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Abstract—The mass-dependent fractionation laws that describe the partitioning of isotopes are different for
kinetic and equilibrium reactions. These laws are characterized by the exponent relating the fractionation
factors for two isotope ratios such that�2/1 � �3/1

� . The exponent� for equilibrium exchange is (1/m1 �
1/m2)/(1/m1 � 1/m3), where mi are the atomic masses and m1 � m2 � m3. For kinetic fractionation, the
masses used to evaluate� depend upon the isotopic species in motion. Reduced masses apply for breaking
bonds whereas molecular or atomic masses apply for transport processes. In each case the functional form of
the kinetic � is ln(M1/M2)/ln(M1/M3), where Mi are the reduced, molecular, or atomic masses. New
high-precision Mg isotope ratio data confirm that the distinct equilibrium and kinetic fractionation laws can
be resolved for changes in isotope ratios of only 3‰ per amu. The variability in mass-dependent fractionation
laws is sufficient to explain the negative�17O of tropospheric O2 relative to rocks and differences in�17O
between carbonate, hydroxyl, and anhydrous silicate in Martian meteorites. (For simplicity, we use integer
amu values for masses when evaluating� throughout this paper.)Copyright © 2002 Elsevier Science Ltd

1. INTRODUCTION

It is common practice in geochemistry and cosmochemistry
to describe mass-dependent isotope fractionation processes
with one fractionation law represented by a single curve on a
plot of one isotope ratio against another (the three-isotope plot
in which isotope ratios are usually expressed as fractional
differences from a standard). This practice is justified when the
analytical precision associated with light element stable isotope
ratio determinations is no better than� 0.1‰ per amu. It is also
common practice to approximate the non-linear fractionation
curves as straight lines in three-isotope space. When used to
characterize isotope reservoirs on Earth, these straight lines are
referred to as terrestrial mass fractionation lines. Deviations from
such terrestrial mass fractionation lines are used as indicators of
non-mass-dependent isotope effects in geochemistry and cosmo-
chemistry (e.g., Matsuhisa et al., 1978; Luz et al., 1999).

Analytical precision has been improving over the past sev-
eral years with the result that the assumption of a single
fractionation law is no longer valid. Fractionation laws will
vary in nature, and in the face of new technologies, it is worth
returning to the concepts of mass-dependent fractionation to
appreciate the magnitudes and sources of these variations. Most
importantly, the existence of different fractionation laws inval-
idates the concept of a single terrestrial fractionation line for a
given isotope system in three-isotope space.

The theoretical basis for mass-dependent isotope fractionation
resulting from equilibrium and kinetic processes was established
in a series of papers by Bigeleisen, Urey, and others more than 50

yr ago. More recently, Matsuhisa et al. (1978) drew attention to the
distinction between equilibrium and kinetic fractionation laws
with reference to the three isotopes of oxygen. Nevertheless,
because the differences were in the noise of the measurements, the
distinction has been largely ignored in subsequent literature.

With the advent of multiple collector-inductively coupled
plasma-source mass spectrometry (MC-ICPMS) and improved
methods for preparing gases for introduction into gas-source
mass spectrometers, there is a new-found ability to measure the
relative abundances of the isotopes of O, Mg, Fe, and other
elements with precision approaching 50 ppm (e.g., Miller et al.,
1999; Galy et al., 2000; Zhu et al., 2001). This new level of
precision is sufficient to distinguish different mass fractionation
laws over limited ranges in isotopic composition.

Herein we summarize the theoretical basis for mass-depen-
dent isotope fractionation during equilibrium and kinetic pro-
cesses and explore some of the implications of disparate frac-
tionation laws in geochemistry and cosmochemistry. Mass
fractionation laws for equilibrium and kinetic processes differ
because kinetic fractionation results from motions that can
often be described classically using effective masses whereas
equilibrium exchange is purely a quantum phenomenon that
depends on the atomic masses alone. The differences between
these mass-dependent fractionation laws may explain some
effects previously attributed to non-mass-dependent fraction-
ation, and in any case, must be considered when evaluating the
significance of apparent departures from a reference mass frac-
tionation line at the sub-per mil level.

2. EQUILIBRIUM MASS-DEPENDENT ISOTOPE
FRACTIONATION

Isotope exchange between two compounds can be written as

aX1 � bX2 � aX2 � bX1 (1)
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in which the subscript 2 refers to a heavy isotope and the
subscript 1 refers to the light isotope of element X. The equi-
librium constant for Eqn. 1 is

Keq �
Q(aX2)Q(bX1)

Q(aX1)Q(bX2)
(2)

where Q is the partition function for the isotopic species (iso-
topologue) indicated.

Bigeleisen and Mayer (1947) showed that the partition func-
tion ratio for two isotopologues can be written in terms of a
classical part and a quantum mechanical part:

Q2

Q1
� f�

l

�m2,l

m1,l
� 3/ 2

(3)

where Qi refers to the partition function of the particular
isotopologue i, mi is the mass of the isotope i, and the product
is taken for all isotope atoms l. (In this treatment, symmetry
numbers that would otherwise clutter the presentation, but are
required when evaluating Eqn. 3 for individual molecules, can
be ignored without loss of generality because they cancel in the
end results where ratios of partition function ratios are taken.
Moments of inertia are also ignored for similar reasons.) The
parameter f comprises the quantum part of the partition func-
tion ratio for two compounds that differ only in their isotopic
composition. The classical term (m2,l /m1, l)

3/2 represents the
differences in momentum of the isotopes factored out of the
partition function ratio. Although it is central to kinetic frac-
tionation effects, the classical term cancels in balanced reac-
tions where the numbers of each isotope are conserved, and it
can be omitted from Q2 /Q1 when constructing equilibrium
constants. For Eqn. 1 the equilibrium constant is then

Keq �
f (aX)

f (bX)
(4)

where f (aX) and f (bX) are the quantum parts of the isotopo-
logue partition function ratios for compounds aX and bX,
respectively.

Urey (1947) and Bigeleisen (1955) made use of the fact that
f approaches

f � 1 �
1

24 � h

kb T�
2�

j

��1, j
2 � �2, j

2 � (5)

to evaluate equilibrium constants at temperatures of several
hundred degrees K and higher where quantum effects are small.
In Eqn. 5 �n,j is the frequency of vibration of the nth isotope, T
is temperature, h is Planck’ s constant, kb is Boltzmann’s con-
stant, and the summation is over all independent vibrational
modes j.

