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Modeling Conditional Distributions of Facies
From Seismic Using Neural Nets1

Jef Caers2 and Xianlin Ma 2

We present a general, flexible, and fast neural network approach to the modeling of a conditional
distribution of a discrete random variable, given a continuous or discrete random vector. Although
many more applications of the neural net technique could be envisioned, the aim is to apply the
developed methodology to the integration of seismic data into reservoir models. Many geostatisti-
cal methods for integrating seismic data rely on a screening assumption of further away seismic
events by the colocated seismic datum. Such assumption makes the task of modeling cross-covariances
and local conditional distributions much easier. In many cases, however, the seismic data exhibit
distinct and locally varying spatial patterns of continuity related to geological events such as chan-
nels, shale bodies, or fractures. The previous screening assumption prevents recognizing and hence
utilizing these patterns of seismic data. In this paper we propose to relate seismic data to facies
or petrophysical properties through a colocatedwindow of seismic information instead of the sin-
gle colocated seismic datum. The variation of seismic data from one window to another is ac-
counted for. Several examples demonstrate that using such a window improves the predictive power of
seismic data.

KEY WORDS: seismic inversion, neural networks, pattern recognition.

INTRODUCTION

Imaging of the subsurface and 3D modeling of reservoir properties represent a
major challenge, given the sparsity of hard information. Wells provide quality
information on the vertical variation, but do not provide much insight on how that
vertical variation varies laterally. The most prevalent source of lateral variation is
seismic data.

In geostatistics seismic data is typically viewed as a soft, indirect, or secondary
information. To make proper use of such information, many alternative methods
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have been proposed:

• Use seismic data as a locally varying mean (Deutsch and Journel, 1998)
informing the average porosity at any colocated location or as a prior
probability for a certain facies to occur.
• A Bayesian approach where one models the likelihood of seismic data

given hard facies or porosity data. The likelihood is used in either sequen-
tial simulation (Doyen and others, 1997) or Markov chain Monte Carlo
simulation (Eide, Omre, and Ursin, 1996).
• Interpret a 2D seismic map (that has no vertical resolution) as secondary

information about the vertically averaged porosity and perform colocated
cokriging. The resulting estimated averaged porosity is then used to per-
form 3D stochastic simulation (Behrens, Macleod, and Tran, 1996; Journel,
1999; Xu, Tran, and Journel, 1992; Yao, in press).
• When a full 3D seismic cube is available, a full cokriging of soft and hard

data could be considered. But such cokriging requires a full coregionaliza-
tion model which typically calls for additional assumptions to alleviate the
cross-covariance modeling effort:
–MM1 (Almeida and Journel, 1993): In the Markov Model 1, one assumes
that the colocated primary data screens the influence of further away
primary data on the central secondary data. This assumption is difficult
to hold when the secondary variable is on a larger volume support than
the primary, which is the case for seismic data.

–MM2 (Journel, 1999): In the Markov Model 2, it is assumed that the
colocated secondary data screens the influence of further away secondary
information on the primary central data. This assumption is more appro-
priate in presence of a secondary data with large volume support.

The increase in seismic resolution and accuracy of modern seismic acquisition
and processing tools call for a much improved utilization of the seismic data in
geostatistical modeling, beyond its use as mere colocated seismic information.
Although the results obtained from using the above methods can be significantly
different, the common approximation is the screening of further away seismic data
by the colocated seismic datum; also the seismic attribute is treated as a smooth
(non)-linear average representation of either petrophysical variable or lithofacies.

Looking at seismic images or cubes, one can often observe distinct local
spatial patterns. These patterns are often related to certain depositional features
such as faults, channels, or large shale bodies. In the above methods, such seis-
mic spatial patterns are largely neglected when only the colocated seismic datum
is retained. It therefore seems important to consider a whole colocated window
of seismic data, as was originally proposed in Pairazian and Scheevel (1999).
A window W(u) is a series of neighbor locations including the central loca-
tion u. Such a window contains information about the local spatial pattern of
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continuity of seismic which might be related to the lithofacies or petrophysical
property atu.

