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Abstract

Use of artificial neural networks (ANNs) is becoming increasingly common in the analysis of groundwater hydrology and

water resources problems. In this research, an ANN was developed and used to estimate aquifer parameter values, namely

transmissivity and storage coefficient, from pumping test data for a large diameter well. The ANN was trained to map time–

drawdown and well diameter data (input vector) to its corresponding transmissivity and storage coefficient values (output

vector). Based upon a pre-specified range of aquifer parameters, the input vectors were generated from the analytical solution of

Papadopulos and Copper for large diameter well in a homogeneous, isotropic, non-leaky confined aquifer. The ANN was

trained with a fixed number of drawdown data points corresponding to a varying pre-specified range of aquifer parameters and

time-series values. Once the network is trained to an acceptable level of accuracy, it produces an output of aquifer parameter

values for any input vector. The results obtained with the ANN are in good agreement with published values. A significant

advantage of the ANN approach is that it overcomes the problem of determining the storage coefficient, which when determined

by traditional type curve matching method is of questionable reliability. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Almost all well hydraulics models are based on the

assumption that the pumped well is a line source. This

assumption proposed by Theis (1935) may not be

valid if the well bore storage effects are significant.

Effects of well bore storage may become important

when the aquifer transmissivity and storage coeffi-

cient are small or the pumped well diameter is large.

Papadopulos and Cooper (1967) developed an ana-

lytical solution and type curves in and around a large

diameter well in a homogeneous and isotropic non-

leaky confined aquifer by taking into consideration

the water derived from storage within the well. Later,

Moench (1985) presented mathematical models that

combine the leaky aquifer theory of Hantush (1960)

with the theory of flow to a large diameter well. In

their analysis, Sakthivadivel and Rushton (1989)

estimated aquifer parameters taking into account the

dynamic seepage face. They analyzed both pumping

and recovery test data. Herbert and Barker (1990)

reanalyzed the same data using the Papadopulos and

Cooper (1967) model. Results of these analyses are

used for comparison with those obtained by the

artificial neural network (ANN) approach.

The ANN technology is an alternate computational
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approach based on theories of the massive inter-

connection and parallel processing architecture of

biological systems. The main theme of ANN research

focuses on modeling of the brain as a parallel

computational device for various computational

tasks that were performed poorly by traditional serial

computers. ANNs have a number of interconnected

processing elements (nodes) that usually operate in

parallel and are configured in regular architectures.

The collective behavior of ANN, like a human brain,

demonstrates the ability to learn, recall, and general-

ize from training patterns or data.

The application of ANNs is becoming increasingly

common in the analysis of groundwater hydrology

and water resources problems (Hsu et al., 1995; Clair

and Ehrman, 1996; Poff et al., 1996). The modern

view of neural networks began in the 1940s with the

work of McCulloch and Pitts (1943), who showed that

networks of artificial neurons could compute any

arithmetic or logical function. McCulloch and Pitts

were followed by Hebb (1949), who proposed that

classical conditioning is present because of the

properties of individual neurons. He proposed a

mechanism for learning in biological neurons. The

first practical application of ANN came in the late

1950s, with the invention of the perceptron network

and associated learning rule by Rosenblatt (1958,

1962) and Widrow and Hoff (1960) on the ADALINE.

Minsky and Papert (1969) are often credited with the

addition of one or two-layered perceptron networks.

The second key development of the 1980s was the

backpropagation algorithm for training multi-layer

perceptron networks, which was discovered indepen-

dently by several different researchers. The most

influential publication of the backpropagation algor-

ithm was by Rumelhart et al. (1986). This algorithm

was the answer to the criticisms Minsky and Papert

had made in the 1960s. Addition of a middle (hidden)

layer to a multi-layer perceptron network, together

with a clear explanation of the backpropagation

learning algorithm, overcame many of the limitations

of the one or two-layered perceptron ANNs. Since

1986, the variety of ANNs has rapidly expanded.

Recently, Aziz and Wong (1992) have used the ANN

approach for aquifer parameter determination. They

utilized Theis (1935) and Hantuch and Jacob (1955)

Fig. 1. Ideal large diameter well in a confined aquifer (after Papadopulos and Cooper (1967)).
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solutions for confined and leaky-confined aquifer

conditions to derive input–output patterns based on a

pre-determined range of values.

In this research, an ANN was developed to

simulate the relationship between an input vector

consisting of time–drawdown and well diameter data

to an output vector consisting of its corresponding

aquifer transmissivity and storativity values. The

output of the ANN was then verified with the existing

analytical solution, and compared with published

values. Three examples are presented and discussed

for illustration.