Treating the vibrations as harmonic oscillations of the iso-
topic atoms of interest permits expansion of the differences in
the squares of the frequencies of vibration:

�1, j
2 � �2, j

2 �
Kf, j

4�2 � 1

m1, j
�

1

m2, j
� (6)

where Kf,j is an appropriate force constant for the atom of
interest and vibrational model j. Summing for all vibrations j:

�
j

��1, j
2 � �2, j

2 � � �
j

� 1

m1, j
�

1

m2, j
� Kf, j

4�2. (7)

Since the masses refer to the atoms in the sum over j, masses
can be factored to give for f:

f � 1 �
1

24 � h

kb T�
2 � 1

m1
�

1

m2
��

j

Kf, j

4�2. (8)

The equilibrium isotope fractionation factor �a-b for the two
substances aX and bX is defined as the ratio of the isotope
ratios for these two substances at equilibrium and is equivalent
to the equilibrium constant for the exchange reaction:

Keq � �a�b �

�X2

X1
�

a

�X2

X1
�

b

(9)

where each X represents the numbers of isotopes indicated.
Eqn. 9, 8, and 4 can be combined to yield expressions for the
equilibrium isotope fractionation factor in terms of mass:

ln �a�b � ln fa � ln fb. (10)

The approximation ln(1 �x) � x can be used to evaluate Eqn.
10 (f 	 1.0x at 298K), leading to

ln �a�b �
1

24 � h

kb T�
2 � 1

m1
�

1

m2
��

j

�Kf, j,a

4�2 �
Kf, j,b

4�2� (11)

where Kf,j,a and Kf,j,b are the force constants appropriate for
atomic species X in compounds a and b, respectively (Weston,
1999).

Eqn. 11 shows that for a given pair of isotopes, the fraction-
ation factor varies from substance to substance according to
bond strength. A similar derivation for isotopes 3 and 1 leads to
an equation analogous to Eqn. 11. The ratio of the fractionation
factors for the two isotope ratios 2/1 and 3/1 is

ln �2/1
a�b

ln �3/1
a�b �

1

24 � h

kb T�
2 � 1

m1
�

1

m2
��

j

�Kf, j,a

4�2 �
Kf, j,b

4�2�
1

24 � h

kb T�
2 � 1

m1
�

1

m3
��

j

�Kf, j,a

4�2 �
Kf, j,b

4�2� . (12)

This ratio reduces to the mass fractionation law that relates the
three isotopes of X at equilibrium

ln �2/1
a�b

ln �3/1
a�b �

� 1

m1
�

1

m2
�

� 1

m1
�

1

m3
� (13)

as shown previously (e.g., Matsuhisa et al., 1978; Weston,
1999). Eqn. 13 can be rearranged to give

�2/1
a�b � (�3/1

a�b)� (14)

where
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� �

� 1

m1
�

1

m2
�

� 1

m1
�

1

m3
� . (15)

Eqn. 14 and 15 represent a first-order mass-dependent frac-
tionation law for isotope partitioning at equilibrium. They rely
on the assertion that the differences in squares of vibrational
frequencies in the material depend only on the masses of the
isotopes themselves and not on other factors (Eqn. 7). Big-
eleisen (1955) discussed the validity of this “ rule of the geo-
metric mean” and showed that it holds where mixing is ideal
(enthalpies of reaction are zero).

Evaluation of Eqn. 15 gives a unique value for � for a given
isotopic system. This is because the masses mi in Eqn.15 are the
atomic masses of the isotopes and not reduced or molecular
masses; the equilibrium � value is not sensitive to the masses
of the surrounding atoms. For example, Eqn. 6 relies on atomic
masses yet there are instances where the frequency of vibration
depends on a reduced mass rather than an atomic mass (e.g.,
diatomic molecules), and on this basis, it might be argued that
reduced masses should appear in Eqn. 15. However, it turns out
that Eqn. 15 is consistent with the role of reduced masses in
determining vibrational frequencies. This is shown by consid-
ering a mass M bonded to isotopic species i with masses mi.
The reduced masses are

�i �
M mi

M � mi
. (16)

The difference in the squares of vibrational frequencies for
mode j becomes

�1, j
2 � �2, j

2 �
Kf, j

4�2 � 1

�1, j
�

1

�2, j
�

�
Kf, j

4�2 �� Mj m1, j

Mj � m1, j
��1

� � Mj m2, j

Mj � m2, j
��1�

�
Kf, j

4�2 � 1

Mj
�

1

m1, j
�

1

Mj
�

1

m2, j
�

�
Kf, j

4�2 � 1

m1, j
�

1

m2, j
� . (17)

The last line of Eqn. 17 is Eqn. 6. The equivalence of Eqn. 17
and Eqn. 6 shows that the expression for the equilibrium �
derived from Eqn. 6 applies regardless of whether or not
reduced or atomic masses dictate the vibrational frequencies
(we will show that this is not true for the kinetic expression for
�). The reader may verify that substitution of reduced masses
into Eqn. 15 gives the same values for � as the atomic masses.
Molecular masses would not be used to evaluate Eqn. 15
because in the general case, the vibrations are interatomic.

3. KINETIC MASS-DEPENDENT ISOTOPE
FRACTIONATION

Equilibrium partitioning of isotopes between compounds
depends upon zero-point energy differences that reflect the net
effect of numerous vibrational modes. These differences do not
arise in the limit of classical mechanics. Kinetic fractionation,

on the other hand, can result from motions that are described
satisfactorily by classical mechanics. A generalized functional
form for the kinetic mass-dependent fractionation law can be
derived from the classical part of the partition function ratio in
Eqn. 3. However, before describing such a law, it is useful to
illustrate the way that kinetic fractionation differs from equi-
librium fractionation using a simple example.

