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The purpose of this paper is to extend the locally based prediction methodology of BayMar to a global
one by modelling discrete spatial structures as Markov random fields. BayMar uses one-dimensional
Markov-properties for estimating spatial correlation and Bayesian updating for locally integrating
prior and additional information. The methodology of this paper introduces a new estimator of the field
parameters based on the maximum likelihood technique for one-dimensional Markov chains. This makes
the estimator straightforward to calculate also when there is a large amount of missing observations,
which often is the case in geological applications. We make simulations (both unconditional and
conditional on the observed data) and maximum a posteriori predictions (restorations) of the non-
observed data using Markov chain Monte Carlo methods, in the restoration case by employing simulated
annealing. The described method gives satisfactory predictions, while more work is needed in order to
simulate, since it appears to have a tendency to overestimate strong spatial dependence. It provides an
important development compared to the BayMar-methodology by facilitating global predictions and
improved use of sparse data.

KEY WORDS: simulations, predictions, Markov chain Monte Carlo, simulated annealing, incomplete
observations.

INTRODUCTION

In many geological applications, there is an interest in predicting properties at
locations where no observations have been made previously. The inherent-
heterogeneities of geological systems result in spatial variability and make such
predictions uncertain. To account for this uncertainty, spatial statistical models
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may be applied. Spatial statistical geological models may be used for purposes
such as: (1) estimations of probabilities of specific properties, (2) local calcula-
tions of the most likely geological property, (3) global predictions of the geo-
logical configuration, and (4) simulations of geological property configurations,
given the present uncertainties. Many types of earth science data are displayed
on a lattice format, which, according to Cressie (1993), is a countable collec-
tion of spatial sites that can be either spatially regular or irregular. Examples
on earth science lattice data are satellite images and geological maps in raster
format.

The most sophisticated spatial lattice models data are based on the Markov
random field (MRF) approach, as described by e.g., Besag (1974) and Cressie
(1993). Recently, Tjelmeland and Besag (1998) studied a more advanced Markov
property with interaction also between directions. Because of computational de-
mands, these models have so far been of limited use in geological applications.
However, due to the rapidly increasing CPU capability, MRF methods gain in-
creasing practical interest, especially in image restoration. Ros´en and Gustafson
(1996) described a computationally simple Bayesian–Markov approach (BayMar)
for estimating conditional probabilities for geological properties from data on a
regular lattice. The methodology uses Markov chain analysis for modelling the
spatial properties and Bayesian updating for estimation of conditional probabili-
ties. The BayMar methodology provides the possibility for local, but not global,
predictions of the geological property. Further, the BayMar methodology does not
provide possibilities for simulations. Another weakness of the BayMar technique
is its inability to properly describe spatial variability in cases of sparse data, which
is not unusual in geological applications.

In geological applications the difference between prediction and simulation
should be recognized. Simulations are better suited for displaying the inherent vari-
ability, whereas predictions give the most likely configurations, given the available
data. Typically a prediction is smoother than a simulation.

The present work was performed in order to provide supplementary capa-
bilities to the BayMar methodology. It is the purpose of this paper to describe a
procedure for (1) global prediction of the geological configuration, (2) simulating
geological configurations, using an MRF approach, and (3) improved estimation
of spatial variability in cases of sparse information.

The disposition of the paper is as follows: We commence by discussing the
statistical model, how to estimate its parameters and how to do restorations and
simulations using a Markov chain Monte Carlo (MCMC) technique (in the for-
mer case employing simulated annealing (SA), cf. e.g., Aarts and Korst (1989)).
Then we describe our two geological areas of study. The results from the restora-
tions and the simulations are presented next and, finally, in our last section we
make conclusions and present some suggestions on how to proceed with this
research.
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STATISTICAL MODEL

The Probability of Observing a Specific Geological Configuration

We assume below that the setC of all possible geological configurationsx is
of the formSR, where thesite space Ris a rectangular subset of thed-dimensional
integersZd andS= {1, . . . , s} is a finitestate space. In our two particular applica-
tionsR is a rectangle inZ2 of the form{1, . . . ,n} × {1, . . . ,m}. Even for moderate
n, m, ands, the total number of possible configurations is extremely large.