In this paper, we propose to model the conditional distribution of a discrete
variable given a random continuous or discrete vector. The developed methodol-
ogy is general and can be applied to any field of the Earth Sciences where such
modeling is convenient or needed. In this paper we apply the neural net methods to
predict a facies indicator variable or a discretized petrophysical variable at location
u given the seismic data observed, within the windowW(u). Such conditional dis-
tribution is the key ingredient of sequential simulation algorithms such as a p-field
(Srivastava, 1992) or indicator simulation (Deutsch and Journel, 1998). Although
the application of neural nets to the modeling of seismic properties is not new (e.g.
Wong, Jian, and Taggart, 1995), most of the traditional neural net applications are
limited to regression of lithofacies from seismic. We develop a neural network
methodology for automatic modeling ofconditional distributionsof lithofacies.

METHODOLOGY

An exhaustive set of 2D or 3D seismic data is available, possibly consisting
of multiple seismic attributes. Seismic is considered as a secondary variableZ2(u)
informing either a continuous primary variableZ1(u) (petrophysical property)
or a facies indicator variableI (u, sk), k = 1, . . . , K (facies). Many geostatistical
estimation or simulation methods for secondary data integration call for modeling
the prior conditional probabilities

Pr{Z1(u) ≤ z1 | z2(u)} or Pr{I (u, sk) = 1 | z2(u)}, k = 1, . . . , K (1)

Such modeling is based on the scatterplot between primary hard dataz1(uα), α =
1, . . . ,n, and the colocated secondary dataz2(uα), α = 1, . . . ,n, at well locations.
Stochastic simulation algorithms such as p-field simulation and sequential indica-
tor simulation make use of these conditional probabilities.

We propose to model the relationship between the hard variableZ1(u) at
locationu and a colocatedwindowof seismic or secondary data. Such window is
defined through the geometry of a template, that is the set ofnt locations

u+ hβ, β = 1, . . . ,nt , hβ 6= 0

At each hard datum locationuα, we therefore collect the following hard and soft
data vector

{
z1(uα); z2(uα), z2(uα + h1), . . . , z2

(
uα + hnt

)}
, α = 1, . . . ,n
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Note that the central colocated seismic valuez2(u) is included. Given this training
database, one needs to model the following conditional distribution

Pr
{
Z1(u) ≤ z1 | z2(u), z2(uα + h1), . . . , z2

(
uα + hnt

)}
(2)

or

Pr
{
I (u, sk) = 1 | z2(u), z2(uα + h1), . . . , z2

(
uα + hnt

)}
, k = 1, . . . , K (3)

These more fully conditioned probabilities can be used in exactly the same fashion
as the probabilities (1). A neural network methodology is developed for modeling
the conditional distributions (2) and (3).

NEURAL NETWORKS

Discrete Case, Least-Square Method

Consider first the case of modeling the discrete distribution (3).
In general, neural networks are most commonly used for building nonlinear

regression models between a set of random variablesX = {X1, . . . , XN} (input
variables) and a set of (target) variablesY = {Y1, . . . ,YM}. The vectorX is input
into the neural network to produce an outputY:

Y = g(X,θ)

g= (g1, . . . , gm) represents a multivariate nonlinear function which depends on
the architecture of the network, as defined by the various connections between
the network nodes. The simplest neural network is a feed-forward network that
connects the input to a middle layer and then to the output layer (see Fig. 1(A)).
The middle layer is called thehidden layer. The following “regression” function
g was adopted:

gm(x,θ) =
L∑

l=1

ol T

(
N∑

n=1

wl ,nxn

)
, m= 1, n = 1, . . . , N (4)

whereol areL output weights andwl ,n areL × N input weights linking the input to
the hidden layer, andL is the number of nodes of the hidden layer.T is a nonlinear
nondecreasing transfer function. We take forT the following expression

T(a) = 1

1+ exp(−a)

The parametersol andwl ,n are represented by a single vectorθ, the parameters of
the neural network.
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Figure 1. Neural nets. (A) Least-squares case, (B) likelihood case, two facies, and (C) likelihood
case, multiple facies.

The training of the neural networks consists of fitting the parameter vector
θ to the training data. Training data consists of observed pairs of the vectors
{xi , yi }, i = 1, . . . ,n. The parametersθ are determined by minimizing a least-
square criterion

E(θ) = 1

2n

n∑
i=1

‖g(xi ,θ)− yi ‖2
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The parameter values at the minimum ofE(θ) are denoted aŝθ. To determine the
number of hidden layer nodes and in order to avoid overfitting of the training data,
one splits the training set in two parts: one for training, and the other for testing
and validation purposes (Bishop, 1995).

