
®)

where the mean and variance of m are given by
E(m)=py/(1—p) and  Var(m) = py/(1 — p)’,
respectively.

Combining the second term of Eq. (4) with Eq. (7)
of the binomial distribution and Eq. (8) of the negative
binomial distribution, respectively, following expres-
sions are obtained for the distribution of annual
minima:

1
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using the binomial series expansion of (1 + a)” where
1 + a is the quantity in brackets of Eq. (9), and
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using the binomial series expansion of (1 —b)™”
where (1 — b) is the quantity in brackets of Eq. (10).
In both Egs. (9) and (10), 1 — F,(xy) = (1 — p)?is the
probability of x > x.
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2.3. Generalized Pareto and (negative) binomial
distributions

Generalized Pareto distribution for the difference
between the threshold level and a trough can be
combined with the binomial distribution for the occur-
rence of troughs below the threshold to obtain the
probability distribution of annual minima. From
Egs. (1), (4) and (7):

[e8) Y . »
Fix)=1- Z( ) )p'(l -p)
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Similarly, combining the generalized Pareto distribu-
tion with the negative binomial distribution, annual
minima is found to have the following probability
distribution, using Egs. (1), (4) and (8):
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For £ <0, x = xy and for k > 0, xyp — a/k = x = x,
in the above equations.

2.4. Power and Poisson distributions

Onoz and Bayazit (2001a) found that the power
distribution has a good fit to the low streamflow
data. This distribution is given by:

Fy(y) = (y/xo)°
Assuming that the troughs under the threshold has the

0=y=ux (13)

power distribution, and inserting Egs. (2) and (13) in
Eq. (1)

Fu)=1= Y e "wlilll — (lx)T
i=0

=1—e "exp{ul[l — (/x)]}
= 1 — exp[—pu(x/xg)] = 1 — exp[—(x/x()‘]
(14)
where x|, zxo/;Ll/“. Eq. (14) is the two-parameter
Weibull distribution that has been widely used for
minimum flows. 1 — F,(xg) = exp(—u) = P(m = 0)
is the probability that the annual minimum is greater
than x,.

2.5. Power and (negative) binomial distributions

Combining Egs. (1), (7) and (13), the probability
distribution of the annual minima is derived as:

> (7N . . »
F)=1- Z( ,)p’(l = )1 = ()T

i=0 \ !

i=o \ I L=p

=1- (1 _p)yz ( y)(—p )1[1 - (.X/XO)C]i

p ’y
== 2o et}
1—p
0=x=x,
(15)
Inserting Eqgs. (8) and (13) in Eq. (1):
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where 1 — F,.(xy) = (1 — p)¥ = P(m = 0) is the prob-
ability that the annual minimum is greater than x; in
both Egs. (15) and (16).
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Fig. 2. Observed frequencies of the annual number of troughs, and probabilities of the fitted Poisson and negative binomial distributions.

3. T-year annual minimum flow

Expressions for x7, the annual minimum flow corre-
sponding to a return period of T-years, can be obtained
from the equations derived for the probability distri-
bution F,(x) of the annual minima as the value of x
that corresponds to F(x) = 1/T =1 —T.

When the generalized Pareto distribution for k # 0
is combined with the Poisson, binomial and negative
binomial distributions, using, respectively, Egs. (6),
(11) and (12), the following results are obtained for
the 7-year annual minimum:

o k afl
—x— 21— (-InT)+ (= -1
b =x =l = (T k(m )
[ In Ty \*
- 2 1—(—“ ‘)] (17)
k1 e
[ (1-1"\
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B kf =1y k
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XT=XO+— T —1 (19)
k P

In the case of the exponential distribution, using,
respectively, Egs. (5), (9) and (10), corresponding

formulas are:

xr=x9taln(—InT)) —aln u (20)
1 - Tl/y
xT=xO+ozln(—1) (21)
p

xXp=xo + aln[ L-p (17" - 1)] (22)
p

Results for the Poisson, binomial and negative bino-

mial distributions, using, respectively, Egs. (14)—(16),

are as follows when the magnitudes of minima have

the power distribution

xp = xo(—In Tp)"/u' (23)
1/c
Xp = xo(l - T}’V) Ip"e (24)
_ 1/c
xp = xo(T7 7 = 1) (= p) s (25)

4. An example

TUT modeling is applied to the one-day minimum
flows of the flow gauging station No. 1203 on the
River Porsuk in the Sakarya river basin in Turkey.
The basin area is 3938 km”, average discharge is
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Fig. 3. Empirical probability plot of the observed data, and the fitted exponential, generalized Pareto and power distributions.