If molecules comprising a gas do not interact apart from
collisions, then their kinetic energies are the same (treating the
gas as ideal). In this case we can calculate the mass fraction-
ation law for three isotopes comprising isotopologues of these
molecules. Imagine, for example, collecting the molecules
based on their relative velocities. The numbers of isotopic
molecules collected will be proportional to the velocities and
the velocities a function of mass, such that

KE �
1

2
m1	1

2 �
1

2
m2	2

2 �
1

2
m3	3

2 (18)

where subscripts 1, 2, and 3 designate the three isotopes (in
ascending order of mass), KE is the kinetic energy of the
molecules, m is the mass of the indicated isotopologue, and 	 is
the velocity of the isotopologue. The isotope fractionation
factor � can be equated with the ratio of the velocities of the
molecules relative to a condition in which the velocities are
equal, leading to

ln �2/1

ln �3/1
�

ln�	2

	1
�

ln�	3

	1
� �

ln�m1

m2
�

ln�m1

m3
� . (19)

Eqn. 19 shows that the mass fractionation law in this circum-
stance is

�2/1 � �3/1
� (20)

where the exponent � is

� �

ln�m1

m2
�

ln�m1

m3
� . (21)

Eqn. 21 is evaluated using the molecular masses. The exponent
� in this kinetic process is different from that derived for
equilibrium isotope partitioning (cf. Eqn. 15). Although we
have used approximations to simplify the mathematics, there is
nothing inherent in the physics behind the derivations of Eqn.
21 and Eqn. 15 that would require convergence of the two
distinct values for �. The distinction is underscored by the
realization that Eqn. 21 is a ratio of logarithms of classical
partition function ratios ((m2,l/m1,l)

3/ 2 in Eqn. 3)) for the
reactants whereas Eqn. 15 is a ratio of differences in logarithms
of partition function ratios (f values in Eqn. 3) between prod-
ucts and reactants that would not exist in the classical limit. In
brief, exponents for kinetic and equilibrium fractionation laws
derive from the mass dependence of different aspects of parti-
tion functions.

For more general applicability, a mass fractionation law
attending kinetic isotopic exchange can be derived using tran-
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sition state theory as shown by Bigeleisen (1949). In this
formulation the ratio of rate constants for an elementary reac-
tion proceeding with two different isotope reactants is

kf,2

kf,1
�

�*2
�*1

f 2/1
�

f 2/1
react (22)

where kf,2 and kf,1 are the forward rate constants for two
otherwise identical reactions involving isotope 2 and 1 as
reactants, respectively, �2

* and �1
* are frequencies of vibration

for the two isotopes in a bond that, when ruptured, leads to
formation of the activated complex (transition state), and f2/1

� /
f 2/1

react is the equilibrium constant for the formation of the tran-
sition state from reactants (evaluation of f 2/1

� excludes the
vibration that becomes the ruptured bond, or reaction coordi-
nate). The ratio of reaction rate constants can be equated with
the isotope fractionation factor for a pair of isotopes, that is,
�2/1 � kf,2/kf,1. For harmonic oscillations along what will
become the reaction coordinate (allowing the substitution �*i �
1/(2�) 
Kf /m*i), the ratio of fractionation factors is

ln �2/1

ln �3/1
�

1

2
ln�m*1

m*2
� � ln f2/1

� � ln f 2/1
react

1

2
ln�m*1

m*3
� � ln f3/1

� � ln f 3/1
react

. (23)

Because ln(m*1/m*2) �� ln f 2/1
� � ln f 2/1

react and likewise for
isotope ratio 3/1, to a good approximation, Eqn. 21 gives the
following fractionation law

�2/1 � ��3/1�
� (24)

where

� �

ln�m*1
m*2
�

ln�m*1
m*3
� . (25)

The masses in Eqn. 25 need not be the atomic masses and could
instead refer to, for example, reduced masses of a vibrating
diatomic molecule. The kinetic � can therefore vary as a
function of the masses of the species bonded to the isotopes of
interest.

To explore further the applicability of Eqn. 25, one can
derive its equivalent in the context of a quantum mechanical, as
opposed to a classical, formulation of transition state theory.
The RRKM (Rice-Ramsperger-Kassel-Marcus) theory for uni-
molecular dissociation can be used for this purpose (Marcus
and Rice, 1951).

Start by assuming that the rate constant is determined by the
frequency of vibration of a single bond that will become the
reaction coordinate in the reactant molecule (the frequency of
attempts to break the bond):

kf � �*. (26)

At the microscopic scale this one frequency of vibration is
related to discrete energy levels:

E � Ez p � �E � nh�* (27)

where E is the energy associated with vibrational quantum

number n, h is Planck’ s constant, and Ezp is the zero-point
energy (1/2h�*). As a result, the forward rate constant for
unimolecular dissociation as a function of E is:

kf �E� �
�E

h
. (28)

Eqn. 26 and 28 are manifestations of the usual “ smearing” of
energy at a given frequency as prescribed by the uncertainty
principle (Forst, 1973). Generally, more than one vibrational
mode can contribute to formation of the transition state and
bond rupture, because anharmonic vibrations can couple. In
this case the �E in Eqn. 28 must be evaluated from the density
of states at E. The rate constant becomes

kf �E� �
1

h
�E�
(29)

where 
(E) is the density of states for energy E for the reactant
molecule (J�1). In addition, Eqn. 29 may apply to more than
one quantum state accessible to the activated complex. The
number of these states is designated as N�. The complete
equation for the forward rate constant becomes

kf �E� �
N�

h
�E�
. (30)

For a single vibration contributing to bond rupture, 
(E) �
dn/dE � 1/(h�*), and for a single state for the activated com-
plex, the equation for the rate constant reduces to Eqn. 26 (i.e.,
kf(E) � �*). The ratio of rate constants for two isotopologue
reactants 1 and 2 is then �*2/�*1 which clearly leads to the
expression for � in Eqn. 25 as long as the isotopic substitution
does not affect the number of quantum states accessible to the
transition state (i.e., the usual case; cf. Gao and Marcus, 2001).

For the more general case of multiple vibrations, s in num-
ber, Marcus and Rice (1951) showed that the density of states
can be calculated as


�E� �
�E � Ezp�

s�1

�s � 1�!�
j�1

s

h�j

(31)

where the zero-point energy represents the sum over all vibra-
tions s. The rate constant is then

kf �E� �
N�

h
�E � Ezp�

1�s �s � 1�!�
j�1

s

h�j. (32)

The ratio of two rate constants for two different isotopic vari-
ants of the same reactant molecule gives

ln �2/1 � �
j�1

s

ln��*2, j

�*1, j
� � �1 � s� ln�E � Ezp,2

E � Ezp,1
� . (33)

The ratio of fractionation factors for three isotopologues is
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� �

�
j�1

s

ln��1, j

�2, j
� � �1 � s� ln�Ezp,2

Ezp,1
�

�
j�1

s

ln��1, j

�3, j
� � �1 � s� ln�Ezp,3

Ezp,1
�

(34)

where we have substituted the expression for the frequency of
harmonic oscillators in terms of reduced masses for each vi-
bration s and a truncated Taylor series expansion for the second
term on the right-hand side of Eqn. 33. Eqn. 34 reduces to Eqn.
25 when the reduced masses are the same for each vibration
contributing to bond rupture. Eqn. 34 leads to � values that are
either close to the values obtained from Eqn. 25 or somewhere
between the values given by Eqn. 15 and 25; the kinetic �
values from Eqn. 34 are usually less than the equilibrium
values.

