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First and Second Orders of Suture Complexity in
Ammonites: A New Methodological Approach Using
Fractal Analysis®

Juan A. Pérez-Claros?* Paul Palmqvist? and Federico Obriz3

The study of septal patterns in ammonoids has been centered on functional and/or constructional
issues. Complexly fluted septa have been considered as complementary structures that reinforce the
ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic sutures
display features that denote typical fractal behavior, since they can present very long perimeters relative
to the contiguous shell areas, and most provide evidence of statistical self-similarity when observed at
varying scales of magnification. However, there is a lower limit of scale measurements below which
the fractal behavior of the curve no longer holds, and the perimeter length/step size relationship
approaches an Euclidean geometry. This paper describes a new methodology that allows the accurate
characterization of suture complexity in ammonoids using the technique of fractal analysis (step-line
procedure). The proposed methodology helps to fix the position of this “cut-off point,” allowing for
independent estimates of the fractal dimensions of the curve for both large and small measurement
scales (i.e., first and second orders of suture complexity). This approach improves the resolution of
fractals in the analysis of suture complexity, thus facilitating the potential interpretation of suture
patterns in functional/constructional, evolutionary and paleoecological terms.
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INTRODUCTION

Chambered shells of cephalopods display some of the most beautiful designs in
nature, but the functional interpretation of shell architecture and complex sep-

tal patterns of ammonoids has been a long-standing challenge. Most research
in suture lines has dealt with evolutionary analyses based on systematics
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(see overviewin House and Senior, 1981), paleobiology (Boyajian and Lutz, 1992),
and more recently paleoecology (Batt, 1991; Cecca, 1992; Daniel and others, 1997;
Hewitt and Westermann, 1997). Covariance of suture complexity with other shell
characters has also been investigated (Dommergues, Laurin, and Meister, 1996;
Korn, 1992; Lutz and Boyajian, 1995; @iz and Palmqvist, 1995; Oliz,
Palmqvist, and &rez-Claros, 1997, 1999; Saunders, 1995; Saunders and Work,
1996, 1997).

The functional significance of fluted septa and complex sutures in ammonoids
has stirred debate during recent decades (Jacobs, 1986z,(®almqvist, and
Pérez-Claros, 1999). A persistent assumption has been that ammonoid shells
were designed for resisting ambient hydrostatic pressure, frilled septa being inter-
preted as complementary structures of reinforcement of the phragmocone against
hydrostatic pressure, and complex sutures as evidence of strength demands in
shells inhabiting deep habitats (Buckland, 1836; Hewitt, 1993, 1996; Hewitt and
Westermann, 1983, 1986, 1987, 1988a, 1988b, 1990, 1997; Jacobs, 1990; Pfaff,
1911; Westermann, 1971, 1973, 1975, 1977, 1982, 1985, 1996; Westermann and
Ward, 1980). Other explanations arise from the fields of functional/constructional
morphology, physiology, and developmental biology, including the buoyancy con-
trol (e.g., fluted septa resulting from inner gas-pressurization counteracting exter-
nal water pressure, which allowed compression and decompression of a bladder
by fleshy-membrane movability (Daniel and others, 1997; Kulicki, 1979; Kulicki
and Mutvei, 1988; Saunders, 1995; Seilacher and LaBarbera, 1995; Ward, 1987),
maximisation of the connective area of the mantle to the septum or number of
muscular insertion points (Ebel, 1992; Henderson, 1984; Seilacher, 1975; Spath,
1919), transportation and storage of cameral fluid (Ward, 1980, 1987), and opti-
misation of phragmocone shell strength against the point loads such as the teeth
of predators (Daniel and others, 1997). It has even been assigned a role in the
respiratory process (Newell, 1949). Boyajian and Lutz (1992), in agreement with
other authors (Fisher, 1986; Gould, 1988; Stanley, 1973), have suggested that the
evolutionary trend of increase in suture complexity of ammonoids may be ex-
plained by dynamics of diffusion initiated by a simple condition expressing the
generation of increasing variability. As the simplest form possible for a suture
is a straight line, any increase in variability implies, intrinsically, an increase in
maximum complexity.