2. Drawdown in large diameter well: Papadopulos

and Cooper solution

Papadopulos and Cooper (1967) developed an

analytical solution and type curves in and around a

large diameter well in a homogeneous and isotropic

non-leaky confined aquifer. They took into consider-

ation the water derived from storage within the well,

and assumed a horizontal aquifer with a constant

thickness, and a constant discharge for a fully

penetrating well.

The governing second order partial differential

equation is:

›2s

›r2
þ

1

r

›s

›r
¼

S

T

›s

›t
r $ rw ð1Þ

where s is the drawdown in the aquifer at a distance r

at time t, S the storage coefficient of the aquifer, T the

transmissivity, and rw is the effective radius of well

screen. The geometry of large diameter well in a non-

leaky confined aquifer is shown schematically in Fig.

1.

The initial conditions are:

sðr; 0Þ ¼ 0 r $ rw ð2Þ

swð0Þ ¼ 0 ð3Þ

and the boundary conditions are:

swðrw; tÞ ¼ swðtÞ ð4Þ

sð1; tÞ ¼ 0 ð5Þ

2prwT
›sðrw; tÞ

›t
2 pr2

c

›swðtÞ

›t
¼ 2Q t $ 0 ð6Þ

where swðtÞ is the drawdown in the well at time t and

rc is the radius of the well casing in the interval over

which the water level declines.

With the initial and boundary conditions stated

above, Eq. (1) was solved using the Laplace transform

method, and the following solution was obtained

(Papadopulos and Cooper, 1967; Papadopulos, 1967;

Reed, 1980):

sðr; tÞ ¼
Q

4pT
Fðu;a; rÞ ð7Þ

where

Fðu;a; rÞ ¼
8a

p

ð1

0

CðbÞ

DðbÞb2
›b ð8Þ

and

CðbÞ ¼ 1 2 exp 2b2 r2

4u

 !" #
½J0ðbrÞAðbÞ

2 Y0ðbrÞBðbÞ� ð9Þ

where

AðbÞ ¼ bY0ðbÞ2 2aY1ðbÞ

BðbÞ ¼ bJ0ðbÞ2 2aJ1ðbÞ
2

DðbÞ ¼ ½AðbÞ�2 þ ½BðbÞ�2

ð10Þ

u ¼
r2S

4Tt
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r2
wS

r2
c

r ¼
r

rw

ð11Þ

J0 (and Y0), and Y1 represent zero-order and first-order

Bessel functions of the first and second kind,

respectively.

The drawdown inside the pumped well is obtained

at r ¼ rw and expressed as:

swðtÞ ¼
Q

4pT
Fðuw;aÞ ð12Þ

where

Fðuw;aÞ ¼ Fðu;a; 1Þ ð13Þ

and

uw ¼
r2

wS

4Tt
: ð14Þ

Values of Fðu;a; rÞ are computed by numerical

integration of Eq. (8). Papadopulos and Cooper

(1967) generated a family of type curves of

sw=ðQ=4pTÞ versus 1/uw with one curve for each a.
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Aquifer parameters are determined by fitting observed

drawdown data to one of the families of type curves and

finding a match point. The method is analogous to the

Theis type curve method, except it involves more than a

single type curve. Details of the procedure can be found

in Theis (1935) and Papadopulos and Cooper (1967).

3. ANN approach

ANNs can be visualized as a set of interconnected

nodes arranged in layers. The input layer contains one

node for each of the input variables. In multi-layer

network, the output of one layer constitutes the input

to the next layer. Note that ANN may have more than

one hidden layer. For example, in the ANN archi-

tecture shown in Fig. 2, the nodes of one hidden layer

interconnect with each node in the input and output

layers. Outputs of neurons are used as input to other

neurons in the network. A numeric weight is

associated with each of the inter-node connections.

The nodes themselves process the values entering the

node to produce an output value.

Training of the ANN consists of calculating the

output vector from the input vector, comparing the

ANN calculated outputs with the actual outputs, and

then adjusting the weights and the bias in the transfer

function for each neuron so as to minimize the

difference between ANN-output and actual values.

Each input–output pattern in the training set is

presented to the ANN many times until the difference

between ANN-output and actual values becomes

insignificant. The mean square sum of differences

between target and ANN-output value serves as a

measure of the goodness of fit.