The probability of the configurationx is p(x) = Z−1 exp(−9(x)), whereZ is
a normalizing constant. In our applictaions, it is not possible to calculateZ because
of the large cardinality ofC. Thus, what typically is known about the probability
p(x) is that it is proportional to exp(−9(x)):

p(x) ∝ exp(−9(x)) (1)

In statistical physics,9(x) is termed theenergyof the observationx. Less energy
means a likelier observation. We will adopt this terminology below. The constant
Z depends on the choice of9, which to some degree is arbitrary.

We have a particular interest in configurations that are only partially known.
We thus splitx = xAxB into a known partxA and an unknown partxB. The sets
A andB partition the site spaceR. The possibilityA = ∅ corresponds to no prior
knowledge.

Often one may want to predictxB. We therefore calculate the conditional
probability ofx = xAxB givenxA, which we write aspA(xB) = p(xAxB)/p(xA),
because it is a function of the partial configurationxB only. Clearly,

pA(xB) = exp(−9(xAxB))∑
xB

exp(−9(xAxB))

Typically the sum in the denominator is intractable, so, cf. (1),

pA(xB) ∝ exp(−9A(xB)) (2)

Two aims of this paper are:

1. to simulate a geological configuration either unconditionally according to
(1) or conditionally according to (2)

2. to predictxB givenxA:

x̂B = arg max
xB

pA(xB) = arg min
xB

9A(xB)
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Both aims can be achieved using MCMC (in the second case employing simulated
annealing). MCMC is a simulation technique in which one just needs to know
the energy of the target probability distribution. There is no principal difference
between unconditional simulation of (1) and conditional simulation of (2). A dif-
ficulty with the second aim is that a quantity such as arg maxx p(x) need not be
uniquely defined.

Specification of the EnergyΨ

We now proceed to describe the particular class of energy functions that we
work with in this paper. We focus on the case of a two-dimensional site space, and
assume that there aremnsites (orpixels) and that the number of possible geological
states per site iss:

x = (x(i, j ), i = 1, . . . ,m, j = 1, . . . ,n)

wherex(i, j ) ∈ {1, . . . , s}. Specifically we will assume that9(x) can be written as
a sum

9(x) =
∑
i, j

(
ψ0
(
x(i, j )

)+ ψ1
(
x(i, j−1), x(i, j )

)+ ψ2
(
x(i−1, j ), x(i, j )

)
+ ψ3

(
x(i−1, j−1), x(i, j )

)+ ψ4
(
x(i+1, j−1), x(i, j )

))
(3)

Here, as well as in similar situations, the contribution to the energy is zero if an
index pair points to a nonexisting site. This model specifies basic dependence in
four directions (1: W–E; 2: N–S; 3: NW–SE; 4: SW–NE). The isotropic Ising
model (Guyon (1995)) hass= 2 andψ3(x, y) = ψ4(x, y) = 0,

ψ1(x, y) = ψ2(x, y) =
{

β if x = y
−β if x 6= y

andψ0(x) = α(α 6= 0 orα = 0 depending on whether there is an external field or
not).

Any probability distribution (1) with9(x) as above is called aGibbs dis-
tribution or a Markov random field(MRF), see e.g., Guyon (1995). Below, we
will think of the functionψ0(x) as a mean of four functions:ψ0(x) = (ψ01(x)+
ψ02(x)+ ψ03(x)+ ψ04(x))/4. In theory, all fourψ0l (x) coincide withψ0(x). Their
estimates, however, typically differ.

Statistical Inference

We next discuss how to calculate a nonparametric (N-P), or rather distribution
free, estimator9̂ of 9 within a certain class of energy functions which can be
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described via the transition matrices of four Markov chains (one chain for each
basic dependence direction). We will first describe how to estimateψ01 andψ1.
How to estimate the other three pairsψ02 andψ2,ψ03 andψ3, andψ04 andψ4 will
follow by analogy. We first consider the case of a complete observation.

Example 1. Let x = x1, . . . , xn ben consecutive states of a Markov chain with
transition probabilitiesp(x, y), 1≤ x, y ≤ s. Assume that the chain is stationary,
and denote byπ (x) its invariant distribution. The probability of the observed
configurationx may be written as

p(x) = exp

(
n∑

i=1

logπ (xi )+
n−1∑
i=1

log
p(xi , xi+1)

π (xi+1)

)

Combining (1) and (3),

p(x) ∝ exp

(
−

n∑
i=1

ψ0(xi )−
n−1∑
i=1

ψ1(xi , xi+1)

)