Higher-order fluting was limited to the septum margin, resulting in increased
suture complexity, and was accompanied by thinning of the septa; conversely,
the center of strong septa was progressively thickened to compensate for stress
concentrations ( Hewitt, 1996; Westermann, 1975, 1996). Hewitt and Westermann
(1997) have proposed that the main function of fluted septa was to buttress the wall
of the inner septate whorls against an indirectly applied hydrostatic load. How-
ever, results obtained using a large database of Late Jurassic ammonitézs (Ol
and Palmqvist, 1995; ©tiz, Palmgvist, and &ez-Claros, 1997, 1999) revealed
that suture complexity was similar in specimens inhabiting epicontinental shelves
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and epioceanic plateaux, which suggests that suture complexity was not related
to bathymetry and/or that there were no major differences in habitat depth for
epicontinental and oceanic ammonites. Hence, deep habitats cannot be directly
inferred from complex sutures, and direct measurements of radii of curvature and
thickness of shell-wall, septa, and siphuncle are needed for calculating strength val-
ues and estimating paleobathymetry (Hewitt, 1996; Westermann, 1996). However,
the analysis of biological structures in strictly physical terms provide estimations,
which should be interpreted as potential rather than preferred ranges of function
(Olbériz, Palmqvist, and &ez-Claros, 1999).

The interpretation of the functional significance of complex sutures is clearly
controversial and any research seeking to clarify the problem must answer two
basic questions: (i) what is meant by suture complexity? and (ii) how can this
characteristic be quantified? With respect to the first question, no precise defini-
tion has been made of the concept of complexity that can be applied universally,
although many authors have attempted it, based on such disparate concepts as en-
tropy, information, and fractal or grammatical complexity. McShea (1991) referred
to a certain degree of consensus among researchers that morphologic or structural
complexity, regardless of its relevance to biologic systems, can be considered a
function of the number of parts and the irregularity of their order. The vagueness
of this concept is, however, a serious hindrance to its application to real objects.
Itis, perhaps, more appropriate to tackle the problem another way, by responding
instead to the second question, that is, by quantifying the spatial characteristics that
are in some way related to complexity, and then relating the latter to the method
utilized to characterize it.

With particular regard to the study of ammonoid sutures, the mathematical
characterization of suture complexity has traditionally been performed using sim-
ple parameters. These include the index of suture complexity as first presented
by Westerman (1971) and later term8@I| by Ward (1980) orSl by Saunders
(1995). This is the quotient of the suture perimeter and the length of the segment
joining the two extremities. This index has been applied in both basic and modified
forms, the latter including the count of suture elements (Saunders, 1995). Canfield
and Anstey (1981) attempted a mathematical description of sutures using Fourier
series, although Lutz and Boyajian (1995) have observed that this methodology
provides relatively little information on certain suture characteristics, such as the
size distribution of lobes and saddles, and only enables relatively simple suture
lines to be characterized.

Another way to quantify the degree of complexity is based on the use of fractal
logic, by which the structure is considered to be self-similar for the observation
scales being used. This characteristic is also known as internal homothety or self-
similarity. A fractal object can be defined as a set comprised of parts that in
one or more aspects are similar to the whole (Mandelbrot, 1984). This definition
may be clarified with addition of two basic concepts: homothety and cascade.
Homothety is an equiform transform in which the angles, and thus the shape of
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the figure, remain unchanged. A more flexible view of this concept allows for

the displacement and/or rotation of the points that make up the original figure.
Repetition of the process ad infinitum (the process Mandelbrot termed “cascade”)
produces a fractal object. Figure 1 shows how a straight segment, the initiator, is

