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Three-Dimensional Modeling of Mass Transfer
in Porous Media Using the Mixed Hybrid Finite
Elements and the Random-Walk Methods

H. Hoteit,? R. Mose?* A. Younes? F. Lehmann?
and Ph. Ackerer?

Athree-dimensional (3D) mass transport numerical model is presented. The code is based on a particle
tracking technique: the random-walk method, which is based on the analogy between the advection—
dispersion equation and the Fokker—Planck equation. The velocity field is calculated by the mixed
hybrid finite element formulation of the flow equation. A new efficient method is developed to handle
the dissimilarity between Fokker—Planck equation and advection—dispersion equation to avoid accumu-
lation of particles in low dispersive regions. A comparison made on a layered aquifer example between
this method and other algorithms commonly used, shows the efficiency of the new method. The code
is validated by a simulation of a 3D tracer transport experiment performed on a laboratory model. It
represents a heterogeneous aquifer of about 6-m length, 1-m width, and 1-m depth. The porous medium
is made of three different sorts of sand. Sodium chloride is used as a tracer. Comparisons between
simulated and measured values, with and without the presented method, also proves the accuracy of
the new algorithm.

KEY WORDS: mass transport modeling, advection—dispersion equation, random-walk method, lab-
oratory model.

INTRODUCTION

The first generation of groundwater quality models was based on classical tech-
niques, such as finite difference or finite element methods (see, e.g., Kinzelbach,
1986; Pinder and Gray, 1977). These models are used widely, despite the well-
known fact that they suffer from numerical diffusion at high grid Peclet numbers

and also when the flow is not parallel to the mesh. Seeing the poor results produced
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by the codes based on those methods, we have developed a three-dimensional (3D)
mass transport model based on the random-walk method. Particle tracking models
are free from numerical diffusion, but one must be very careful when developing a
code based on the random walk especially when the code is used in heterogeneous
media.

The random-walk model has been developed to be used mostly when the
advection—dispersion equation is strongly advection dominated. This means that
special care must be given to the accuracy of the flow field resolution and then an
efficient method must be used for particle velocity calculation and advective dis-
placement computing. Therefore, we present in the first part the numerical model
used for the resolution of the flow. Then we recall that a dissimilarity is now well
known between the Fokker—Planck equation and the advection—dispersion equa-
tion. If we do not consider this dissimilarity, we will have an accumulation of par-
ticles in low dispersive regions. Several authors (Ackerer, 1985; Cordes, Daniels,
and Rouve, 1991; Labolle, Fogg, and Tompson, 1996; Labolle, Quastel, and Fogg,
1998; Uffink, 1983) have already suggested algorithms to overcome this problem.
The assessment of these algorithms has shown that they are not satisfactory. In this
paper a new efficient method is presented to avoid this particle accumulation.

Inthe last part of the paper, we present the simulation of a 3D tracer experiment
performed on a laboratory model. This simulation shows the absolute necessity of
using the presented algorithm in heterogeneous media.

THE FLOW MODEL

The velocity field is calculated by a mixed hybrid finite element model (Brezzi
and Fortin, 1991; Raviart and Thomas, 1977). Because the mixed hybrid finite
element method (MHFEM) is not well known in the hydrogeology community,
we present briefly in the following the basis of this approximation. The flow of an
incompressible fluid in porous media is described by

STV (K- VH) = Qs ®
associated with initial, Dirichlet, and Neumann boundary conditions, where
the specific storage coefficient(t), H the piezometric head (LK the hydraulic
conductivity tensor (LT?), and Qs the source/sink term (T).