By comparison, ψ0(x) = −logπ (x) and ψ1(x, y) = −log(p(x, y)/π (y)) =
logπ (y)− log p(x, y), both modulo some additive constant that is not allowed
to depend onx. Replacingp(x, y) andπ (x) with their maximum likelihood esti-
matorsp̂(x, y) andπ̂ (x), respectively, yields the estimators

ψ̂01(x) = −logπ̂ (x)+ C01

and

ψ̂1(x, y) = log π̂ (y)−logp̂(x, y)+ C1

of ψ01 andψ1, respectively. The arbitrary constantsC01 andC1 are not allowed to
depend on data. ¤

In analogy with this example, we define for each basic dependence directionl

ψ̂0l (x) = −logπ̂ l (x)+ C0l (4)

and

ψ̂ l = log π̂ l (y) − logp̂l (x, y)+ Cl (5)
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where

p̂l (x, y) = f l
xy

f l
x·

here f l
x· =

∑
y f l

xy, where f l
xy is the frequency of transitions from statex into state

y in directionl ; π̂l is the unique distribution solving ˆπ l P̂l = π̂ l , whereP̂l is the
transition matrix formed by the estimatesp̂l (x, y), 1≤ x, y ≤ s. Also,

ψ̂0 =
1

4
(ψ̂01+ ψ̂02+ ψ̂03+ ψ̂04) (6)

Any estimator of this kind will later be referred to as an N-P CMEE, based on
the complete configuration. The drawback of the CMEE is that it does not take into
account the normalizing constantZ(9). Thus it may differ considerably from the
MLE of Ψ, which we, due to extremely long computing times, have not calculated.

In the case of a partially observed configuration we think in each direction
of the data as that of a noncomplete observation of a Markov chain. For each
directionl , we calculate a likelihood as in the numerical Example 2 below, which
when maximized gives estimates ˆπ l (x) and p̂l (x, y) from which the CMEE may
be calculated (cf. (4) and (5)).

Example 2. Consider a homogeneous Markov chain with state spaceS= {1, 2}
and transition matrix

P =
[

p11 p12

p21 p22

]
having invariant distributionπ = [π1 π2] satisfyingπP = π . As in Example 1,
our aim is to estimateP andπ from a finite realization of the chain. This time,
however, we are not able to observe the chain at each moment.

As an example of an incomplete observation, consider

· · ·0 0 0 1 0 0 2 2 1 0 0 0 0 1 0 0 2 2 1 0 0 0 0 1 0 0 2 2 1 0 0 0 0 1 0 0 2 2 1 0 0 0· · ·

where 0 denotes an unknown state. Assuming stationarity, its likelihood is

L(P) = π1 p(3)
12 p22p21p(5)

11 p(3)
12 p22p21p(5)

11 p(3)
12 p22p21p(5)

11 p(3)
12 p22p21

where we have writtenp(k)
i j for the probability of jumping from statei to state

j in k steps (p(1)
i j = pi j ). Notice that we have assumed here that the chain is
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in its stationary phase. Writingp = p12 andq = p21, and noticingπ = [q p]/
(p+ q), the expression forL(P) can be simplified to5

L(p,q) = p4q5 (1− q)4 (3− 3p+ p2− 3q + 2pq+ q2)4 (1− 5p

+ 10p2− 10p3+ 5p4− p5+ 10pq− 20p2q + 15p3q − 4p4q

− 10pq2+ 15p2q2− 6p3q2+ 5pq3− 4p2q3− pq4)3/(p+ q)

By maximizing this expression, we get the maximum likelihood estimator of the
pair p,q.

There is one slight difficulty, though, since a likelihood like this is not neces-
sarily concave i.e., there may be more than one local maximum. Thus, a careless
use of a standard maximization program may produce a wrong answer. ¤

Instead of routinely employing a standard maximization algorithm, we used a
simulated annealing algorithm from Corana and others (1987) (see also Baran and
Baran (1997) or Baran and Szab´o (1997)) to maximize the (possibly nonconcave)
likelihood in the case of noncomplete observations.

OUR MARKOV CHAIN MONTE CARLO ALGORITHM

The idea behind simulating realizations of probability distributions such
as (1), in which the normalizing constant is not known, with an MCMC algorithm is
to construct a homogeneous Markov chain having the probability distribution itself
as its invariant distribution. One of the first algorithms of this kind was described
by Metropolis and others (1953).

One difficulty with the MCMC approach to simulation of (1) is that it is
difficult to detect when the chain has reached or is close to equilibrium. To handle
this problem we have logged and plotted the number of updated sites, the increase
or decrease in energy in each new configuration. We have also summed the latter
to obtain the energy difference between the current and the initial configuration.