generator first iteration second iteration
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Figure 1. Various mathematical fractals, showing the shape of the generator (left-hand col-

umn) and the morphology of the curve after the first and second iterations (middle and
right-hand columns, respectively).
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transformed homothetically by a generator rule made up of parts which, in turn,
are straight-line segments. When the original segment has been transformed, the
procedure is repeated, with each of the resulting segments transformed in turn.
Each segment generated by a transformation acts as the initiator of the following
one. The result is the generation of a fractal figure that presents self-similarity. In
Figure 1, each of the forms generated is identical to the original except in position
and size. This type of object is called a perfect fractal, of exact or mathematical
self-similarity. The degree of irregularity of each part is identical to that of the
whole. In general, natural objects in which some kind of internal homothety can
be detected (such as ammonitic sutures) are far from meeting the rigorous definition
of a perfect fractal. Nevertheless, the degree of abruptness, irregularity, or sinuosity
of the regions into which such objects can be divided is approximately the same.
These objects are therefore described as fractals of statistical self-similarity (i.e.,
the exact shape of the object is not maintained when the observation scale changes,
but the degree of complexity is).

Various authors have described the self-similar nature of ammonoid suture
lines (Bayer, 1985; Damiani, 1986; Seilacher, 1988). The first specific reference to
the term fractal (with all its connotations) was Long (1985). Although he did not
examine the topic in detail, he described the statistical self-similarity of the curves
and estimated the value of some fractal exponents. Lutz and Boyajian (1995) ex-
plicitly concluded that ammonitic sutures comprise the necessary characteristics
for self-similarity, although in goniatites and ceratites this condition is more doubt-
ful because they are self-similar over a shorter range of scale measurements (for
cranial sutures, see Long and Long, 1992).

One of the most important properties of fractals resides in their fractal di-
mension Ds), which is a measure of their degree of irregularity or sinuosity. This
measure is closely related to the effective physical dimendip (vhich is the
degree to which the object being analyzed presents a topological (i.e., Euclidean)
dimension with a value equal to or greater than what it should theoretically present.
This concept is exemplified by the leafy top of a tree that has a mass of plane struc-
tures O = 2), even though the manner in which they are organized almost fills a
volume D = 3). Similarly, the projection in a plane of the Brownian movement
of a particle, recorded at regular time intervals, describes such a complicated tra-
jectory that it is only perceived as a tangled mass that occupies virtually the entire
plane Oe = 2), even though it is actually made up of straight linBg & 1). In
the first example, the effective physical dimension that best describes the figure
would be somewhere between 2 and 3, while in the second one it would be almost
equal to 2. In general terms, the physical dimension that best reflects this kind of
figure is the fractal dimension, which need not be an integer. The purpose of fractal
analysis is to determine the fractal dimension of figures or processes that present
some type of internal homothety.

Garaa-Ruz, Checa, and Rivas (1990) attempted to characterize ammonite
suture complexity using the fractal dimension as a mathematical descriptor.
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Throughout ontogenetic sequences, this magnitude was related to a morphogenetic
model to form septal patterns, based on the instabilities occurring when two fluids
mix in a nonuniform way as dictated by the distinct viscosity of the compressed
mantle and the cameral fluid in the last chamber. In their viscous fingering model,
Garaa-Ruz, Checa, and Rivas (1990) proposed that ammonite sutures were the
result of a morphogenetic process containing a Saffman-Taylor-type instability.
Boyajian and Lutz (1992) applied fractal analysis to quantify the evolution of
suture complexity among ammonoids as a whole, virtually from their first appear-
ance to their eventual extinction. To achieve this, they examined the sutures of
615 genera belonging to seven different orders. They also studied the relation be-
tween suture complexity and the stratigraphic range of the genera analyzed, as
an estimator of their evolutionary longevity. They did not find the inverse relation
between the two parameters that, a priori, was to be expected (assuming that suture
complexity does in fact allow the estimation of degree of specialization in evolu-
tionary lines). Subsequently, Lutz and Boyajian (1995) studied the efficacy of vari-
ous suture complexity estimation methods, such as interrelation between the fractal
analysis parameters among ceratitic, goniatitic, and ammonitic sutures, the three
main suture types into which ammonoid sutures are normally groupedz@Htd
Palmqvist (1995) and @liz, Palmqvist, and&ez-Claros (1997, 1999) studied the
relationships between various morphologic and paleoecologic categories and
the fractal dimension, for a geographically widespread group of ammonites from
the Late Jurassid\ = 507). They found a range @; estimates (1.185-1.661)
wider than those provided by previous researchers, and showed that epioceanic
ammonoids (which were presumably capable of living in a large range of wa-
ter depths) hav®; values that are similar to those of epicontinental taxa. Suture
complexity was more closely related to the size, geometry, and hydrodynamic prop-
erties of the shell; for example, involute phragmocones with subtriangular or very
high ovate whorl-sections provide the highest fractal dimension valyes (1.5),