For a single output neural network, it can be shown (see Bishop, 1995, p. 201)
that the neural network output can be interpreted as a conditional expectation of
the variableY, given the input vectorX

g(x,θ) ∼= E[Y | X = x]

This interpretation calls for the following conditions:

• A large data set is available, i.e.n is large.
• The neural network accurately models the training data set.
• The neural network has good generalization capacity, in that it will predict

accurately an outputy from any given input vectorx not in the training
data set.

In this paper, however, we are interested in modeling conditional proba-
bilities not conditional expectations. For the discrete case, with two facies cate-
gories s1, s2, the training data set consists of a set ofn data vectors of the
type: {

i (uα, s1); z2(uα), z2(uα + h1), . . . , z2
(
uα + hnt

)}
, α = 1, . . . ,n (5)

Next, consider the following vector of soft data

z2(u) = {z2(u), z2(u+ h1), . . . , z2
(
u+ hnt

)}
For the two facies case, there is a single binary indicator output (Fig. 1(B)). The
target output of the neural network is the indicator variableI (u, s1). Since the
output is interpreted as a conditional expectation and since

E{I (u, s1) | z2(u)} = Pr{I (u, s1) = 1 | z2(u)}

the output of the neural network, written asg(z2(u),θ) with input vectorz2(u),
can be interpreted as a conditional probability:

Pr{I (u, s1) = 1 | z2(u)} = g(z2(u),θ)

However, with least-squares estimation methods, there is no guarantee that the
probability Pr{I (u, s1) = 1 | z2(u)} is in the interval [0, 1]. Least-square methods
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are known to work well when the target output variableY valued in [−∞,∞] is a
Gaussian variable. In this particular case the variable is discrete and thus far from
being Gaussian; hence, a different minimization criterion should be considered to
avoid such order relation.

Discrete Case, Likelihood Method

Consider again the case of a discrete variable with only two categories. We
now use a likelihood principle for determining the parametersθ of the neural
network. Recall that in maximum likelihood estimation, as opposed to least-
squares estimation, one maximizes the probability of observing a data set,given
a probability model for that data set. In our case, the data set consists of the in-
formation jointly scanned from the wells and seismic, namely the training data
set (5). We would like the output of the neural networkg(z2(u),θ) to repre-
sent the conditional probability Pr{I (u, s2) = 1 | z2(u)}. The probability of ob-
serving thesingledata vector{i (uα, s1); z2(uα)} follows a Bernoulli distribution
with

p(i (uα, s1) | z2(uα)) = g(z2(uα),θ)i (uα,s1)[1− g(z2(uα),θ)]1−i (uα,s1)

The likehoodL(θ) of observingall the data (5), assuming that the data are drawn
independentlyfrom the Bernoulli distribution, is then given by

L(θ) =
n∏
α=1

g(z2(uα),θ)i (uα,s1)[1− g(z2(uα),θ)]1−i (uα,s1) (6)

The assumption of independence is clearly not a correct one and its impact on the
final estimated parameters will have to be evaluated. This likelihood function needs
to be maximized in the parametersθ or, equivalently, the negative log-likelihood
is minimized

E = −log L(θ) = −
n∑
α=1

i (uα, s1) logg(z2(uα),θ)

+ (1− i (uα, s1)) log(1− g(z2(uα),θ)) (7)

In the least-squares method, the neural network output could be interpreted
as a conditional probability due to the use of a least-square criterion to find the
optimal parameters setθ. Since the training criterion is now a maximum likelihood
criterion, the neural network output cannot be directly interpreted as a conditional
probability. This problem is resolved by changing the linear output node of the
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neural network in Figure 1(A) to be a logistic function: we therefore propose the
following neural network architecture, see Figure 1(B):

g(z2(u),θ) = T

(
L∑

l=1

ol T

(
nt∑
β=1

wl ,βz2(u+ hβ)

))
(8)

This mode of training network is also termedlogistic regressionin the statisti-
cal literature (Christensen, 1997). Note that the functionF is bounded by the
interval [0, 1]; hence, the conditional probability modelled this way is always
permissible.