1
0.8 -
0.6 -
x
e ¢ Observed
—a— Weibull
0.4 { —— GEV
—x— Poisson-Power
—*— N.Binomial-Power
—e— Poisson-G.Pareto
0.2 | —2— N.Binomial-G.Pareto
’ —o— Poisson-Exponential
—=— N.Binomial-Exponential
0 4 T T T T
0 1 2 3 4 5 6

P 3
x (annual minima, m/s)

Fig. 4. Probability plots of the TUT and annual minima models fitted to the data, and the empirical distribution of the observed annual minima.
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8.7 m%s. No zero daily flows have been recorded.
Fifty three-year portion of the flow record (1938—
1990) is used in the analysis.

The threshold level is chosen as x, = 2.5 mYs.
Local minima below this level have been selected
for the analysis. Some of these, however, are on the
same recession curve and, are therefore, not indepen-
dent. In such cases, only the smallest minimum is
preserved and the others are eliminated by the visual
inspection of the hydrograph. Average lag-one auto-
correlation coefficient of the troughs in years with at
least four troughs is computed as 0.157. The number
of independent minima used in the TUT modeling is
137, corresponding to an annual average of 2.59
troughs.

The variance of the annual number of troughs is
14.90, much larger than its mean. Therefore, the nega-
tive binomial model is more suitable than the Poisson
model for the occurrence of troughs under threshold.
In 29 yr of the observation period, annual minima are
above the threshold level x, = 2.5 m*/s. The probabil-
ity of the annual minima being greater than x, is then
P(m = 0) = 29/53 = 0.55.

The Poisson and negative binomial distributions are
fitted to the annual number of occurrences of the
troughs under the threshold level, with parameters
estimated by the method of moments. Fig. 2 shows
the frequencies P(m = i) estimated from the observed
annual number of troughs data, compared with the
probability mass functions of the fitted Poisson and
negative binomial distributions. Although neither of
these distributions has a very good fit to the data, it is
seen that the negative binomial distribution provides a
much better fit. Although y? statistic is much smaller
for the negative binomial ( X2 = 36.5), x” test rejects
this distribution even at the 0.01 level of significance
(o1 =26.2).

The generalized Pareto and exponential distribu-
tions are fitted to the difference between the threshold
level and a trough. The power distribution is fitted to
the magnitude of the troughs. Parameters are esti-
mated in each case by the L-moments (Hosking and
Wallis, 1997; Onoz and Bayazit, 2001a). Fitted expo-
nential, generalized Pareto and power distributions
are plotted in Fig. 3 together with the empirical
frequencies of the observed data. It is clearly seen
that the generalized Pareto distribution has a much
better fit than the other two distributions. Kolmo-

gorov—Smirnov (K-S) statistic is A = 0.04 for the
generalized Pareto, 0.09 for the power, and 0.11 for
the exponential distribution. K-S test rejects only the
exponential distribution at the 0.10 level (4,9 =
0.10).

Fig. 4 shows the plots of the probability distribu-
tions of annual minima obtained by the TUT modeling
with various assumptions for the distributions of the
magnitude of troughs and of the annual number of
troughs. Furthermore, the two-parameter Weibull
distribution and GEV distribution for the minima are
fitted directly to the observed annual minima (L-
moments are used in estimating the parameters of
the distributions, On6z and Bayazit, 1999). Probabil-
ity plots of these two distributions and the empirical
distribution of the observed annual minima are also
shown in Fig. 4.

The Weibull and GEV distributions whose para-
meters are estimated directly from the annual minima,
have the best overall fit to the observed frequencies.
But their fit is not good for F,(x) < 0.1 (T > 10 yr).
In this region, which is very important for practical
applications, TUT models Poisson-generalized Pareto
and negative binomial-generalized Pareto have the
best fit. The Poisson-generalized Pareto TUT model
deviates significantly from the empirical distribution
for F,(x) > 0.1, but the negative binomial-general-
ized Pareto model provides a reasonable fit up to
F.(x) = 0.75, above which it estimates too large
values of annual minima. As it would be expected
from the results of Fig. 2, TUT models with the expo-
nential or power assumptions lead to estimates that are
very far from the observations in this example.

In order to achieve a better comparison in the range
of higher return periods, 7-year annual minimum
flows are estimated for 7' = 5,10, 25, 50 and 100 yr,
on the basis of various TUT models as well as the
Weibull and GEV distribution for the minima fitted
directly to the observed annual minima. Results are
shown in Table 1.

As was explained earlier, exponential distribution
is not a good choice for the magnitudes in this exam-
ple. It leads to negative values for xsy and xyp0. The
generalized Pareto and power distributions are seen to
give close estimates for T = 5 yr, but for larger return
periods estimated xy values are much higher in the
case of the generalized Pareto. The reason is that for
k > 0 the annual minimum has a lower bound x; —
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a/k. In this case k = 0.61, a = 0.97, and the lower
bound is 0.91. None of the observed minima is
below this value, and the TUT models based on the
generalized Pareto distribution have a very good fit at
the lower tail.