these morphologies corresponding to potentially more active swimmers, with im-
proved steerage (i.e., maneuverability combined with directional stability) and
relative speed during the pursuit of prey ¢¥, Palmqvist, and &ez-Claros,

in press).

These studies assume the self-similarity of the suture at various scales.
Nevertheless, for any natural object there exists a lower and a higher observa-
tion scale, termed “inner cut-off” and “outer cut-off,” respectively, by Mandelbrot
(1984), beyond which the object lacks self-similarity and thus does not behave
as a fractal (i.e., the curve does not provide a double-log plot of negative slope).
To date, these limits have been determined by visual means (Boyajian and Lutz,
1992; Long, 1985; Long and Long, 1992; Lutz and Boyajian, 1995ri@land
Palmqvist, 1995; Qifiz, Palmqvist, and &ez-Claros, 1997, 1999).

In this paper we present a new method to achieve the fractal characterization
of sutures, which enables us to identify two important characteristics of fractal
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objects: (i) their fractal dimension, as a morphometric descriptor of the tendency
of the suture to coat a surface; and (ii) the degree of self-similarity, restricted to the
lower scales or “inner cut-offs,” beyond which the self-similar quality is lost. By
considering these two characteristics separately, a more efficient analysis of suture
complexity is achieved. This is because an increase in both the fractal dimension
and the degree of self-similarity of a structure lead to an increase in the complexity
of the latter, as can be confirmed visually.

The method we present is limited to connected fractal curvesitralues
between 1 and 2, and was tested on ammonitic sutures, which provide an excellent
example of statistically self-similar fractals over a wide range of scale measure-
ments. Goniatitic and ceratitic sutures were discarded from this study because they
display a short range of scaling and self-similarity (Lutz and Boyajian, 1995). This
basic method can, in turn, be applied to other types of fractal curves that fulfil the
above requirement.

METHOD

The proposed methodology was developed for exactly self-similar fractals,
because they allow a priori determination of (i) the theoretical value of the fractal
dimension; and (ii) the size of each part of the curve in relation to the whole, for
different levels of iteration, when a cascade mechanism is used to generate the
curve.

Inthe case of perfect connected fractal figures with identical homothety ratios,
whereDy is between 1 and 2 (e.g., Fig. 1(A)), the valuddgfcan be obtained from
the following equation:

N=r-P" (N

where N is the number of parts (i.e., the number of segments comprising the
generator, eight in Fig. 1(A)) andis the homothety ratio of each part (i.e., the
ratio between the size of each part and that of the initiator, 1/4 in this case). In
more general terms, when the homothety ratios are not identical, as is the case in
Figure 1(B), the value ob; can be estimated by the following equation:

N
Zrin:L

i=1

wherei is theith part into which the generator can be decomposed.
Note that if the shape of the generator of a fractal figure is not known a
priori, it is not possible to obtain the homothety ratios generated by successive
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parts. Moreover, in the general case of statistically self-similar fractals there is
no generator that is exactly repeated in successive iterations. There are various
methods to determinBs in these cases, of which the best known is Richardson’s
(Richardson, 1961) (Fig. 2). This consists of estimating the perimeter of the figure
for different arbitrary rule sizes\J. The curve lengthl(.) is calculated for each

rule size {), multiplying A by the number of times this rule fits in the figure
(i.e., Ny). Thus the homothety ratios are defined by

A

rNwl= ,
Neol=¢—
wherel max corresponds to the initiator length (unknown in this case); statistically,
the following equation is fulfilled:

—-D
Npy=r[Ng]
Therefore,

b A —DsA
Le=Nur=r[Ng] =<—> :

L max

2 (1-Dy)
log(Le) = log <ﬁ>

max

which is equivalent to
log(Le) = Dy l0g(Lmax) + (1 — D) log(x) =n-+mlog(x) (2

Thus, taking the logarithm of the estimated length of the fractal curvellgj (
as a function of the logarithms of the different sizes for the corresponding rules
[log(1)], Ds and the value of the parametef,.x can be determined by fitting the
cluster of points to a straight line, where

n
Di=1—-m; Lmax= exp(E).
f

Equation (2) is valid for both exact and statistically self-similar fractals, such
as ammonite sutures (Fig. 3), although it assumes the figure behaves as a fractal
object to an indefinitely small size.

In general, fractal objects found in nature (as well as computer-simulated
ones) present a lower scale boundary or inner cut-off, below which they are no
longer self-similar replicas and cease to behave as fractals. In these cases, it is
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Figure 2. Richardson’s method, or compass method, to estimate the mean

fractal dimensionDs) for an ammonitic suture.
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Figure 3. Bilogarithmic representation to estimate the mean fractal dimen$gnirf (A) a perfect
mathematical fractal curve (von Koch’s curve) and (B) a statistically self-similar fractal curve (am-
monitic suture), obtained by the inverse relation between the rule length or measurement scale and
the perimeter of the curve estimated with this rule. The curves were standardized to a linear length of
100 units.

more appropriate to describe the objects at their smallest scale by Euclidean ge-
ometry. Thus, if we measure the curve with rules smaller than the self-similarity
inner cut-off, the bilogarithmic representation diverges from a negative-sloped
straight line, as this limit becomes increasingly distant and approaches an asymp-
totic trajectory with a horizontal component (Fig. 4(A) and (B)). In such cases,

it is standard practice to eliminate from the regression adjustment the points that
do not coincide with the theoretical slope obtained with an ad infinitum frac-
tal object (Lutz and Boyajian, 1995; @iz, Palmqvist, and &#ez-Claros, 1997,
1999).

The proposed method, on the other hand, enables the establishment of a rule-
length value (arbitrary, but objective) that determines an inner cut-off that is fully
comparable between different fractal figures. The method is valid only if such
parameters are standardized at a fixed distance between two equivalent points that
are sampled with the same rule lengths. This condition is satisfied in ammonitic
sutures at the mid-point of the ventral saddle and the flank point where the suture is
no longer visible due to the curvature of the shell. Thus, Figure 4(A) and (B) can be
idealized as in Figure 4(C), where there is a final region that represents the typical
features of fractal objects. As the rule lengths diminish the curve approaches a null
slope and the value of the fractal dimension in this region approaches that of the
Euclidean or topologic dimension (i.e., 1, for a straight line).