The expression for � in Eqn. 34 characterizes mass-depen-
dent isotope fractionation for a simple unimolecular dissocia-
tion as long as the quantum states accessible to the transition
state are independent of the isotopic substitutions. If so, then
the N� terms cancel in going from Eqn. 32 to Eqn. 33. In
addition, the density of states for the reactant molecules must
reflect intramolecular equilibrium (i.e., the vibrational states at
a specified total energy E are all occupied equally) so that the
summations in Eqn. 34 apply to each isotopologue. Recently,
Hathorn and Marcus (1999, 2000) and Gao and Marcus (2001)
have shown that departures from both of these restrictions can
explain the mass-independent (or “strange” mass-dependent)
fractionation laws that characterize the formation of ozone.
These departures from Eqn. 34 are likely to be restricted to
certain reactions in the gas phase since nonequilibrium values
for 
(E) rely on short-lived transition states (with life times
shorter than the time required for intramolecular equilibration),
and both departures are related to the symmetry of the isoto-
pomers (Gao and Marcus, 2001).

Comparing Eqn. 21, 25, and 34 shows that in general, the
exponent that characterizes the mass-dependent fractionation
law applicable to kinetic processes depends on the motions that
determine the rates of a given process. The species in motion
may be molecules, atoms, or pairs of atoms, and the masses
used to evaluate the kinetic � are assigned accordingly. The
motions can be identified with the preexponential term in an
Arrhenius reaction rate equation (Slater, 1948). There is no
physical reason for � in these rate equations to be identical to
the equilibrium � and in general, the kinetic value for � is less
than the equilibrium value. We expect Eqn. 25 to be most
applicable to reactions involving condensed phases (e.g., evap-
oration), whereas Eqn. 34 may be required for reactions con-
fined to the gas phase.

4. MASS-FRACTIONATION CURVES IN THREE-ISOTOPE
SPACE

In each of the cases examined above the equation that relates
the isotope fractionation factors for three isotopes is of the form

�2/1 � �3/1
� (35)

where the functional dependence of � varies depending upon

the process. The formula for any fractionation curve in which
one isotope ratio is plotted against the other is

2/1R � 3/1R� �2/1Rref/
3/1Rref

� � (36)

where 2/1R and 3/1R are the 2/1 and 3/1 isotope ratios for each
datum on the curve and 2/1Rref and 3/1Rref are the isotope ratios
for a reference material on the curve. The fractionation curves
can be rewritten in terms of the standard delta notation where
�i/1 � (i/1R/i/1Rstd � 1) 103 and i/1Rstd is the isotope ratio of a
standard material (e.g., Standard Mean Ocean Water, or
SMOW, in oxygen isotope work):

�2/1 � �103 � �ref
2/1��103 � �3/1

103 � �ref
3/1� �

� 103. (37)

Eqn. 37 is the equation for a fractionation curve in a plot of
�2/1 (ordinate) against �3/1 (abscissa), the usual form of the
three-isotope plot. In this equation the reference composition
lies on the curve and all of the � values are relative to the same
standard (the standard need not be on the same fractionation
curve as the reference in this equation). The resulting fraction-
ation curves are non-linear.

5. EXTRACTING THE FRACTIONATION EXPONENT
FROM DATA

Hulston and Thode (1965) showed that the relationship be-
tween �2/1 and �3/1 in Eqn. 37 can be linearlized if the defini-
tions of the � values are redefined such that ��i/1 � 103

ln(i/1R/i/1Rstd). Miller et al. (1999) used the Hulston and Thode
(1965) definition of � to determine a precise value for the mass
fractionation exponent � that best characterizes oxygen isotope
fractionation among rocks from a wide range of geologic
environments.

In the Hulston and Thode (1965) definition of �, referred to
hereafter as ��, ln(i/1R/i/1Rstd) replaces (i/1R/i/1Rstd � 1). These
two quantities are the same where i/1R/i/1Rstd � 1 but diverge at
all other values for which both are defined. The mass fraction-
ation curves in terms of �� are straight lines of the form

��2/1 � � ��3/1 � � ��ref
3/1 � ��ref

2/1 (38)

where the reference composition (ref) is any point on the mass
fractionation curve, whereas the standard used to define the ��
values (e.g., SMOW) need not be on the curve. Eqn. 38 can be
used to extract the exponent � that characterizes a fractionation
law by linear regression of a set of isotope ratio data expressed
in terms of ��. This is the approach used by Miller et al. (1999).

6. APPLICATIONS

6.1. Mg Isotope Fractionation During Evaporation

Evaporation may have influenced the elemental and isotopic
variability among some early solar system materials. Experi-
ments in which primitive solar system rocks are evaporated or
sublimed at low pressures in the laboratory serve as means for
evaluating the effects of total pressures and partial pressures
(e.g., pressure of H2) on the evaporation process. Analyses of
25Mg/24Mg and 26Mg/24Mg from evaporative residues pro-
duced by this type of experiment at the University of Tokyo
provide the opportunity to test the prediction that evaporation,
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a kinetic process, will result in a fractionation law with � 	
ln(m1/m2)/ln(m1/m3).

6.1.1. Experimental methods

In these experiments chondrules were evaporated in a high-
temperature furnace within a vacuum chamber (Nagahara and
Ozawa, 1996). The heater was tungsten mesh with a diameter
of 5 cm and a height of 10 cm. Individual chondrules from the
Bjurbole and Allende chondrite meteorites were placed on a
molybdenum screen set in the center of the furnace assembly.
The samples were heated from room temperature to 773K in 20
min and held at that temperature until pressures of � 1 
 10�10

bar were achieved (requiring several hours). The chondrules
were then partially evaporated at pressures ranging from 10�10

to 10�6 bar at a temperature of 1773K. The higher steady-state
pressure was achieved by bleeding H2 into the chamber during
evaporation. Temperature was controlled with a W95Re5-
W74Re26 thermocouple calibrated against the melting temper-
atures of Fe, Ni, and Pt. Following heating, the samples were
cooled by turning off the heater (a subsolidus temperature of
1273K was achieved in � 2 min).