It was shown that when the power and Poisson
distributions are combined in the TUT modeling, the
two-parameter Weibull distribution is obtained. When
the xr estimates of this case are compared with the
estimates given by the direct two-parameter Weibull
modeling of the annual minima, it is seen that the TUT
estimates are lower for small 7 but higher for large T.

The GEV distribution for the minima is obtained
when the generalized Pareto and Poisson distribution
are combined in the TUT modeling. This distribution
is compared with the GEV distribution whose para-
meters are estimated from the annual minima. Similar
to the case of the Weibull distribution, estimates of x7
are much lower for small T (T < 10 yr) and much
higher for large T (T = 25 yr) when the parameters
are estimated by TUT modeling.

Although the variance of the observed number of
annual troughs under the threshold is much larger than
its mean, the use of the negative binomial distribution
rather than the Poisson distribution has little effect on
the xrestimates for T > 10 yr. This was also observed
in the case of POT modeling for floods (Onoz and
Bayazit, 2001b). However, there is a marked differ-
ence for smaller return periods. For T < 10 yr, the
negative binomial assumption leads to much larger
x7 values.

Estimates of x;, given by different models are close
to each other, with the exception of the exponential
model. x5 values are much lower when TUT modeling
is used. On the other hand, the generalized Pareto
assumption leads to rather high estimates for large
return periods, because of the lower bound as
explained above. The x; estimates of the two-para-
meter Weibull and GEV distributions whose para-
meters are estimated from the annual minima
observations are very close to each other, and higher
for T < 10 but much lower for T = 25 yr than the
estimates of the TUT models.

The observed lowest annual minima in the 53 yr
series is 1.02 m3/s, close to the x5y estimate of the
generalized Pareto assumption. But x5y = 0.97, not
much different from x5, = 1.00 m%/s for the same
distribution because of the lower bound effect. The

GEV (distribution applied directly to the annual
minima has a negative lower bound equal to —0.05
in this case. It gives an estimate of x4y = 0.42 m¥s,
almost the same as that of the two-parameter Weibull
distribution (x99 = 0.44 m>/s), which is somewhat
smaller than the TUT model estimate where the
power and Poisson (or negative binomial) distribu-
tions are assumed.

It may be concluded that for this stream the nega-
tive binomial-generalized Pareto TUT model has the
best fit for return periods larger than 10 yr. However,
in this region it could be preferred to estimate the xr
values either by using the annual minima distributions
or through the TUT model with the assumption of the
power distribution for the magnitude of the troughs
under the threshold, because they provide lower esti-
mates.

For small return periods less than 10 yr, on the other
hand, the annual minima distributions have the best fit
to the observations. In this region, TUT models lead to
lower estimates. The choice between the negative
binomial-generalized Pareto TUT model and the
annual minima model depends on whether it is desired
to achieve the best fit to the observations or to obtain
safer estimates for low flows.

5. Conclusions

It is shown that the GEV distribution for the
minima is obtained when the Poisson model for the
occurrence of minima under threshold is combined
with the generalized Pareto distribution for their
magnitudes. Thus the theoretical asymptotical distri-
butions of the minima can also be obtained using the
TUT approach. Type I and Type II distributions are
not bounded from below, which may lead to negative
estimates for the minima. On the other hand, Type III
distribution has a lower bound that is usually positive,
which may not be appropriate for some streams
because the estimates of annual minima will always
remain above this value.

As an alternative, the power distribution can be
assumed for the magnitude of troughs under the thresh-
old. This leads to the two-parameter Weibull distribu-
tion for the annual minima when it is combined with
the Poisson model. In this case, the lower bound of the
minima is zero, which is a reasonable value. However,
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this model cannot be used in streams which have zero
flows, because zero probability is assigned to the flow
being zero.

The two-parameter Weibull and GEV for minima
distributions for the annual minima can give quite
different x; estimates depending on whether their
parameters are estimated by the TUT model or from
the observed annual minima. The final choice should
be made considering both the bounds of the distribu-
tions and the physical characteristics of the low flows
in each case.

The variance of the annual number of minima under
threshold is usually much larger than its mean. In this
case, the negative binomial distribution is more suita-
ble than the Poisson distribution for the occurrences of
minima. The negative binomial distribution is
combined with the power and the generalized Pareto
distributions for the magnitudes of minima.

It is seen that the choice of the negative binomial
distribution has no significant effect on the x; esti-
mates for high return periods even when the
variance/mean ratio of the annual number of minima
below the threshold is much higher than one.
However, the negative binomial distribution leads to
higher x7 estimates for 7 less than 10 yr.

Distributions derived in this study for the annual
minima based on the TUT model can also be used
in streams with zero flows, to represent the condi-
tional probability distribution of non-zero flows.
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