Inthis case, if the maximum rule length analyzgl)(s arbitrarily determined
suchthatitis smallin relation to the valuelof,,y, the bilogarithmic representation
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Figure 4. Change in slope in the relation between the estimated perime-
ter for a fractal curve (A) and the ammonitic suture Hblcostephanus
(Spiticera$ scriptus(B), in relation to the rule size used. This change is
related to the loss of fractal behaviour below a limit value of the measure-
ment scaleXc), beyond which there is a transition to Euclidean geometry.
The proposed method to establish the cut-off point is illustrated (see text for
details).
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can be considered to consist of two regions, described by two independent curves
(Fig. 4(D)). Therefore, if the scale at which the transition between the two series
of rule lengths is characterized, it is possible to fit the two components of the
representation to straight lines. To determine the value of the transition or cut-
off point (X.) between the two regions, a simple model can be used. The model
dictates that if the initial bilogarithmic representation comprised two curves with
different slopes, the transition point occurs where the curve is most distant from
the line joining the two ends of the representation (Fig. 4(E)). If the two linear
trends of the bilogarithmic representation are integrated into a new, single function
(derivable at all scales analyzed), the criterion to determine the vakXieauinsists

of finding the point where the derivate of the function corresponds to the slope of
the curve joining the two ends of the above function (Fig. 4(F)). The function to
which the bilogarithmic representation can be fitted, first to determine the value of
Xc and then to fit the least squares regression, is defined by adapting the following
allometric model:

log(Le) = K —aflog(M)]°=y* =K — ax®. ©)

In these circumstances, the valuekotan be approximated by the observed
value of log(.), which corresponds to the smallest rule length analyzed, while
andb can be calculated by a nonlinear adjustment. This provides more accurate
estimates than those obtained from the logarithmic linearization of Equation (3).

The pairs of values thus obtainegd=£ y* — K) are fitted to the following
curve;

y=—ax’,
which now cuts both axes at point (0,0).
After estimating the values afandb the specific expression of their derivates
is calculated
y=—abx’~1.
The slope of the line joining the two ends of the curve is calculated by

_ (Yi —Yo)

mt=—,
(X¢ — Xo)

which is equivalent to

because the first of these two ends is the origin.
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Given that the value oX; can be established as a constant, the whole function
can be expressed as follows:

—abe

mt= —aXP 1L
Xt f

The criterion for finding the value of; can therefore be expressed unequiv-
ocally as the value ok in which the derivative of the function at that point is
equal tomt:

—a X 1=—ab X1
From the above equation, we obtain

Xt
Xe= W7
which proves that the value of; does not depend on the value @f In this
expressionX. is obtained as a proportion o, that, in turn, is a characteristic of
all fitted bilogarithmic slopes.
If the fractal character of the curve is maintained at all scales, suclbthat
tends to a value of 1, then the valueX{ at the limit is

lim X; /bYW = X lim b®b-D = X, ex [Io { lim b<1/b—1>”
b—1+ f/ fb—>14r f p g b—1+

= X exp lim[log(b)/(1 - b)].
where
. ITiH
Jim log(b)/(1~b)= lim (1/b)/~1=~1
Therefore
X¢ exp[blir}]+ In(b)/(1 — b)] = X exp(=1) = X;/e.

When X, has been determined, the bilogarithmic representation is character-
ized by two regions: one that presents a truly fractal nature, and another that tends
to lose this fractal natureX. can be taken as an inverse index of self-similarity
that is fully comparable between different fractal figures if these are analyzed
with equivalent rule lengths. When a fractal figure can be identified unequivo-
cally between two homologous points (as is the case with ammonitic sutures),
the equivalence of the rule lengths or step sizes is established by standardizing
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the figures to the same linear dimensions and analyzing them using the same rule
lengths.

MATERIAL ANALYZED

To estimate the validity of the above model, it was first applied to a group
of exactly self-similar fractal curves, which provided a controlled environment
in which to test the proposed methodology. Subsequently, the model was applied
to a diverse group of ammonitic sutures, thus enabling us to test whether the
characteristics forecast by the model fitted what could be observed in a visual,
intuitive way.