The main advantage of an ANN is that unlike

traditional analytical methods, it does not depend

upon a graphical solution that requires curve match-

ing, a common source of error when estimating

aquifer parameter values. In addition, because an

ANN does not depend solely upon the physical

parameters used in the analytical approach, it can be

designed with many different architectures to achieve

optimal performance. That is the inputs and outputs of

ANN do not necessarily have to be identical to the

input and output parameters used in the adopted

analytical solution. Thus the ANN can be designed to

use all or partial input–output parameters to achieve

an optimal performance. However, a disadvantage is

that architecture parameter values are not known a

priori to training, potentially requiring a lot of trial

and error to achieve satisfactory results. If an ANN is

poorly designed and/or trained, it produces output

values with errors that are unacceptably high, which

in some cases may even be physically infeasible.

The performance of ANN is sensitive to its

physical architecture, such as the number of input

nodes, hidden layer nodes, and output nodes. The

appropriate architecture of ANN is highly problem-

dependent. The type of ANN used in this study is a

multi-layer feed-forward perceptron trained with the

use of backpropagation learning algorithm (Rumel-

hart et al., 1986). The backpropagation algorithm

makes use of robust optimization techniques to solve

an unconstrained non-linear optimization. The mech-

anism of the learning algorithm can be summarized as

follows:

(1) Connection weights are first randomly
Fig. 2. Designed ANN used in the aquifer parameter determination.
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initialized within some small positive and negative

random values.

(2) Input–output patterns are selected randomly

from the training sets and presented to the ANN.

(3) Actual network output is calculated for the

current input.

(4) Mean square error (MSE) as a measure of

performance is calculated as:

MSE ¼
1

N

X
xi[U

Xn

j¼1

½ajðxiÞ2 bjðxiÞ� ð15Þ

where ajðxiÞ is the actual value of the jth output neuron

for input vector xi; bjðxiÞ is the ANN output of the jth

neuron in the output layer, U is the set of input

vectors, n is the number of neurons in the output layer,

and N is the total number of training patterns.

(5) Connection weights are adjusted to minimize

the MSE according to the rule

w ˆ w 2 m7EðwÞ

where w is the vector of network weights, E(w) is

MSE with respect to w, and m is the learning rate. This

rule states that the present weight is altered by an

amount that is proportional to the negative derivative

of the error with respect to that weight. The learning

rate determines the rate at which the weight should be

modified after each iteration.

The weight update equation may be written as

wm ¼ wm21 2 m
›Em

›wm21
þ jðwm21 2 wm22Þ ð16Þ

where m is the updating index and j is the momentum

factor.

The momentum factor helps the network to learn

fast, since part of previous weight change is applied to

the current weight change.

(6) Steps (2)–(5) are repeated for each pair of

input–output vector in the training set, until no

significant change in the MSE is detected for the

system.

After training is completed, the final connection

weights are kept fixed, and new input patterns are

presented to the network to produce the corresponding

output consistent with the internal representation of

the input/output mapping. For a more detailed

discussion of the learning algorithm, the interested

reader is referred to Werbos (1974), Parker (1985), Le

Cun (1985), and Rumelhart et al. (1986).

4. Application and discussion

In this research, a three-layered ANN was designed

to process an input vector consisting of both time–

drawdown data swðtÞ and the effective well radius rw

in order to generate an output vector consisting of

aquifer parameter values for both transmissivity and

storativity. The components of the designed ANN are

shown in Fig. 2. Training and testing vector sets are

generated using Eq. (13). Each training vector set

contains number of neurons equal to the number of

time–drawdown data points plus the well diameter in

its input layer, and two neurons in the output layer.

The training sets are used to develop the appro-

priate ANN architecture and weight connections for

the specific application. Following ANN develop-

ment, its ability to accurately map the input to the

output is verified using the testing sets. The testing

sets consist of input and output vectors not used

during training. This ensures that the ANN has

effectively learned to generalize the problem, and

has not simply ‘memorized’ the training sets, a

problem associated with ‘over-training’.

To generate training sets via Eq. (13), a range of

aquifer parameter values must be specified and then

combinations of these values are used during the

generation process. The question that might arise here

is what range of aquifer parameter values should be

selected for training? In fact, the network can be

trained with any given range of input values.

However, the performance of the network during the

testing phase is largely determined by its training

phase, because after training, the connection weights

are kept fixed during the testing phase. This means

that selection of an appropriate range of input values

for generating training sets is important for develop-

ing an ANN capable of accurately estimating property

values over the expected range.