The MHFEM consists in a simultaneous approximation of the piezometric
headH and the specific flu\g = —K - VH, called the Darcy’s velocity. The
domain is discretized into parallelepipedic elements. On each eldmédtitand
g are approximated by (Chavent and Roberts, 1991)

e Hg, the mean of the piezometric head in the elentent
e THg i, the mean of the piezometric head on each sidg;of
® g, the vector defined in the element.
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We use the Raviart—-Thomas space of lower order as a fundamental approximation
space over the domain. For an elemigmif ns sides; , the vectorial basis functions
w; of this space are defined by the following equation:

/ wi -ngjdA=¢; forj=1,...,ns (2)
A

wheres;; is the Kronecker symbofie ;is the normal unit vector to the eddg; and
ns= 6 for parallelepipedic elements. The velocity is completely determined
by the knowledge of the fluxe@g ; through each sidé:

nf
ge = Y _ QeiW; 3
=1

whereQg ; are considered positive for outflow. The velocity vector is approximated
with vector basis functions that are piecewise linear along all coordinate directions.
Therefore the basis property (2) completely determine@-ig. 1). Moreover they
verify

ns

/V-widV=Z wi-ngjdA=1 (4)
E j=1YA
v
A
edge 3
ly
edge 2 wa(u,v) ny (unit exterior normal vetor defining a
— — positive flux Q)
wi(U,v) wy(u,v)  f——b
v
edge 1
0,0 ~

edge 4

Figure 1. The Raviart-Thomas basis functions of a parallelepipedic element of)sizdy x |z
projected on the plar, U, V).
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The MHFEM ensures an exact mass balance over each element, it gives a
velocity throughout all the domain, and the normal component of the velocity is
continuous across the interelement boundaries.

Discretization of Darcy’s Law

The Darcy’s law is written as
Kg'de = —(VH) ®)

This equation is written in a variational form usiwgas test functions. This leads to
/ (Kglge)w; dV = —/(VH)-Wi dv
E E

ns
=HE/V-WidV—ZTHE_J-/ wi -ngjdA (6)
E ; E.j

j=1

Using the properties (2) and (4) of the vectorial functisnswe get

ns

Z Be,i,jQe,j = He — THg; (7)

=1

where
BE,i,j = / Wi - KEl - Wj -dV. (8)
E

Fluxes over each side are given by

ns ns
Qei =agiHe — Y Bgj THe; whereag; = » Bgi 9)
j=1 j=1

Discretization of the Mass Balance Equation

The mass balance equation is discretized using a finite volume formulation in
space

aH
/s—dV+/V~(qE)dV=f QsdV (10)
g ot E E
and an implicit finite difference scheme in time

Hn _ Hn-1 ns
|E|SE% +ZQr|1£,i :/ QgdVv (11)
i=1 E
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To find the 13 unknownsHg, THe i, Qk.i), we use the variational Darcy’s law (9)

and the continuity equation (10). To obtain one equation witl TEs unknowns,

we also use the continuity properties of piezometric heads and fluxes between two
adjacent elements andE'.

THe;j =THg; and Qg+ Qg =0 (12)

All these relations give a system of equations which can be solved by using
TH; as main unknowns (Chavent and Roberts, 1991).

The interest of this mixed formulation is twofold. First, velocity and piezo-
metric heads are obtained simultaneously with the same order of convergence.
Second, in the presence of a full permeability tensor, the mixed formulation al-
lows the calculation of the flux at the element level without any problem. On the
other hand, finite differences do not allow one to calculate simply these fluxes.
Moreover, comparisons between the MHFEM and other methods such as finite
differences and finite element methods have shown the superiority of the mixed
hybrid approximation especially in heterogeneous media é\wsl others, 1994;
Semra, 1994).

THE MASS TRANSPORT MODEL

In porous media, the mass transport equation is described by the classical

advection—dispersion equation which can be written as (Bear, 1979)

oC

T —V(UC) 4+ v(DVC) (13)
whereC is the concentration (Mt%), U the mean pore velocity vector (ML),
andD the dispersion tensor ¢ 1).

Two approaches of different nature (eulerien and lagrangien) are generally
used for the resolution of this equation. In this paper we address a lagrangien
method, the random walk. This method is issued from stochastic physics (Fokker,
1914; Planck, 1917, in Gardiner, 1985), and has been used in analysis of diffusion
processes. Generally, it is defined as the movement of a particle which undergoes
a displacement that partially depends on chance.