A group of exact fractal curves (withB; between 1.18 and 1.59) were used,
each constructed with two iterations. The fractal curves and ammonitic sutures
analyzed were standardized to a rule length of 100 arbitrary units from one end to
another, using the Bookstein (1991) shape coordinates method:

x{ = 100[(X; — Xo)(Xi — Xo) + (¥ — Yo)(¥i — Yo)I/[(Xs — X0)* + (¥i — Yo)I,
Yl = 1000 — Xo)(% — Yo) — (¥ — Yo) (i — Xo)] /L% — Xo)2 + (% — Yo)2].

where §;, y;) are the Cartesian coordinates of the original points among which each
suture was digitized X{, y{) are the shape coordinates estimated from the above,
and o, Yo) and &:, y;) are the coordinates of the starting and finishing points of
the original suture, respectively, which after transformation take the values (0, 0)
and (100, 0).

The Richardson’s method (Mandelbrot, 1984; Richardson, 1961) was used
to obtain the bilogarithmic representation, running on 40 step sizes or rule lengths
distributed in increasing base 2 powers, froni B 2°[ X; = log(32)], with expo-
nential increments of 0.2. The count of the number of rules that can be included in
each figure proceeds from left to right. When at least half of the last rule does not
fit exactly into the last segment considered, this rule is not taken into consideration.

RESULTS AND CONCLUSIONS

Table 1 shows the fractal dimensions obtained for the curves analyzed at large-
and small-scalesly, and D1, respectively), the theoretical fractal dimensions,
assuming self-similarity ad infinitun)), the fractal dimension obtained without
distinguishing the two series of scald3], and the rule length for the transition
between the two regions<{). It also shows the minimum, maximum, and mean
lengths of the parts or segments comprising each of the figures. Note that the sizes of
these parts can be specified in these cases, because the shape of the generators anc
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Table 1. Fractal Dimensions at Larg®¢,) and Small Ds;) Scales for Various Mathematical Fractals

(Fig. 1), Together With Values of the TheoreticBi(/ D;"®°") and Mean Ds) Fractal Dimensions, the

Cut-Off Point (X¢), and the Minimum, Mean, and Maximum Sizes of the Segments That Comprise the
Curves After Two lterations

Dt
Generator theoretical Ds Dn Dg Xc Min. distance Mean distance Max. distance
A 1.500 1.328 1.127 1.540 0.897 1.563 1.563 1.563
B 1585 1.290 1.100 1.534 0.961 1.563 2.332 12.500
C 1.424 1.341 1.191 1.490 0.583 0.022 0.346 7.505
D 1.440 1.285 1.112 1.444 0.799 0.339 0.799 1.663
E 1.312 1.313 1.259 1.337 0.196 0.019 0.190 0.997
F 1413 1.383 1.294 1.398 0.246 0.063 0.354 1.068
G 1.180 1.175 1.131 1.207 0.303 0.095 0.483 2.138

the number of iterations are known a priori; in statistically self-similar fractals, this
cannot be established, but as the results of the fractal analysis only depend on the
shape of the figure being analyzed and not on the number of points that comprise
the segments, the results obtained in this study for the curves with exact self-
similarity are fully comparable with those supplied by statistical fractals. Table 2
shows the values of the correlation coefficients between the variables obtained
(lower triangular matrix) and the level of significance (upper triangular matrix).
Table 1 shows that the estimation@f that is closest to the theoretical fractal
dimension is provided b¥s,, which is corroborated by the strong correlation of
D¢, with Ds (Table 2). It is also noteworthy th&@, is independent of the degree
of self-similarity of the figure, and thus does not correlate significantly Witlr
with the maximum, minimum, or mean sizes of the parts that make up the figures.
On the other hand botb; and Ds; correlate well with these variables. The high,
positive correlations between the logarithms of the sizes of the segments or parts
that comprise the figures (minimum, maximum, and, above all, the mean) and