The MCMC algorithm that we chose to realize uses the so called Gibbs sam-
pler introduced by Geman and Geman (1984). Unlike earlier MCMC algorithms,
the Gibbs sampler updates one site at a time. After updating all unknown sites,
configuration 1 is ready and after updating all unknown sites a second time, con-
figuration 2 is ready, etc.

A difficulty with MCMC algorithms is that they often are very time and
computer consuming. Ours is not an exception. Often the Gibbs sampler needed
1.5–2.5 days for a run on a SUN workstation (10–15 min per configuration and
maybe 250 configurations to reach or come close to equilibrium).

5We employed Mathematica to do the simplification.
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By running MCMC with invariant distribution

pk(x) ∝ exp

(
−9(x)

Tk

)
(we will refer to Tk simply as the temperature of configurationk) and slowly
loweringTk until the sequence of configurations converge there is good hope that
the final configuration is close to one with minimal energy (cf. our second aim
above). This is often referred to as simulating annealing (SA). The interested
reader is referred to Laarhoven and Aarts (1987) or Aarts and Korst (1989).

One often has to do experiments with different so calledcooling schedules
{Tk, k = 0, 1, . . .}. A quite popular class of cooling schedules are theexponential
ones. Any exponential cooling schedule can be written

Tk = T0ck

The initial temperature isT0 and we will refer to the constantc, which determines
the speed of the convergence ofTk towards 0, in terms of thehalf temperature

k1/2 = − log 2/logc

In other words

c = 2−1/k1/2

so that

Tk = T02−k/k1/2

The “speed” parameterk1/2 is the number of iterations needed to decrease the
temperature by a factor of 2. Many of our runs use an exponential cooling schedule
with T0 = 4 andk1/2 = 100.

STUDY AREAS

Two areas were selected for test applications during this work. The first
area is situated in Lerum, approximately 25 km east of G¨oteborg in southwestern
Sweden (Fig. 1, upper left). The Lerum area is 5× 5 km2 in size and covered by
a geological map of unconsolidated materials in raster format with a pixel size of
50× 50 m2. This area was selected because of two reasons: (1) the distribution
of unconsolidated materials is completely known and (2) the area displays a large
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Figure 1. Upper left: Lerum map (SML); upper right: The thinned Lerum map (TSML); middle
left: MAP d4 of the thinned Lerum map (N-P CMEE based on SML,T0 = 4, k1/2 = 100,ks =
354, pC = 62.6%); middle right: MAP d5 of the thinned Lerum map (N-P CMEE based on
TSML, T0 = 4, k1/2 = 100, ks = 400, pC = 65.7%); lower left: Conditional simulation d8 of the
Lerum area; known is the thinned Lerum map (N-P CMEE based on TSML,T0 = 1, k1/2 =
∞, ks = 250, pC = 63.4%); lower right: Conditional simulation a6 of the Lerum area; known
is the thinned Lerum map (N-P CMEE based on TSML,T0 = 4, k1/2 = 100, minkTk = 1, ks =
457, pC = 66.8%).

71
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Figure 2. Upper left: The Simpevarp map (BMS); upper right: MAP b14 of the Simpevarp map
(N-P CMEE, T0 = 4, k1/2 = 100, ks = 400); lower left: a comparison between the measured state
distributionρBMS (left) and the estimate ˆπBMS (right); lower right: Conditional simulation c11 of the
Simpevarp area; known is the Simpevarp map (N-P CMEE,T0 = 4, k1/2 = 100, minTk = 1, ks = 700).

variability. The second area is a 7.5× 4.6 km2 area around Simpevarp in the
southeastern part of Sweden (Fig. 2, upper left). The area includes a hard rock
laboratory for testing of bedrock properties for repository of high level spent
nuclear waste and is subject is intensive geoscientific research (see Ros´en and
Gustafson (1996)). This area is covered by a bedrock map in raster format with a
pixel size of 100× 100 m2. There are a total of 102× 102= 10404 pixels (sites)
in the Lerum map of which 265 represent surface water (colored white). The
Simpevarp map displays much less variation than the Lerum map, and portions of
the bedrock is unknown, since the Baltic Sea covers parts of the area.