Preliminary

The mass transport in porous media may be described by a macroscopic
driving force, advection, on which some random fluctuations are added. The ran-
dom fluctuations are due to the velocity variations around the average velocity in
correlation with permeability variations of the porous matrix observed at a macro-
scopic scale. The theory of stochastic differential equations{851) treats these
fluctuations in a certain mathematical idealization.
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For sake of simplicity, we consider the one-dimensional problem and a ran-
domly moving particle. We denote b¥ the position of this particle at a given
time. We choose a discrete set of tintewith constant time stept. The impact
of the driving force and the fluctuating forces can be described by

AX(t) = U(X(ti-1))At + Z(t) (14)

whereAX(t) = (X(t) — (X(t_1), U is the mean pore velocity (L), andZ(t;)

the random fluctuations. We assume that the averageadnoted Z(t;)), is equal

to 0. OtherwiseZ would contain a part which acts in a coherent fashion and could
be added to the driving force. We assume that the fluctuations at differentttimes
andt; are uncorrelated. Therefore we may postulate that

(Z(H)Z(;) = 8 - M - At (15)

whered;; is the Kronecker symbol which expresses the statistical independence
of Z at timest; andt; andM is a measure of the size of the fluctuations, equal to
2D, whereD refers to the dispersion coefficient.

In a nonuniform field (which implies thdd is a function ofX), an important
guestion arises concerning at which time the variabiea D must be taken (e.g.
Gardiner, 1985). According todis definition, D is governed by the value of
before the jump. On the other hand, in Stratonovitch’s definitidis evaluated at
the point halfway through the time interval, thabs= D (X([t; + tj+1]/2)) which
is closer to the reality, with fluctuations going on all the time. The Stratonovitch’s
scheme is difficult to compute, and consequently, tbis BEheme is quite widely
used. The stochastic differential equation is then the followiray (1951):

X(t) = X(ti—1) + U(X(ti-1)) At + z/2D(X(ti 1)) At (16)

wherez is a random number issued from a Gaussian distribution with zero mean
and unit variance.
It has been shown that this equation is equivalent to the Fokker—Planck
equation:
oW

—o = ~VUW)+A(DW) a7

whereW is the probability density of the variabl¥(t). Equation (17) can be
written as
oW

S0 = ~VUW) + Y(DVW) + V(VDW) (17 ter)

To be equivalent to the transport equation (13), aterm has to be added to the driving
force:

oW .

e —V((U + VD)W) + A(DW) (17 bis)

which is exactly the Fokker—Planck equation withreplaced byy* = U + VD.
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The equivalent stochastic differential equation to the advection—dispersion
equation is then the following:

X(t) = X(ti-1) + UT(X(ti—1))At + zy/2D(X(ti—1)) At (18)

whereU* = U + 2B

5%+ Which can be replaced by

X(t) = X(ti-1) + U*(X(ti—1))At + z/6D(X(ti—1)) At (19)

wherez is a random number issued from a uniform distribution betwegrand
1 (as shown by Uffink, 1990).

The additional ternd D /9 X is due to the dissimilarity between the Fokker—
Planck and advection—dispersion equation. The physical meaning of this term is
the conservation of particle flux due to dispersion between two points of space
where flow velocities are different. In other words, neglecting this term would
yield an abnormal accumulation of particles in low dispersive regions. Inside one
element where the velocity field is smooth (and hence dispeB)othe particles
will be moved according to the modified Fokker—Planck equationiénstead
of U); at the boundary between two elements, where the velocity field, and hence
the dispersion is discontinous, the teWD cannot be evaluated and we shall
propose a hew direct treatment of the movement of the particles.