The 25Mg/24Mg and 26Mg/24Mg analyses were obtained by
MC-ICPMS, following acid digestion of the residues and start-
ing materials and purification of the extracted Mg as described
by Galy et al. (2000, 2001). All samples were digested in
distilled HF and HNO3. The Mg in solution was purified by
removing Fe and Al as precipitates and Ca and Na by cation
exchange (Dowex AG50W-X12). Purification eliminates ma-
trix effects and isobaric interferences arising from coexisting
elements in the samples (e.g., 48Ca��, NaH�). The weak nitric
acid solutions containing the isolated Mg were introduced into
the plasma source of the mass spectrometer through a modified
Cetac MCN 6000 desolvating nebulizer. The desolvating neb-
ulizer limits isobaric interferences from extraneous oxides,
carbides, and nitrides to negligible levels (e.g., C2H2

�, CN�).
Magnesium isotope ratios were measured using a Nu Instru-
ments MC-ICPMS. This double-focusing instrument has vari-
able-dispersion ion optics and a fixed array of 12 Faraday
collectors. The working mass resolution for flattop peaks is 	300.
The isotope ratios 25Mg/24Mg and 26Mg/24Mg are reported rela-
tive to the SRM 980 international Mg standard (Catanzaro et al.,
1966) as �25Mg � ((25Mg/24Mg)sample/(

25Mg/24Mg)SRM 980 � 1)
103 and �26Mg � ((26Mg/24Mg)sample/(

26Mg/24Mg)SRM 980 � 1)

103. The long-term reproducibility of the method is � 0.03‰ 1�
for �25Mg and � 0.06‰ 1� for �26Mg (Galy et al., 2000, 2001).
The correlation coefficient between measured �25Mg and �26Mg
values is 0.793 (represented by the orientation of the error ellipses
in Figure 1.

6.1.2. Results

Eqn. 25 predicts that the mass fractionation curve on a plot
of �25Mg against �26Mg (both relative to the SRM 980 stan-
dard) will be characterized by � � 0.5100 for a kinetic process
like evaporation (Mg is well known to evaporate as the mon-
atomic species). Linear regression of the evaporation residue

Fig. 1. Magnesium three-isotope plot of residues from evaporation of
chondrules (only the most fractionated samples are shown at this scale)
showing that different fractionation laws can be distinguished with the
uncertainties associated with the data. The 95% confidence level error
ellipses represent the eigenvectors and eigenvalues (multiplied by the

-squared factor to achieve the 95% confidence level) for the covari-
ance matrix obtained from the long-term reproducibility of the method
(� 0.03‰ 1� for �25Mg and � 0.06‰ 1� for �26Mg, as reported by
Galy et al., 2000, 2001; and the correlation coefficient of 0.793 ob-
tained from �25Mg and �26Mg, standard data). The three fractionation
curves are centered at �25Mg � 1.66‰ and �26Mg � 3.42‰ on the
SRM 980 scale. Note that the data define a fractionation curve indis-
tinguishable from the kinetic fractionation law.

Table 1. Results of chondrule evaporation experiments on four chondrules from the Allende and Bjurbole meteorites.

Sample Type† Pressure (bar) Temp. (K) �26Mg‡ �25Mg‡ ��26Mg§ ��25Mg§

Allende 3 I * * 3.22 1.66 3.22 1.66
Allende 3 R 4 
 10�6 1773 10.18 5.20 10.13 5.19
Bjurbole 1 I * * 3.22 1.66 3.22 1.66
Bjurbole 1 R 9 
 10�10 1773 4.28 2.21 4.27 2.20
Bjurbole 3 I * * 3.14 1.60 3.14 1.60
Bjurbole 3 R 2 
 10�10 1773 8.65 4.43 8.61 4.42
Bjurbole 4 I * * 2.70 1.41 2.70 1.40
Bjurbole 4 R 4 
 10�6 1773 4.32 2.22 4.31 2.22

† I � initial material, R � evaporation residue.
‡ �25Mg � ((25Mg/24Mg)sample/(

25Mg/24Mg)SRM 980 � I)103 where SRM 980 is the international Mg standard described by Catanzaro et al. (1966).
A similar definition applies to �26Mg.

§ ��25Mg � 103 In((25Mg/24Mg)sample/(
25Mg/24Mg)SRM 980) as suggested by Hulston and Thode (1965). A similar definition applies to ��26Mg.
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data (Table 1) expressed in terms of the �� values proposed by
Hulston and Thode (1965) yields � �0.5108 � 0.003 (2�
regressed using the method described by York, 1969). For
comparison, the equilibrium value for � based on Eqn. 15 is
0.5200 for monatomic Mg. The difference between the expo-
nents is easily resolvable with the quality of data represented by
the evaporation experiments (Fig. 1), and the agreement be-
tween the best-fit value for � and that predicted for a kinetic
process is taken as validation of the prediction method.

The evaporation data can be compared with the “ terrestrial”
fractionation curve obtained by analysis of a mixture of terres-
trial samples (Fig. 1). Galy et al. (2000, 2001) analyzed 61
terrestrial samples containing Mg with a �25Mg range of 5.3‰.
Regression of the linear form of the isotope data (�� values)
yields � � 0.5163 � 0.001 (2�, method of York, 1969). The
samples analyzed by Galy et al. (2000, 2001) represent a wide
range of geologic environments, including several that are
likely to reflect kinetic fractionation (e.g., spinach chlorophyll)
and others that likely reflect equilibrium fractionation (e.g.,
metamorphic magnesite). The data of Galy et al. (2000) also
include analytical-grade Mg solutions and high-purity Mg
metal that define a � of 0.5132 � 0.0008 (2�) over a range in
�25Mg values of 2‰, suggesting that chemical purification of
Mg resulted in a strong kinetic component to the isotope
fractionation. It is not surprising that the terrestrial mass frac-
tionation exponent derived from these data is between the
kinetic and equilibrium values.

6.2. �17O and the Dole Effect

If Earth’ s tropospheric O2 were in isotopic equilibrium with
the oceans, it would have a �18O value (relative to SMOW)
close to zero. But O2 in the lower atmosphere is enriched in
18O/16O by 23.5‰ relative to typical ocean waters (�18O �
23.5‰; Kroopnick and Craig, 1972). This enrichment in atmo-
spheric oxygen �18O relative to ocean water is referred to as the
Dole effect (Dole, 1935) and is the result of a steady state
between production of O2 by photosynthesis on land and in the
oceans (�18O values of near �4 and 0‰, respectively; Far-
quhar et al., 1993) and the preferential uptake of 16O relative to
18O (and 17O) during respiration (oxygen consumed during
respiration has �18O on the order of 20‰ lower than the intake
O2; Epstein and Zeiri, 1988; Guy et al., 1993).