Discrete Case, Multiple Categories

Consider now the case of a discrete variable with multiple categories, i.e.
more than two. We extend the neural network (8) to have multiple outputs, each
output representing a single categorysk.

gk(z2(u),θ) = T

(
L∑

l=1

ok,l T

(
nt∑
β=1

wl ,βz2(u+ hβ)

))
, k = 1, . . . , K

and extend the likelihood function (6) to multiple categories as follows:

L(θ) =
K∏

k=1

n∏
α=1

gk(z2(u),θ)i (uα,sk)

The challenge remains now in estimating the parameters of the neural network
by maximizing this likelihood function such that all probabilities are permissible,
that is:

0≤ gk(z2(u),θ) ≤ 1 ∀k and
K∑

k=1

gk(z2(u),θ) = 1

The first conditions will hold because the functionF is properly bounded; however,
the last condition is not guaranteed. Therefore, we generalize the logistic function
F to make the outputs sum to unity by performing the following transformation
on the neural network output activations

gk(z2(u),θ) = exp(ak(z2(u),θ))∑K
k′=1 exp(ak′ (z2(u),θ))
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whereak(·,θ) are the so-called output activations given by the expression

ak(z2(u),θ) =
L∑

l=1

ok,l T

(
nt∑
β=1

wl ,βz2(u+ hβ)

)
The latter generalization of the logistic function is also known as the softmax
condition in the neural network literature (Bridle, 1990). The softmax condition
ensures that the multiple neural network outputs are conditional probabilities.

Continuous Case

When modeling continuous variables one can rely on a discretization of the
variable into multiple classes, and then using the above proposed methods for
modeling the discrete conditional probabilities. Alternatively, one can rely on a
mixture of densities network as proposed in Caers and Journel (1998).

PRINCIPAL COMPONENT ANALYSIS

The proposed method models the conditional distribution of a single facies
value atu given a colocated window ofnt seismic data. The numbernt depends
on the size of the particular window retained, and may be large on 3D grids.

To reduce the dimensionalitynt a principal component analysis is often
proposed to preprocess seismic data (Fournier and Derain, 1995; Pairazian and
Scheevel, 1999). Principal component analysis is a dimension-reduction method
that builds upon the redundancy present in most multicomponent data sets. The
scanning of the seismic data produce multiple realizations (one per window) of a
random vectorZ2(u). The variablesZ2(u+ hβ) that make up this random vector
are not independent of each other, hence inducing considerable redundancy in the
data set{Z2(uα), α = 1, . . . ,n}. To remove that redundancy and henceforth reduce
the dimension ofZ2(u) a principal component analysis of the random vectorZ2(u)
is performed. Because of the reduction of dimension, the resulting vector will have
less variance than the original random vectorZ2(u). The percentage of variance
reproduction, depending on the number of retained componentsd, is usually taken
to be above 85%.

It is often useful to substract from each sampled vectorz2(uα) its local mean
m(u) as defined from a local window; this allows focusing on the local variability
of the seismicz2-data.

EXAMPLES

Several examples are now given to illustrate the methodology. The examples
are synthetic and intend to provide an understanding of why the window approach
should be preferred over the traditional single value colocated approach.
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Figure 2. Shale reservoir. (A) Actual reservoir and (B) two well locations.

Shale Reservoir

Using the GSLIB programellipsim (Deutsch and Journel, 1998), a vertical
section of a shale deposit is simulated (Fig. 2(A)). The overall shale proportion is
36%. Two vertical wells are drilled through that section at the locations shown in
Figure 2(B). On the basis of this exhaustive data set a seismic amplitude data set in
constructed as follows: seismic waves reflect in the subsurface because of changes
in the rock impedance values Imp(u). For this model, we consider a constant
shale impedance of 7000 (gr/cm3) (m/s) and a constant background impedance
of 5000 (gr/cm3) (m/s). From the rock-impedance values one can calculate the
reflection coefficients

C(u) = Imp(x, d + 1)− Imp(x, d)

Imp(x, d + 1)+ Imp(x, d)

where x is the horizontal coordinate,d is the depth coordinate, andu =
(x, d).

The recorded seismic amplitudeA(x, d) is modeled as a convolution of a
vertical series of reflection coefficients and a seismic waveletw(d, ψ)

A(x, d) =
J∑

j=−J

c(x, d + j )w( j, ψ)

A Ricker wavelet is considered (Yilmaz, 1987):

w(d, ψ) = (1− 2π2d2ψ2) exp(−π2d2ψ2)
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Figure 3. Wavelets with different peak frequencies (top)ψ = 25, (bottom)ψ = 50.