The Fokker—Planck Approach in Three Dimensions
for a Smooth Dispersion Tensor

The 3D formulation of the modified Fokker—Planck equation is equivalent to
(13) in the case of a smooth dispersion tensor; it is given by

3 3
___ZB—X.(U W)+Zzax 8X,( ij W) (20)

i=1 j=1

whereW is the probability density of the variabk(t) and

Di; are the elements of the 3D symmetrical dispersion tensor. Their general ex-
pression are given by (Bear, 1979)

Dij = ar|U|8ij + (L — ar)UiU; /U] (21)
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whered;j is the Kronecker symbols =1 if i =] andé; =0 if i # j); o
is the longitudinal dispersivity component; ang is the transversal dispersivity
component.

The 3D expressions of the displacement components of a particle of tracer
are the following:

U U
X(t + At) = X(t) + U At + (zl\/eDLw—xI -2 6DTU—y
Xy

U, U
— 73,/6D7— X)\/At

U] Uyy
% Uy U)(
Y(t+ At) = Y(t) + UjAt + zlw/6D._m +2 6DTU— (22)
Xy
U, Uy
— 23/6D1—= —L | VAL
U Uxy
U U
Z(t + At) = Z(t) =+ UZ*At + (le/ 6D|_ﬁ + 734/ 6DT|TX)|/> v/ At

where

Ul = /U2+U2+UZ and Uy, =,/UZ+U?2 (23)

dDyxx . dDyy 3Dy,
axX Y 0Z

dDyx 8Dy, 3Dy,
axX Y 0Z

asz + aDZy + aDZZ

U:ZUx+

U; = Uy +
(24)

Us=u
z =T 35X aY 9z
DL = o |U]
Dr = ar|U]|

Uy, Uy, U, are the components of the mean pore velddity, z,, z; are random
numbers issued from a uniform distribution betweehand 1.

Particle Movement Inside One Finite Element

The mixed finite element method give the Darcy velocity in each elefgent
By dividing the fluxes by the porosity, one obtains the effective velocity of the
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fluid particle given by
6
Ug = Z QiWi (25)
i=1

whereQ; = Q;/6, 6 is the effective porosityQ; is the flux through each sid,
of the elemen€& (positive for cell outflow), anday; is the Raviart—-Thomas basis

functions.
The Raviart—-Thomas basis functions in an cubic element oflgizely x
Iz =V, have the following expressions,(v, w are the local coordinates in the

element) (Fig. 1):

(26)
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The advective particle displacement is then calculated by simply integrating
the expression (14). In thedirection the particle velocity can be writen as

| 0

Wy = va Wg = 0 Wg =
w
v

<

uxn=[9%§9ﬂ[n0—m4m}—w%k
_ UXi+1/2 - UX|-1/2
N [ Ix

hnm—mUﬂ+umm 27)

We note byUy_,, (respectivelyUy,, ,) the mean pore velocity at =0
(respectivelyu = Ix) in the element where the particle is located (which is indeed
Q,/(ly x 1z) (respectively-Q; /(ly x 12))).

After integrating, one obtains

X(t +68t) = Xi—12 + (1/Ax)[Ux(t) exp(Aydt) — UXl—l/Z] (28)

The spatial derivatives of the dispersion coefficients are calculated within
each element according to the velocities and their own derivatives

aUx UXi+1/2 B Uxi—l/z dUx dUx
= ——— and =
X Ix aY 0z

-0 (29)
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The derivatives of the dispersion coefficients are thus reduced to the following
expressions:

0Dxx _, x u? u2+u
ax - Xax | us

0Dy Uy U, UxUZau,

oy — @ “T)[av u_ Uusd

9Dy, iy ) U, Uy U U28U

9z TS Z U

aDyy ., Uy ur\ U +u
oy oy [O‘L< E

3Dyx U, U,

o (aL—aT)[ R X] (30)
Dy oy [0UzUy U2,

9Z 9Z U 3 9z
8Dzz_U 22 U3+U3
9z vl VEJAVE

9 Dzx iy YE xUz U UZ 09U

X TR0 T U8B ax

9D,y Uy U, UUZau,
Y oY U us ay

When a particle goes from one element to the adjacent one, we apply the
algorithm described hereafter. In a nonuniform flow, velocity is not derivable at the
interface of two adjacent elements. Computing dispersion coefficient derivatives
by using a finite difference approach would yield erroneous values.