Recent studies suggest that �17O of tropospheric O2 lies
below the terrestrial fractionation line (TFL) on a plot of �17O
against �18O by 	0.16 to 0.18‰ (i.e., �17O 	 �0.16 to
�0.18; Fig. 2). Luz et al. (1999) attributed the depletion in 17O
to non-mass-dependent enrichments in 17O and 18O in the
stratosphere. On this basis, these authors argue that because
photosynthesis produces O2 with �17O values of zero (O2

released during photosynthesis is similar to natural waters on
the TFL), and respiration removes some of the atmospheric O2

having the negative �17O values, the magnitude of atmospheric
oxygen �17O can be used to estimate global biosphere produc-
tion over time.

The basis for using �17O as a tracer of global biologic
activity is that biologically mediated mass-dependent fraction-
ation of the three oxygen isotopes will produce compositions
along a terrestrial mass fractionation curve common to the
terrestrial oxygen reservoirs other than air (i.e., rock and wa-

ter). However, fractionation of oxygen isotopes during respira-
tion is a kinetic process, and if respired oxygen is compared
with oxygen reservoirs dominated by equilibrium fractionation
relative to standard mean ocean water, a negative �17O is
expected from purely mass-dependent fractionation.

The values for � that characterize the relationship between
�17O and �18O for terrestrial rocks and waters were measured
recently with high precision by Miller et al. (1999) and Li and
Meijer (1998), respectively. The value for rocks is 0.525 �
0.001 (2�) and the value for waters is 0.528 � 0.002. Eqn. 15
predicts that � for oxygen exchanged under equilibrium con-
ditions should be 0.5294. Matshuhisa et al. (1978) calculated
partition function ratios for CO2 and H2O that give equilibrium
�s for oxygen isotope exchange ranging from 0.5233 (T �
273.16K) to 0.5251 (T � 1000K). The partition function ratios
provide equilibrium � values with fewer approximations than
those used to derive the more general Eqn. 15. Rough agree-
ment between � values obtained by high-precision measure-
ments of rocks, Eqn. 15, and the more rigorous partition func-
tion calculations of Matsuhisa et al. (1978) suggests that
oxygen isotope fractionation approaches equilibrium during
most terrestrial rock-forming processes. This is not surprising
because rocks acquire their isotopic compositions through pro-
cesses that approach chemical equilibrium as well (e.g., igne-
ous crystallization, carbonate precipitation in oceans).

The origin of the value for waters is less clear because of the
influence of O-H reduced masses on the kinetic �. Eqn. 34
(equivalent to Eqn. 25 in this case where the m*s in the latter
are reduced masses) gives a kinetic � of 0.5286 for O-H bonds
and 0.5270 for H-OH bonds. Both values are indistinguishable
(with available data) from the equilibrium �. If the kinetics of
reactions involving liquid water are dominated by O-H and/or
H-OH stretching, then it is not possible to distinguish equilib-
rium from kinetic oxygen isotope fractionation in water (al-
though it is possible to exclude the different rates of transport
of water molecules as a controlling kinetic factor since Eqn. 25

Fig. 2. Oxygen three-isotope plot showing that the difference in �
values between a terrestrial fractionation curve (� � 0.529) and a
kinetic respiration curve (� � 0.519) is sufficient to explain the �17O
of tropospheric O2.
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and the molecular weights of water give a � of 0.5132, a value
that is much lower than the measured value).

Regardless of their origins, the similar values for rock and
water � values can be used to define a single TFL composed of
these materials. For comparisons with studies that use a linear
TFL, we note that linear regression (York, 1969) of the terres-
trial curve defined by the origin and � � 0.525 over the range
of �18O values typical of most rocks (�5 to �35‰) yields a
straight line with a slope of 0.520 � 0.002 (2�) and a corre-
lation coefficient of 1.0000 on a conventional oxygen three-
isotope plot. The curvature of the fractionation law results in a
linear slope less than � but does not perceptibly degrade the
quality of the apparent linear fit.

Atmospheric O2 should have a negative �17O relative to the
TFL because biologic fractionation should occur with � less
than the near-equilibrium value of 0.525 that characterizes most
rock. Eqn. 25 predicts that the exponent � for respiration
should be closer to 0.515 for monatomic O or 0.5076 for
molecular oxygen (for example, if we assume that fractionation
of oxygen occurs by diffusion through the cytoplasmic mem-
brane). Over the range in �18O commensurate with the Dole
effect, fractionation curves with � � 0.529 (the equilibrium
value estimated from Eqn. 15) and � � 0.519 are sufficiently
divergent to explain the �17O in air O2 relative to the TFL (Fig.
2). For the measured TFL � of 0.525, a respiration � of 0.515
suffices to explain the 0.17 offset between rocks and tropo-
spheric O2.

It is straightforward to demonstrate that a steady-state neg-
ative �17O (relative to rocks and waters) like that shown in
Figure 2 will form rapidly in the atmosphere as a consequence
of kinetic fractionation produced by respiration. The time scale
for establishment of the steady state will be on the order of the
O2 turnover time of 	1 kyr (Bender et al., 1994). The steady-
state isotopic composition can be simulated for illustration
purposes by iteration on the equations

� 18On�1 � � 18On � Rphoto (� 18OH2O � �photo)

� Rres �� 18On � �res� (39)

and

� 17On�1 � (103 � � 17Oo)�103 � � 18On�1

103 � � 18Oo ��

� 103. (40)

One finds that the steady state lies on a mixing line with a slope
very nearly equal to � in Eqn. 40 (a consequence of the near
linearity of the fractionation curves). In Eqn. 39 and 40, �18On

and �18On�1 are the isotopic compositions of O2 in the nth and
nth � 1 time steps, the superscript o refers to the initial values,
Rphoto and Rres are the rates of photosynthesis and respiration,
�18OH2O is the isotopic composition of ocean water, �photo is
the fractionation in �18O relative to ocean water associated with
photosynthesis, and �res is the fractionation relative to atmo-
spheric O2 associated with respiration. Starting with isotopic
equilibrium between O2 and ocean water, a steady state that
matches present-day tropospheric �17O and �18O in this sim-
plified calculation is achieved with Rphoto/Rres 	 1.75, � �
0.519, �photo � �2, and �res � �20‰. The value for � will be
prescribed by respiration since this process effects the largest
change in the isotopic composition of O2. The steady state

depicted by convergence of Eqn. 39 and 40 is shown schemat-
ically in Figure 3.