The two selected areas exhibit large differences, which were considered to
be important for evaluation purposes. The Lerum map (Fig. 1, upper left) displays
s= 8 different categories of glacial deposits. The area is situated in a northeast–
southwest oriented valley in Precambrian bedrock of granitic composition with
gneissic structures. The lower elevations of the area are dominated by glaciomarine
clays. Glaciofluvial esker deposits appear in the central part of the valley, and are
partly covered by the glaciomarine clays. On the valley sides, glacial till is the
dominating type of deposit. In the upper elevations, especially in the northern part
of the area, bedrock outcrops frequently.

The bedrock geology (Fig. 2, upper left) of the Simpevarp area is dominated by
granitoids belonging to the Trans-Scandinavian Igneous Belt (Wikberg, Gustafson,
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and Stanfors (1991). The bedrock composition is locally heterogeneous with some
older xenoliths, mainly metavolcanics, and some younger intrusions of brittle fine-
grained granite. The dominating rock type is a medium-grained granite, which
covers approximately 60% of the mapped area. The older, basic, rock types, such
as metavolcanics, make up approximately 15% of the area.

RESULTS

The Lerum Area

To check the capacity of our algorithms to predict nonobserved states, we
made a Bernoulli thinning of the Lerum map (Fig. 1, upper right). The probability
for a site to be kept in the thinned map was 0.15. We estimated the energy func-
tion from the data in this map and we made several restorations and conditional
simulations.

We report a total of seven maximum posterior predictions (MAPs) of the
unknown part of the thinned Lerum map (TSML). For six predictions we used a
relatively slow cooling schedule with half temperature,k1/2 = 100, and initial tem-
perature,T0 = 4, whereas we for one used a much slower schedule withT0 = 50
and k1/2 = 200. The reason for doing an MAP with this very time consuming
schedule was to see whether better results can be obtained with a much slower
schedule. The result indicates that this is not the case.

Of the six MAPs based on the fast cooling schedule, three were produced
using as energy function the N-P CMEE based on the complete configuration
SML, while the other three were produced using the N-P CMEE based on the
thinned Lerum configuration TSML. Refer to Figure 1, middle left, as an example
of the former three, and to Figure 1, middle right, as an example of the latter three
(ks is the total number of sweeps). For the former three we obtained the proportions
61.7, 62.2, and 63.0% correct pixels, whereas for the latter three we obtained the
proportions 65.7, 66.6, and 66.0%. It is remarkable that an MAP that uses the N-P
CMEE based on the thinned map seems to perform better than an MAP based on
the knowledge in the complete map. At test of the null hypothesis of no difference
versus the alternative that there is a difference between MAPs using the N-P CMEE
based on the complete and the thinned map clearly rejects the null hypothesis of
no difference, the two-sidedp-value being less than 0.002.

As mentioned already, we calculated two N-P CMEEs. One was based on
the complete Lerum map SML and the other one was based on the thinned
Lerum map TSML. Both CMEEs produced an estimate of the distribution of
the s= 8 different states denoted ˆπSML and π̂TSML, respectively, which can be
compared to the estimateρSML obtained simply by counting frequencies in the
Lerum map SML (Fig. 3, left). Notice that the agreement between ˆπTSML and
ρSML is remarkably good, and much better than that between ˆπSML andρSML. Also
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Figure 3. Left: A comparison between the measured state distributionρSML (left) and the two estimates
π̂SML (middle) and ˆπTSML (right); right: A comparison between the measured state distribution in the
two maps TSML-d8 (left) and TSML-a6 (middle) with ˆπTSML, which is obtained from the N-P CMEE
based on the thinned Lerum map (right).

notice that ˆπSML overestimates the two most frequent states and underestimates the
others.

Figure 1, lower left, shows a conditional simulation with constant tempera-
tureTk = 1 throughout the whole run. Figure 1, lower right, shows a conditional
simulation in which we have used cooling to obtain a reasonable initial configura-
tion. The first 200 iterations were produced using a cooling schedule withT0 = 4
andk1/2 = 100, whereas the following ones all hadTk = 1. Figure 3, right, shows
a comparison of the distribution of the different states in the maps in Figure 1,
lower left, (denotedρTSML−d8) and Figure 1, lower right, (denotedρTSML−a6) with
π̂TSML. Notice that, similar to classical smoothing, both TSML-d8 and TSML-a6
contain too many of the most frequent states and too few of the less frequent states.
Notice also thatρTSML−a6 is closer to the target distribution ˆπTSML thanρTSML−d8.
The difference between run a6 and run d8, is that we used cooling to obtain a better
initial configuration than for run a6.