In accordance with the above, it is suggested that

the network be trained in two steps, herein referred to

as the macro-scale and micro-scale training steps. The

macro-scale training is the training of the network

when a very wide or very narrow range of T and S

values are selected randomly. The reason for this
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selection stems from a lack of information regarding

the actual values, which is usually the case for most

newly investigated aquifers. Unfortunately both

ranges are highly questionable and may affect the

learning and generalization process of the network. It

is assumed that the best performance of ANN occurs

when the values of the testing pattern fall within a

narrow range of the training pattern. This implies that

the selection of wide range of values far from the real

ones may cause inefficient generalization of the

network. On the other hand, selection of narrow

range of input values may have two possible out-

comes: (1) if the real test values fall within the

selected range, perfect training is expected, and (2) if

it falls outside the selected range, inefficient learning

and generalization might occur.

The micro-scale training of the network occurs

when the range of values of T and S are selected

appropriately. Appropriate selection of these values

occurs when some information about T and S values is

available. This information could be in the form of

rough quantitative or qualitative estimates of T and S

values. In any case, the range of training values can be

managed and refined to achieve optimal ANN

performance. This suggests that prior knowledge of

aquifer parameters should be used as valuable pieces

of information in the ANN approach.

In this work, both macro- and micro-training scales

are used. For both training scales, drawdown data are

normalized {swðtÞ=Q} with a well discharge of

1 m3/day. In the macro-scale training step, a total of

4557 training patterns of normalized drawdown data

were generated using 26 input drawdown data points

corresponding to 26 time-series data. Wide ranges of

aquifer parameter values were selected as: (1) T

values ranging from 50 to 650 m2/day with a step size

of 30, (2) S values ranging from 0.00005 to 0.01505

with a step size of 0.0005, and (3) 2rw values ranging

from 0.1 to 3.1 m with a step size of 0.5 m.

Aquifer response to pumping depends largely on

its properties. For example, certain combinations of T

and S values produce a complete and fast aquifer

response, while other values produce slow aquifer

response. In this study, the 26 time-series data points

are selected to generate the corresponding drawdowns

from a range of time values spanning from as early as

0.1 min. to as late as 18 h. The time-series data values

vary within the specified time span depending on the

combination of T and S values. The question here is

how to test field experimental data that have a number

of drawdown data points different from the number of

input data points of the designed and trained ANN. In

fact two cases could occur here. The first case occurs

when the number of drawdown data inputs is less than

that required by the trained ANN. Actually examples

2 and 3 below are typical examples of this case. Both

examples have a number of drawdown data less than

those of the trained ANN (26 data points).

To overcome this problem, an interpolation

procedure is proposed and implemented in this

paper. The procedure is based on interpolating a

number of drawdown data points (complementary

data set) that, when combined with the existing real

data, constitute the equivalent number of drawdown

data points used to train the ANN. For example, if the

number of the existing experimental data is 20, then

six data points are needed for interpolation. To

minimize uncertainty and alteration of existing data,

interpolated data points are evenly distributed over all

time spans and each point is interpolated between two

adjacent and close existing real data points. The

second case occurs when the number of available

drawdown data points is more than that of the trained

ANN (not implemented here). However, it is

suggested in this case that the input vector be selected

from the available data so that the number of

drawdown data points is equivalent to the number

used to train the ANN. In addition, the selected data

set must span all times (early to late) of the available

data. Note that in both cases the time-series data are

not required in training the designed ANN but their

corresponding drawdowns are.

In the micro-scale training step, the wide range of

aquifer parameter values are narrowed based upon

rough estimates of the real values. The rough

estimates of T and S values are obtained by fitting

the time–drawdown curve under question to a family

of time–drawdown curves generated from the ana-

lytical solution (not presented). The fitted type curve

corresponds to a certain a value. Estimates of T and S

are then obtained from the analytical solution. Adding

upper and lower margins to obtained T and S values

constitute the final range of values used in generating

a micro-scale training set. In this study, an order of

magnitude was added and subtracted from the upper

and lower estimated S values, respectively, forming
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the upper and lower extreme values. For T, 50% of the

maximum and minimum values were added and

subtracted to derive the upper and lower extreme

values, respectively.

It is not known a priori how many hidden layers or

hidden nodes are needed for optimal ANN perform-

ance. The number of hidden layers or nodes and

network parameters, must be determined by the

modeler, often on a trial and error basis. An increase

in the hidden layer nodes increases the number of

weights in the network, which in turn increases the

ability of the ANN to learn the underlying complex

relationship between the input and output patterns.

This increase in learning is problem-dependent. In this

research, the best ANN performance (i.e. the mini-

mum MSE) was achieved using one hidden layer

containing {1.3£ (input neurons þ output neurons)}

hidden nodes. The influential parameters used during

macro-scale training are given in Table 1. These

parameters are commonly specified in most NN that

use backpropagation algorithm.