Respiration will keep atmospheric O2 off the terrestrial line
as long as the kinetic � is different from the � that characterizes
the terrestrial curve (Fig. 3). Changes in �17O are possible
without a source of non-mass-dependent fractionation by alter-
ing the kinetic value for �, perhaps in response to changes in
the proportions of biologic activities with different mass-de-
pendent fractionation laws. For example, lowering � from
0.519 to 0.512 in these calculations doubles the steady-state
�17O relative to the terrestrial line from �0.141 to �0.305‰.

It is also possible to change �17O of tropospheric O2 by
changing the relative rates of photosynthesis and respiration
because this ratio of rates determines the steady-state �17O and
�18O of O2. The terrarium experiments of Luz et al. (1999) may
represent an extreme example of this behaviour. The data
obtained from the experiments show a negative correlation
between �18O and �17O in response to changes in Rphoto/Rres.
Such a correlation is expected on the basis of mass-dependent
fractionation alone; at lower �18O, the value of �17O becomes
less negative (closer to zero) as the divergence between the
equilibrium terrestrial curve and the mixing line between re-
spired O2 and photosynthetic O2 becomes smaller (Fig. 3).

Although photolysis in the stratosphere is expected to con-
tribute to a negative �17O in atmospheric O2 at some level (Luz
et al., 1999), it is possible to interpret the �17O of tropospheric
O2 as the natural consequence of kinetic fractionation during
respiration using conservative differences between the � for
respiration and that typical of rocks. For this reason it would
seem premature to attribute the whole of the �17O in tropo-
spheric O2 to mass-independent reactions in the stratosphere.

Fig. 3. Schematic illustration of the onset of a steady-state �17O for
tropospheric O2 as a result of respiration. The grey arrow shows the
relationship between free O2 in the troposphere and respired O2. The
isotopic composition of tropospheric O2 may be a consequence of a
steady state, represented by the mixing line, between respired O2 and
O2 produced by photosynthesis. After several cycles that begin with O2

in equilibrium with ocean water (near 0‰), the O2 evolves to a position
on the mixing line between the isotopic compositions of O2 produced
by photosynthesis and that of respired O2.
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6.3. Cyclical Kinetic Fractionation: A Mechanism for
Small Differences in Meteorite �17O?

Without detailed knowledge of reaction pathways, assertions
about departures from mass-dependent isotope fractionation at
the sub-per mil level may be questioned. Where bonds are
broken, reformed, and broken again, kinetic fractionation with
different values for � may operate to drive products well off a
given reference fractionation curve in three-isotope space. This
is likely to occur because the kinetic steps are not generally
reversible. Figure 4 shows the result of a fictive two-step
reaction mechanism involving oxygen in which the first step
results in a shift in �18O of �5‰ at a � of 0.508 and the second
step results in a shift in �18O of �5‰ at a � of 0.529. The final
product has a �17O of 0.1‰ relative to the initial fractionation
curve. A more extreme example is shown in Figure 5 in which
the shifts in the two separate steps are on the order of 40‰ and
the resulting �17O is nearly 1‰. Such processes would produce
non-zero intercepts on three-isotope plots that arise entirely
from variations in �.

Farquhar et al. (1998) measured a positive �17O in carbonate
from SNC (Martian) meteorite ALH 84001 that exceeds the
silicate �17O in the meteorite by 	0.5‰. Karlsson et al. (1992)
found that water extracted from SNC meteorites by pyrolysis
has higher �17O than silicates by a similar magnitude (0.4–
0.9‰). Farquhar et al.(1998) offered the interpretation that
these data are evidence for non-mass-dependent reactions
driven by UV photolysis in the Martian atmosphere. However,
it is also possible that numerous episodes of irreversible reac-
tions, perhaps related to cycles of freezing and sublimation,
caused the deviations in �17O between the volatile components
and silicates. If condensation and sublimation, for example,
occurred with different values of � (freezing closer to equilib-
rium, sublimation closer to kinetic), then a steady-state dispar-
ity between �17O in silicate rock in SNC meteorites and

volatiles in the Martian atmosphere could occur after just a few
freeze-thaw cycles (e.g., Figs. 4 and 5). The magnitude of �17O
resulting from freezing and thawing would depend on the span
in �, the shift in �18O associated with the process and the
relative rates of sublimation and condensation (by analogy with
the Dole effect as described in section 6.2). Eiler et al. (2000)
suggest that fractionation during freeze/thaw cycles may have
been substantially greater than that in Figure 4, making it all the
more likely that �17O of volatile components in the Martian
regolith differs from silicate rock �17O, at least in part as a
result of mass-dependent fractionation.

7. SUMMARY AND CONCLUSIONS

The mass-dependent fractionation laws for three or more
isotopes are different for equilibrium and kinetic processes. In
both cases the fractionation law can be written as �2/1 � �3/1

� .
Equilibrium isotope exchange leads to � 	 (1/m1 � 1/m2)/(1/
m1 � 1/m3), where m1, m2, and m3 represent the masses of the
isotopes, whereas kinetic fractionation yields � 	 ln(M1/M2)/
ln(M1/M3), where M1, M2, and M3 represent atomic, molecu-
lar, or reduced masses of the isotopologues in motion.

In practice, kinetic fractionation produces curves in three-
isotope space that have shallower slopes than those produced
by equilibrium exchange (e.g., where �17O or �25Mg is the
ordinate and �18O or �26Mg is the abscissa). Experiments with
Mg isotopes show that differences in isotope ratios of 3‰ per
amu are sufficient to permit distinction between equilibrium
and kinetic fractionation using current technologies.

The range in possible mass-dependent fractionation laws
should be considered when seeking to identify sub-per mil
deviations from mass dependency. Potentially important exam-
ples include the �17O of tropospheric O2 relative to terrestrial
rocks and differences in �17O between carbonate, hydroxyl,
and anhydrous silicate in Martian meteorites.

Fig. 4. Illustration of the shift in �17O associated with 5‰ irrevers-
ible fractionation. The first portion of the path occurs with � � 0.508.
The second segment occurs with � � 0.529. Each cycle will result in
a decrease in �17O of 0.1‰. Reversing the order of either of the shifts
in �18O or the values of � results in an increase of 0.1‰ per cycle.