The Simpevarp Area

For all restorations and simulations of the Simpevarp map (BMS), the N-P
CMEE based on all available information (calculated as outlined in Section) was
used. In Figure 2, lower left, we compare the estimate of the state distribution
obtained from the CMEE (denoted ˆπBMS) with the one obtained by just counting
states (which as denoteρBMS). Notice that ˆπBMS severely overestimates the most
frequent state and underestimates the other. This is in agreement with the results
regarding ˆπSML for the Lerum map.

We did four MAPs of the unknown part of the Simpevarp map (BMS). For all
MAPs a cooling schedule withT0 = 4 andk1/2 = 100 was used. All predictions
show similar results; for an example, see Figure 2, upper right. Notice that in
all MAPs the configuration withk = 200 turned out very similar to the final
configuration. Thus, very little changed after the first 200 iterations.
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Figure 2, lower right, shows a conditional simulation, the initial configuration
of which is obtained by cooling withT0 = 4 andk1/2 = 100. There seems to be
no principal difference between the four MAPs (compare Fig. 2, upper right, and
this conditional simulation).

CONCLUSIONS AND FURTHER WORK

The following conclusions and suggestions for further work were made from
this study:

• The methodology seems to be stable, because several different runs, with
the same parameter setting, return approximately the same fractionpC of
correct pixels. In addition, the structure of restored configurations having
the same parameter setting appear to be very similar for both the Lerum
and the Simpevarp areas.
• Our method does not seem to be able to reproduce in a simulated map, the

transition frequencies of the original map. This is true also for the state
distribution, because the simulations are based indirectly on the transition
frequencies (Fig. 3, right). Here the agreement betweenρTSML−a6 and the
target distribution ˆπTSML is better than the agreement betweenρTSML−d8

andπ̂TSML. Thus, starting a restoration and running it untilTk becomes 1
in order to obtain an initial configuration seems to improve the result of a
conditional simulation. A possible explanation of this phenomena could be
that the CMEE may have a tendency to overestimate spatial dependencies.
See also the last remark below.
• Because of this tendency to overestimate spatial dependencies, this method

is presently not well-suited for uncertainty analyses by means of repeated
simulations.
• The state distribution estimate ˆπTSML derived from the N-P CMEE based

on only 15% of the data of the Lerum map is almost identical to the true
state distributionρSML of the complete map. Of interest here is how much
we have to sample a geological configuration in order to obtain a reasonably
good estimate of its true state distribution.
• It is odd that the N-P CMEE based on the thinned Lerum map yields

significantly better restorations than the CMEE based on the complete
Lerum configuration. Figure 3, left, shows that the N-P CMEE based on
the thinned Lerum map better reproduces the known state distribution of
the Lerum map than the N-P CMEE based on the complete map. Further
work is needed to get a better understanding of this aspect.
• It seems that we derive better estimates of the state distributionρ in a map

if only a part of the configuration is used. This contradicts our intuition.
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More work is needed in order to see whether this is truly the case or not,
and if so to find an explanation.
• It should be noted that the modelling has so far been performed without

consideration of geological processes. The Lerum area consists of two
separate geological domains, (1) above and (2) below the highest shoreline
after the glaciation. These two domains exhibit different processes for
the formation of Quaternary deposits. Estimators of geological properties
therefore tend to become a weighted average rather than representing one
or both of the geological domains. We believe that a similar effect may
be present also in the Simpevarp area. For more realistic predictions and
simulations different geological domains should be carefully separated.
• So far we have only studied nonparametric CMEEs. There are parametric

CMEEs that may perform better. To obtain a more thorough understanding
of this kind of modelling several different kinds of CMEEs should be
compared.
• A problem with modelling spatial phenomena with Markov random fields

is the possible existence of phase transitions in infinite site spaces (see
e.g., Guyon (1995)). Finite models like the ones we study often experience
similar phenomena. Our results indicate that this kind of effect is present in
the estimated Simpevarp model. It may also be present in the N-P CMEE
of the Lerum area based on the complete map. We believe that when this
effect is present, the CMEE overestimates the dependence and that the
MCMC simulations/restorations further emphasise the dependence so that
an unconditionally simulated map does not look realistic.

In summary, our method gives satisfactory predictions, while more work is
needed in order to simulate without the mentioned tendency to overestimate spatial
dependency. The described method provides an important development compared
to the BayMar-methodology by facilitating global predictions and improved use
of sparse data.
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