The coefficientψ defines the peak frequency content of the wavelet: the higher
theψ , the higher the frequency content, and the more narrow the wavelet. We
use the two wavelets shown in Figure 3 (top, bottom) withψ = 25 andψ = 50 to
construct two seismic data sets. Figure 4 shows the two resulting seismic amplitude
data sets.

A general problem with geophysical data processing is the deconvolution
operation, i.e. starting from a seismic amplitude imageA(x, d) the task is to find
the seismic impedance Imp(u). To perform such an operation, one needs to deter-
mine the waveletw, which is not an easy task if only a few wells are available, the
seismic data is noisy, or if the wavelet is location-dependent. In the following, no
knowledge of the wavelet is assumed.

Consider first the case of constructing a seismic amplitude data set with
ψ = 25. The histograms of seismic amplitude per facies is shown in Figure 5(A)
and (B). Given only the per facies seismic amplitude information, it would be
impossible to distinguish shale from sand since the two histograms overlap. To
prove this conjecture, a neural network with 10 nodes in the hidden layer is used to
model the conditional probability Pr{I (u, s1) = 1 | A(u)} of sand given the single
colocated amplitude datum.
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Figure 4. Amplitude (A) for shale and (B) for sand at the two wells for frequency
ψ = 50.

To evaluate the resulting conditional probability, a so-called Bayesian
confusion matrix is constructed as follows: given a seismic datum at an
unsampled locationu, the neural-net–determined probability Pr{I (u, sk) =
1 | z2(u)} is used to perform classification, i.e. locationu is classified into
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Figure 5. Seismic obtained from convolution case study.
(A) Actual reservoir, (B) amplitude for freq.ψ = 25, and
(C) amplitude for freq.ψ = 50.
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Table 1. Bayesian Confusion Matrix (Amplitude
Data Set, Freq.ψ = 25; Single Colocated Datum)

Shale Sand

Shale 17 83
Sand 28 72

classsk if

Pr{I (u, sk) = 1 | z2(u)} > Pr{I (u, sj ) = 1 | z2(u)} ∀ j 6= k (9)

The Bayesian confusion matrix collects the results of this classification: the entry in
thekth row andl th column reports the percentage of classification into categorysk

when the facies at locationu in the true reservoir is actually of categorysl . A classi-
fication with good performance should have large entries on the diagonal and small
off-diagonal entries. The resulting Bayesian confusion matrix, given in Table 1,
shows a reasonably correct classification of sand at 72%, but the shale bodies are
severely misclassified (only 17% correct classification). This misclassification is
clearly depicted in Figure 6(D).

Figure 6. Amplitude data set for freq.ψ = 25. (A) Actual reservoir, (B) probability of shale
using the single colocated seismic datum, (C) Bayesian classification results, and (D) correctly
versus incorrectly classified pixels.
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Figure 7. Amplitude data set for freq.ψ = 25. (A) Actual reservoir, (B) probability of shale
using a window of seismic data, (C) Bayesian classification results, and (D) correctly versus
incorrectly classified pixels.

Next, we model the conditional probability at each location using the colo-
cated window approach. A neural network with 10 nodes in one hidden layer is
used to model the conditional probability Pr{I (u, s1) = 1 | z2(u)}. A window with
geometry shown in Figure 7(E) is used. Figure 7(B) shows the resulting probability
map. Under Bayes rule (9), the Bayesian confusion matrix is shown in Table 2.
The result of the classification is given in Figure 7(C). Compared to the actual
reservoir, the large shale bodies are mostly correctly classified, and the proportion
of correctly classified sand is also high. This is a strong result since the histograms
of seismic amplitude per facies gave almost no discrimination between facies.

A similar study was conducted with amplitude defined at the peak frequency
ψ = 50. A larger value forψ entails a wavelet with higher-frequency content,
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Table 2. Bayesian Confusion Matrix (Amplitude
Data Set, Freq.ψ = 25: Window Approach)

Shale Sand

Shale 72 28
Sand 19 81

hence, the resulting seismic amplitude data set has more resolution, as shown in
Figure 5(C). First the traditional colocated approach is used to model the condi-
tional probability Pr{I (u, s1) = 1 | A(u)}. The resulting Bayesian confusion ma-
trix, given in Table 3, shows a correct classification rate of sand at 87%, but the
shale bodies remain largely misclassified, with only 28% correct classification.
This misclassification is clearly shown in Figure 8(D).