Fig. 5. Illustration of the shift in �17O associated with 35 to 40‰
irreversible fractionation. Each cycle produces an increase in �17O of
0.9‰.

1103Kinetic and equilibrium mass fractionation laws



Acknowledgments—This work represents the product of several tech-
nological innovations and experimental programs supported by various
individuals. The contributions of Nick Belshaw (Oxford), Richard Ash
(Oxford), and R. Keith O’Nions (Oxford) are especially appreciated.
We also benefited from lengthy discussions with James Farquhar, Mark
Thiemens, and Martin F. Miller. It was the careful experiments by
Martin Miller and his colleagues that convinced us that the topic of
mass-dependent fractionation could be explored further. E. D. Y.
acknowledges support by a grant from PPARC (U.K.). A. G. was
supported during this work by the EC through TMR “Marine Record of
Continental Tectonics and Erosion” ERBFMXCT 960046.

Associate editor: R. Wieler

REFERENCES

Bender M., Sowers T., and Labeyrie L. (1994) The Dole effect and its
variations during the last 130,000 years as measured in the Vostok
ice core. Global Biogeochem. Cy. 8, 363–376.

Bigeleisen J. (1949) The relative velocities of isotopic molecules.
J. Chem. Phys. 17, 675–678.

Bigeleisen J. (1955) Statistical mechanics of isotopic systems with
small quantum corrections. I. General considerations and the rule of
the geometric mean. J. Chem. Phys. 23, 2264–2267.

Bigeleisen J. and Mayer M. G. (1947) Calculation of equilibrium
constants for isotopic exchange reactions. J. Chem. Phys. 15, 261–
267.

Catanzaro E. J., Murphy T. J., Garner E. L., and Shields W. R. (1966)
Absolute isotopic abundance ratios and atomic weight of magne-
sium. J. Res. NBS A. Phys. Ch. 70A, 453–458.

Dole M. (1935) The relative atomic weight of oxygen in water and air.
J. Am. Chem. Soc. 57, 2731.

Eiler J. M., Kitchen N., and Rahn T. A. (2000) Experimental con-
straints on the stable isotope systematics of CO2 ice/vapor systems
and relevance to the study of Mars. Geochim. Cosmochim. Acta 64,
733–746.

Epstein S. and Zeiri L. (1988) Oxygen and carbon isotopic composi-
tions of gases respired by humans. Proc. Natl. Acad. Sci. 85, 1727–
1731.

Farquhar G. D., Lloyd J., Taylor J. A., Flanagan L., Syvertsen J. P.,
Hubick K. T., Wong S., and Ehleringer J. R. (1993) Vegetation
effects on the isotope composition of oxygen in atmospheric CO2.
Nature 363, 439–443.

Farquhar J., Thiemens M. H., and Jackson T. (1998) Atmosphere-
surface interactions on Mars: �17O measurements of carbonate from
ALH 84001. Science 280, 1580–1582.

Forst W. (1973) Theory of Unimolecular Reactions. Academic Press,
New York.

Galy A., Young E. D., Ash R. D., and O’Nions R. K. (2000) The
formation of chondrules at high gas pressures in the solar nebula.
Science 290, 1751–1753.

Galy A., Belshaw N. S., Halicz L., and O’Nions R. K. (2001) High-
precision measurement of magnesium isotopes by multiple collector
inductively coupled plasma mass spectrometry (MC-ICPMS). Int. J.
Mass Spectrom. Ion Proc. 208, 89–98.

Gao Y. Q. and Marcus R. A. (2001) Strange and unconventional
isotope effects in ozone formation. Science 293, 259–263.

Guy R. D., Fogel M. L., and Berry J. A. (1993) Photosynthetic
fractionation of the stable isotopes of oxygen and carbon. Plant
Phys. 101, 37–47.

Hathorn B.C. and Marcus R.A. (1999) An intramolecular theory of the
mass-independent isotope effect for ozone. I. J. Chem. Phys. 111,
4087–4100.

Hathorn B. C. and Marcus R. A. (2000) An intramolecular theory of the
mass-independent isotope effect for ozone. II. Numerical implemen-
tation at low pressures using a loose transition state. J. Chem. Phys.
113, 9497–9509.

Hulston J. R. and Thode H. G. (1965) Variations in the S33, S34, and S36

contents of meteorites and their relation to chemical and nuclear
effects. J. Geophys. Res. 70, 3475–3484.

Karlsson H. R., Clayton R. N., Gibson E. K., and Mayeda T. K. (1992)
Water in SNC meteorites: Evidence for a Martian hydrosphere.
Science 255, 1409–1411.

Li W. J. and Meijer H. A. J. (1998) The use of electrolysis for accurate
�17O and �18O isotope measurements in water. Isot. Environ. Healt.
S. 34, 349–369.

Luz B., Barkan E., Bender M. L., Thiemens M. H., and Boering K. A.
(1999) Triple-isotope composition of atmospheric oxygen as a tracer
of biosphere productivity. Nature 400, 547–550.

Marcus R. A. and Rice O. K. (1951) The kinetics of the recombination
of methyl radicals and iodine atoms. J. Phys. Colloid Chem. 55,
894–908.

Matsuhisa Y., Goldsmith J. R., and Clayton R. N. (1978) Mechanisms
of hydrothermal crystallization of quartz at 250°C and 15 kbar.
Geochim. Cosmochim. Acta 42, 173–182.

Miller M. F., Franchi I. A., and Pillinger C. T. (1999) The mass-
dependent oxygen isotope fractionation line: New measurements and
the need for a reporting consensus. Proc. Goldschmidt IX. (abstract)
pp. 7433.

Nagahara H. and Ozawa K. (1996) Evaporation of forsterite in H2 gas.
Geochim. Cosmochim. Acta 60, 1445–1459.

Slater N. B. (1948) Aspects of a theory of unimolecular reaction rates.
Proc. Royal Soc. A. 194, 112–131.

Weston R. E. (1999) Anomalous or mass-independent isotope effects.
Chem. Rev. 99, 2115–2136.

Urey H. C. (1947) The thermodynamic properties of isotopic sub-
stances. J. Chem. Soc. 562–581.

York D. (1969) Least squares fitting of a straight line with correlated
errors. Earth Planet. Sci. Lett. 5, 320–324.

Zhu X. K., Guo Y., O’Nions R. K., Young E. D., and Ash R. D. (2001)
Isotopic homogeneity of iron in the early solar nebula. Nature 412,
311–313.

1104 E. D. Young, A. Galy, and H. Nagahara