Particles Transfer Across a Discontinuity

In a nonhomogeneous medium, as in the case of layered aquifers, the abrupt
variation of the velocity field makes the calculation of the additional term prob-
lematic. To overcome this difficulty, two approaches have been proposed: the
“reflecting barrier” approach and the interpolation technique.

In the literature, we found four authors who have already addressed this
problem and tried to give different solutions. In order to illustrate the different
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Figure 2. Schematic presentation of a layered aquifer.

approaches, let us study the case of a layered aquifer in which the flow is parallel
to the layers and then we will study also the transfer in the perpendicular direction
(Fig. 2).

The upper medium () is a high dispersive medium and the lower,{Nk
a low dispersive one.

The following three methods are reflecting-barrier approaches.

Uffink (1983) was probably the first who introduced the idea of a semireflect-
ing barrier at the interface. He suggested that a part of the set of particles going
from M; to M, must be reflected. This part is given by a probability of crossing
the barrier defined by

P _ +/Dy1—+/Dvy2
=Y 1T VY2
~/Dy1 4+ +/Dyv2

whereDy; is the transverse dispersion coefficient in the upper mediumsnad
is the transverse dispersion coefficient in the lower medium.

Ackerer (1985) suggested another method. It consists in breaking up the parti-
cle jump through the interface, into two jumps. Let us consider that a particle jump
duration beAt. This jump is broken into two jumps, the first one takes the particle
to the interface and it lastat;. This jump has the statistic properties of the first
medium. The second jump starts at the interface with the statistic properties of the
second medium and it lastst, = At — At;.

Cordes, Daniels, and Rouve (1991) went back to Uffink’s idea (semireflecting
barrier), but changed the probability for a particle to be reflected. They suggested

_ Y Dy1 — +/Dy2
Dv1

(31

Pc (32)
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The lastapproach is based on an interpolation technique presented by Labolle,
Fogg, and Tompson (1996), and Labolle, Quastel, and Fogg (1998), which consists
in interpolating velocities in the dispersion tensor in order to smooth the dispersion
tensor in the vicinity of the interface to eliminate discontinuities. However, as
mentioned by the authors, in order to attain the convergence to the true solution,
this method requires convergence in time step as well as in the spatial discretization
associated to the interpolation scheme.

To assess those different methods, we have used each of them to simulate
a tracer transport in a bistrata aquifer (Labolle, Fogg, and Tompson, 1996). The
same number of particles were injected in each layer. In this problem, a correct
modeling technigue will maintain a uniform particle number density in each strata,
that is,N;/N, = 1, whereN; andN, are the particle numbers in each strata.

As shown in Labolle, Fogg, and Tompson (1996), using no correction fails to
obtain uniform number density. In the following, we will compare results obtained
with the four mentioned methods. To incorporate the technique of Labolle and
coauthors, we linearly interpolate the diffusion coefficient through a unit length
across the interface.

Tables 1 and 2 show the evolution of the number of particle ratios in the layers
versus the dispersion coefficient values for each method. We test these methods
with two simulation durations using two time step$ = 0.005 andAt = 0.5.

For the simulation duration of 500 time units, a time step of 0.005 gives good
results for all methods (for the different ratios of dispersion coefficients). But a
time step of 0.5 does not allow one to achieve an acceptable convergence for the
four methods. For the simulation duration of 10,000 time units, neither time step
(0.5 and 0.005) attains a satisfactory convergence with all methods.

This study shows that for all methods, the time step has to be adapted to
the time duration of the simulation: in order to achieve convergence, we have to
decrease the time step when the time duration increases.

A detailed analysis led us to think that the jump splitting up principle is a good
way to approach reality, but since the particle is at the interface, the probability that
itgoesinto one medium or another is notthe same asis indicated in Cordes, Daniels,
and Rouve (1991). Here we shall calculate the probaliitgndP,(P, = 1 — Py)
that the particle goes into one medium or another.