Next the window approach with the window geometry shown in Figure 9(E)
is used. The window size is taken smaller than for the frequencyψ = 25, because
the wavelet dispersion in Figure 3 is smaller. A neural network with 10 nodes
in one hidden layer is used to model the conditional probability Pr{I (u, s1) =
1 | z2(u)}. Figure 9(B) shows the probabilities map. The result of the classification
is given in Figure 9(C). Figure 9(D) gives the evaluation of that classification.
The corresponding Bayesian confusion matrix is shown in Table 4. Compared
to Table 2, the sand classification is near perfect with only 4% misclassified.
Figure 9(C) shows that even small shale bodies are classified correctly: a result
due to the higher-frequency content of the wavelet, allowing to pick up small-scale
variabilities in amplitude.

Deep Fluvial Reservoir

Consider next a deep fluvial reservoir such as present in the North Sea. A
prototype for such reservoir is the Stanford V reservoir (Mao and Journel, 1999;
available at http://ekofisk.stanford.edu/SCRFweb.html). The Stanford V synthetic
reservoir depicts a channel formation with known lithofacies, various petrophysical
properties as well as forward simulated seismic data, in this case a low resolution
seismic impedance. To obtain the latter a frequency-domain Born filter was applied
to the true rock impedance values (Mavko, Mukerji, and Dvorkin, 1998).

Table 3. Bayesian Confusion Matrix (Amplitude
Data Set, Freq.ψ = 50, Single Colocated Datum)

Shale Sand

Shale 28 72
Sand 13 87
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Figure 8. Amplitude data set for freq.ψ = 50. (A) Actual reservoir, (B) probability of shale
using the single colocated seismic datum, (C) Bayesian classification results, and (D) correctly
versus incorrectly classified pixels.

The five top layers are retained (out of 30) to perform this exercise. The grid
size is 100× 120× 5. The total sand proportion in this portion of the reservoir
equals 56%. Figure 10(A) show a single horizontal slice of the reservoir together
with the true rock impedance in Figure 10(B) and the measured seismic impedance
in Figure 10(C). The true impedance reflects clearly the channels, while the seismic
impedance provides a much blurred image of the channel structure. Thirty vertical
wells are extracted from the true reservoir as shown in Figure 10(D). The well
sample sand proportion is 60%, slightly greater than the reference population
proportion of 56%.

Figure 11(A) and (B) show the histograms of seismic impedance within chan-
nel and within mud. The mean seismic impedance in channel is 8059 (gr/cm3)
(m/s) with a standard deviation of 495 (gr/cm3) (m/s), which is close to the

Table 4. Bayesian Confusion Matrix (Amplitude
Data Set, Freq.ψ = 50, Window Approach)

Shale Sand

Shale 69 31
Sand 4 96
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Figure 9. Amplitude data set for freq.ψ = 50. (A) Actual reservoir, (B) probability of shale
given a window of seismic data, (C) Bayesian classification results, and (D) correctly versus
incorrectly classified pixels.

mean mud seismic impedance of 8489 (gr/cm3) (m/s) with a standard deviation of
592 (gr/cm3) (m/s). Hence the single colocated seismic impedance is not a good
discriminator of channel versus mud.

To quantify the discriminatory power of the colocated seismic impedance,
we develop an approach different from that used for the previous case studies.
This is merely to illustrate the existence of alternatives to using neural networks
for modeling conditional distributions. The conditional distribution Pr{I (u, s1) =
1 | z2(u)} is modelled as follows: the histograms of impedance per facies are fairly
symmetric and short-tailed, as shown in Figure 11(A) and (B), and hence they could
be modeled using a normal distribution. Denote byN (m, σ ) a normal distribution
with meanm and standard deviationσ . The distribution (likelihood) of seismic
impedance related to sand faciess1 is modelled as

f1(z2 | i (u; s1) = 1)= N (8059, 495) (10)
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Figure 10. Fluvial channel reservoir case study. (A) Actual reservoir, (B) rock impedance, (C) seismic
impedance, and (D) well locations.

and for the mud facies

f2(z2 | i (u; s1) = 0)= N (8489, 592) (11)