Table 2. Pearson Correlations Between the Parameters of Fractal Analysigér triangular matrix)
and Their Level of Statistical Significancp,(upper triangular matrix)

I'pearsof P Dt theoretical D¢ Dn Dtz X¢  10g(Dmin) 109(Dmax) 109(Dmean
Drtheor. 0.013 0.434<0.001 0.181 0.399 0.207 0.592
D¢ 0.435 <0.001 <0.001 <0.001 0.001 <0.001 <0.001
Ds1 0.143 0.894 0.109<0.001 <0.001 <0.001 <0.001
Ds2 0.859 0.621 0.289 0.614 0.627 0.992 0.432
Xe 0.243 —0.697 —0.851 0.093 <0.001 <0.001 <0.001
10g(Dmin) 0.155 —0.556 —0.634 —0.089 0.651 0.021 <0.001
109(Dmax) 0.229 —-0.594 —0.724 0.002 0.785 0.408 <0.001
l0g(Dmean 0.099 —0.788 —0.885 —0.144 0.918 0.813 0.775
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Figure 5. Directrelation between the mean size of the linear segments that comprise the
fractal curves and the position of the cut-off poit]. In these segments, the relation
between the calculated perimeter and the measurement rule follows Euclidean logic,
with a null slope.

X¢ (Fig. 5) indicate that the latter can be considered an effective inverse index of
self-similarity.

When the above methodology is applied to the analysis of real sutures
(Table 3 and Fig. 6), the effectiveness of the method is apparent. For example,
both Figure 6(A) and (E) show striking differences between the absolute fractal

Table 3. Parameters of Fractal Analysis for the Sutures Shown in Figure 5

Figure Species a b K X Dn Ds,
5A Hoplites (Blandfordia) curvatus 0.439 1.228 6.852 1.416 1.468 1.674
5B Pseudolisoceras zitteli 0.308 1.096 5.864 1.339 1.327 1.361
5C Taramelliceras callicerum 0.176 1.725 6.575 1.601 1.250 1.607
5D Holcostephanus (Spiticeras) scriptu®.376 1.371 7.023 1.465 1.414 1.731
5E Oppellia (Streblites) indoptica 0.229 1.774 7.185 1.627 1.358 1.886

5F Glochiceras nimbatum 0.042 2.066 5.176 1.811 1.058 1.231
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dimensions in the two suture regions (i.e., below and beyond the cut-point, respec-
tively), due to the variable degree of complexity presented. However, comparison
of Figure 6(E) and (B), both having a small fractal dimension at low scales, shows
that the former presents a sudden decrease in the slope, translated in a higher
value of fractal dimension at large scales, which does not occur in the latter. The
same effect is evident with higher fractal dimensions, as in the sutures shown in
Figures 6(C) and (A). In this case, the value®$ for both sutures is around 1.6,

but while suture complexity in Figure 6(C) is only visible at large-scales, which

in Figure 6(A) is maintained at a small-scale, with a greater number of small folds
being visible. Finally, the distinction between large- and small-scales of fractal
dimension (and therefore suture complexity) is very useful to the description of
these basic geometric aspects. This is shown in Figure 6(E), where the suture an-
alyzed at a large-scale is so coiled that it almost fills a pl&he £ 1.824), but is
comparatively simple at a small-scale. Clearly, there exists a wide angle between
the curves characterizing the two regions. On the other hand, analysis of the suture
illustrated in Figure 6(D), which also presents a high valuBgf shows that the
complexity is maintained at all levels.

In conclusion, it can be argued that the distinction between such regions in
fractal curves is not just of mathematical significance, but is also of geometric
interest in terms of analyzing the fractal behavior of the sutures of ammonoid
cephalopods, thus clarifying their interpretation. The method proposed in this
paper characterizes, independently, two aspects of fractal objects: their complexity
in terms of large and small suture details (estimated by meamk,0and Dy,
respectively), and the degree of self-similarity that can be characteriz¥d. by
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