Let the dispersion displacement of a particle in the transversal direction be
equal to

Ly = z/6Dy At (33)

wherezis arandom number following a uniform distribution betweehand 1 and
Dy is the dispersion coefficient in thedirection. In the homogeneous medium
case, the value of particle displacements in yheirection would be uniformly
distributed between-/6Dy At and./6Dy At.
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Figure 3. Probability distribution of particle dispersion jumps starting at the interface of the two
layers.

\ 4

'y
X
F

In the nhonhomogeneous medium case, the value of particle displacements
in the y direction would be uniformly distributed between,/6 Dyi At and
/6 Dy2 At.

To respect the uniform distribution (Fig. 3) of particle displacements in the
whole area Q) of possible displacements, the probability that a particle goes into
mediums M and M; is respectively

~/Dy1 ~/Dy2
=——— and P,=1-P = ———
+/Dvy1+ +/Dy2 +/Dy1+ +/Dy2

Finally, programming this method is not difficult; after splitting up the jump,
the particle is at the interface and then one draws a random nuriioem a uni-
form distribution between 0 and 1:K < Py, the particle goes into the Mnedium,
else it goes into the Mmedium. This algorithm must be applied whether the parti-
cle comes from one side of the interface or the other. It must also be applied when a
particle goes from one element to the adjacent one, because the tangential velocity
unit vector is not continuous from one element to the other. Table 3 clearly shows
that the new method is the only accurate solution of the problem for any ratio of
dispersion coefficients and without any big difficulties of convergence in time step.

P (34)

MODEL VALIDATION

To validate the model we have simulated a tracer experiment in an heteroge-
neous medium performed on a 3D laboratory model (Fig. 4). The porous medium
is 5.6 m in length1 m in width, and 0.8 m in depth. It is filled up with three
different kinds of sand disposed in eight layers of randomly placed parallelepipeds
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Table 3. Comparison in Ratios of Particle Numbeis;(N,) on Either Side of
Discontinuity in D for the New Technique to Conserve Mass for a Simulation
Duration of 500 and 10,000 Time Units for Two Time-Stexts

Time = 500 Time= 10,000

D1/D2 At = 0.005 At =05 At = 0.005 At =05
2.50 1.00 1.01 1.06 1.03
5.00 1.00 1.02 0.97 1.02
7.50 1.00 0.98 1.05 1.03
10.00 1.00 1.02 1.00 1.06
12.50 1.00 0.96 1.04 1.01
15.00 1.01 1.07 0.98 0.99
17.50 1.00 0.99 0.99 0.99
20.00 1.01 1.02 0.99 1.00
500.00 1.01 1.02 1.02 1.00

of 0.4 x 0.1 x 0.1 m. Figure 5 shows the distribution of sand blocks in the eight
layers of the porous medium. Each layer is different from another. Sodium chlo-
ride is used at low concentration as a tracer because of its conductivity feature
and to avoid density contrast effect. The concentration measuring setup consists in
352 conductivity cells installed in the porous medium (Ruch, Ackerer, and Guterl,

Peristaltic pump
Sodium chloridgy —pelectrodes
Water tank solution tank
Upstream
weir Conductivity cell
A \
‘Water input

Figure 4. Schema of the laboratory model.
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N K = 5.4 c/min K = 60 cm/min K =75 cm/min

Layer 8 Layer 7 Layer 5

10 cm

Layer 1 Layer 2 Layer 3 Layer 4

Figure 5. View of the distribution of sand blocks in the eight layers of the porous medium.
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Hydraulic conductivities ardé; = 75 cm/min,k, = 60 cm/min, andks =
5.4 cm/min. These values were measured on laboratory samples of sand. The mean
hydraulic gradient in the longitudinal directionds= 2.03 x 10~2. Longitudinal
dispersivity is¢. =3 mm and transversal dispersivity ist = 0.3 mm. The
porosity ise = 0.38. The upstream tank (= 0 cm) is used as pollution source.
Sodium chloride is injected continuously in the upstream tank. The concentra-
tion breakthrough in the upstream tank is giver(y) = Cna(1 — e~#!), where
Cmax = 1.08 g/L andb = 0.0476. The domain was discretized into a regular paral-
lelepipedic mesh. 17,280 elements were used (8420 iny, and 16 iredirection).