The conditional distribution of sandgivenseismic impedance can then be calcu-
lated using Bayes’ relation as follows

Pr{I (u, s1) = 1 | z2(u)} = f1(z2(u) | i (u; s1) = 1) Pr{I (u, s1) = 1}
f (z2)

and for the mud facies

Pr{I (u, s1) = 0 | z2(u)} = f2(z2 | i (u; s1) = 0) Pr{I (u, s1) = 0}
f (z2)

To avoid having to model the mud marginal distributionf (z2), we consider the
ratio of these two probabilities

r (u) = Pr{I (u, s1) = 1 | z2(u)}
Pr{I (u, s1) = 0 | z2(u)}
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Table 5. Bayesian Confusion Matrix (Fluvial
Reservoir, Single Colocated Datum)

Shale Sand

Shale 60 40
Sand 81 19

The ratior (u) provides a measure of the power of discriminating sand versus
nonsand based on the colocated seismic impedance value. Ifr (u) is close to one,
then that discriminatory power is low. Using the well data the analytical expression
for the ratior (u) is calculated based on the normal distribution assumptions (10),
and then applied to each seismic datum to obtain a 3D volume ofr (u) values.
Figure 13(A) shows a horizontal slice of that volume. Usingr (u), one can perform
a classification of seismic impedance as follows:

if r (u) > 1, theni (u; s1) = 1, elsei (u; s1) = 0

This rule is exactly the same as the Bayes’ rule (9). The classification results
can be compared with the actual true facies occurrence at locationu. Table 5
shows the resulting Bayes’ confusion matrix which, as expected, indicates poor
discrimination scores.

Next, a 3D window is considered for scanning the seismic data at the well lo-
cations. The window used has 32 pixels and its geometry is displayed in Figure 12.
A principal-components analysis is performed on the input seismic data to retain
the first eight principal components which explain 90% of the total variability. Be-
cause the neural network output models the conditional probability Pr{I (u, s1) =
1 | z2(u)}, the ratior (u) can be calculated from that output directly. Figure 13(B)
shows a horizontal slice of the ratior (u) using the neural network approach. When
compared to Figure 13(A), Figure 13(B) shows much more white and black areas,

Figure 12. 3D template used for the fluvial reservoir case study.
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Table 6. Bayesian Confusion Matrix
(Fluvial Reservoir, Window Approach)

Shale Sand

Shale 58 42
Sand 20 80

indicating that these areas are clearly distinguished as mud and sand respectively.
Figure 13(A) has more gray areas, indicating a lower power of discrimination
when using the single colocated seismic datum. The histograms ofr (u) corre-
sponding to the two approaches confirm the higher discrimination ratio of the
window approach.

Table 6 gives the Bayes confusion matrix based on the ratior (u) obtained
with the window approach. The shale classification score of 58% is roughly the
same as for the colocated case of 60%; however, the sand classification score has
increased dramatically to 80%.

CONCLUSIONS

The neural net application to seismic data is not new, but has generally been
limited to the use of the neural net as a nonlinear regression model. In this paper,
we propose a simple, fast, and flexible modeling of the conditional distribution of
facies, given multiple seismic data. Such modeling is comparable to the modeling
of mixture distributions (e.g. Titterington, 1985). Indeed, the nodes in the hidden
layer of the neural network can be viewed as single univariate distributions, as
demonstrated in Caers and Journel (1998). Equation (4) is similar to the expression
of a finite mixture distribution.

In an application of this general methodology to seismic data, we show that
a whole colocated window of seismic data should be used for modeling the con-
ditional distribution of facies. This allows taking into account local patterns in the
seismic data, which may be associated to geological events leading to presence or
absence of a specific facies at the center of the window.

The neural network approach automatically models the conditional distri-
bution of several facies given such window of seismic data. A prior principal-
components analysis of the seismic data values within the window allows a re-
duction of the window dimensions, and thus allows using larger windows while
limiting the training effort for neural network.

Several synthetic case studies illustrated the approach proposed. When the
local variability of the seismic continuity changes from one facies to another,
the window approach is shown to be considerably more accurate. The approach
seems to be particulatly useful for modeling seismic amplitude information without
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the need for a deconvolution operation. Two practical case studies of this approach
and how it can be integrated into geostatistical methodologies are presented in
Caers and Haas (2001) and Caers, Avseth, and Mukerji (2001).
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