Each sand block was discretized into 16 elements.

Two simulations have been performed, the first one with and the other one
without taking into account the corrective term. Figure 6 shows isoconcentration
surfaces obtained from the two simulations. The figure clearly shows that neglect-
ing the corrective term yields dramatic results. Unrealistic high concentrations are
observed in low hydraulic conductivity regions (low dispersion). We show here
the absolute necessity to take into account the corrective term. Figures 8 and 10
compare measured and simulated concentration in the fifth=£a45 cm, Fig. 7)

Simulated concentrations

Conc. (mg/l)

2.40
2.20

2.00

120 160 200 240 280 320 360 400 440 480 520 560

1.80

1.60
With considering the corrective term
=11.40

e izt
40 80 120 160 200 240 280 320 360 400 440 480 520 560

Without considering the corrective term

Figure 6. Isoconcentration surfaces obtained with and without taking into account the corrective term.
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100 cm

560 cm
flow direction ——>

mesured concentration
Figure 7. A horizontal section of the modeled domairzat 45 cm (Layer 5).
and seventh (& = 65 cm, Fig. 9) layer. It shows an acceptable agreement between
measured and computed concentrations. Simulated isoconcentration surfaces are

slightly different from measured isoconcentration on Figs. 7 and 8. Some differ-
ences can be explained by the permeability variability resulting from the manual

Conc. (mg/l)

40 80 120 160 200 240 280 320 360 400 440 480 520 560

Measured concentrations

0O 40 80 120 160 200 240 280 320 360 400 440 480 520 560

Simulated concentrations

Figure 8. Comparison between measured and simulated concentrations for the horizontal section
z=45cm, attimg = 232 min.
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ol e T T T T ﬂ T PP T

0 40 560 cm
flow direction ———>

Figure 9. A horizontal section of the modeled domairzat 65 cm (Layer 7).

packing of the sand. Some others can be explained by the variability of the shape of
the sand blocks, which are not perfect parallelepiped because the grid we have used
for the filling was too supple. Moreover we have used the elements of the mesh
to represent the distribution of the concentration in the medium (1080 elements
in each layer) while we have only used the measurement cells which are at the
number of 70.

Conc. (mg/l)

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 0.00

Measured concentrations

40 80 120 160 200 240 280 320 360 400 440 480 520 560

Simulated concentrations

Figure 10. Comparison between measured and simulated concentrations for the horizontal
sectionz = 65 cm, at timg = 232 min.
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To conclude with that simulation of Marceau’s experiment, an acceptable
match between measurement and simulation is achieved everywhere.

CONCLUSION

At field scale and especially in heterogeneous media, solute transport is al-
ways a 3D phenomenon. Therefore an efficient groundwater quality modeling
must be 3D as well. The random-walk method is a good alternative to classical
techniques as finite difference and finite elements, which suffer from numerical
diffusion at high Peclet numbers. But classical random-walk models are not effi-
cientin simulating mass transport in heterogeneous media because if the additional
term is not correctly taken into account, particle accumulation can occur in low
dispersion areas. The new method developed in this study allows the conservation
of the particle fluxes between high and low dispersive regions. Table 3 (compared
to Tables 1 and 2) shows the efficiency of this method and its superiority on other
algorithms commonly used. The 3D code, developed in this study takes into ac-
count the new algorithm which has been extended to the three directions of space.
The code has been verified on hand of a 3D laboratory experiment. Comparisons
between simulated and measured values have shown satisfactory results.

In this paper it is also shown that a 3D physical laboratory model is a very
useful tool in validating numerical models before their use at field scale and also
to improve our understanding in mass transfer in porous media.
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