Scaling interval is one of the most critical

parameters particularly when sigmoid or hyperbolic

tangent activation functions are used. These functions

respond nearly in linear fashion to summations

between about 22 and þ2. If a large input value

(e.g. 1000) is used, then the derivative of the sigmoid

is close to zero. Since the derivative is a multiplier in

the weight update equation, learning stops for neurons

with such large summation values. Therefore, it is

important to select scaling intervals within the

specified range.

During the training process, the MSE is computed

each time a training pattern is presented to the ANN

(learning counts). The evolution of the MSE during

macro-scale training corresponding to a learning

count of 30,000, which is the total number of times

an input/output vector is presented to the ANN, is

depicted in Fig. 3. The rapid decrease in MSE at the

beginning of training is followed by a subtle decay

until no or nearly non-noticeable change occurs. This

behavior is typical of most ANN learning, and is

attributable to influential parameters used during

initialization and/or training, including random seed,

learning rate, random initialization of connection

weights, and random selection of patterns for training.

As a measure of correlation between ANN-output and

actual outputs, the Pearson moment correlation

coefficient (R ) is calculated (Table 1). Note that a

perfect agreement between actual and ANN-output

occurs when the computed R approaches unity.

The designed ANN was then tested and applied to

three different examples, the results of which are

presented below. Example 1 measures the perform-

ance of the designed network, and is used to check the

validity of the methodology. In examples 2 and 3, the

ANN approach was applied using reported data

obtained from literature. The same ANN architecture

was used in the three examples; however the number

Table 1

ANN influential parameters used during training

Parameter Value

Learning rate 0.8

Momentum 0.6

Scaling interval [20.8, þ0.8]

Convergence criteria 0.001

Learning count 30,000

Random seed 257

Activation function Sigmoid

Number of input nodes 27

Number of output nodes 2

Number of nodes in the hidden layer 35

MSE 0.0733

Correlation coefficient (R ) 0.933

Fig. 3. Development of MSE during macro-scale training of the

designed ANN for example 1 (†) and micro-scale training of

example 2 (O) and example 3 (V).
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of training sets varied, depending upon the range of

aquifer parameter values used in the micro-scale

training step as explained above.

4.1. Example 1: measure of performance

Testing data are selected and used in this example

to assess the generalization performance of the

designed network. If an ANN is capable of general-

izing well, its fitted function accurately estimates

output values outside of the generated training data.

Average generalization performance (AGP), a per-

centage measure of ANN capability for correctly

predicting outputs, was computed with the following

formula

AGP ¼
1

NTP

XNTP

i¼1

100 2 ABS
avi 2 ovi

avi

� �
ð17Þ

where avi and ovi are the actual and the ANN output

values of the ith tested pattern respectively and NTP is

the number of tested patterns. This measure was used

to quantify ANN performance with two data sets not

used during training.

The first test set contained data within the range of

values used in ANN training. A total of 75 new input

patterns selected randomly from the specified training

range were presented to the trained ANN. No micro-

scale training is performed here, since the input

patterns are selected over the specified range of

aquifer parameter values. Due to similarities in

output, Figs. 4 and 5 show a scatter plot for only 10

of the 75 estimated and actual T and S values. Note

that points falling on the 45-degree line indicate a

perfect match between actual and estimated values.

The AGP of the 75 tested patterns achieved for this

test set was 95.5%. This high performance indicates

that the ANN is well trained and is capable of

generalizing.

The second test set consisted of data selected from

outside the training range. Combinations of six pairs

of T and S values were selected from below and above

the lower and upper training limits. Their correspond-

ing normalized drawdown data were presented to the

trained ANN as a test set. Values estimated by the

ANN for this test set are depicted as empty circles in

Figs. 4 and 5 for T and S, respectively. As shown, T

values below the lower training limit are on average

overestimated by the ANN by 14%, and those above

the upper training limit are on average underestimated

by 10%. Regardless of their statistical significance,

the obtained percentages add some confidence in

using the designed ANN for predicting around the

upper and lower training limits. Note that because of

plotting small values over a large range (Fig. 4),

estimated T values below the lower training limit were

not on average estimated more accurately than T

values above the upper training limit. Similarly, S

values estimated by the ANN are on average under-

estimated when below the lower training limit and

Fig. 4. Actual and ANN output for selected values of transmissivity

within trained range (filled circles) and out of trained range (empty

circles).

Fig. 5. Actual and ANN output for selected values of storativity

within trained range (filled circles) and out of trained range (empty

circles).
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overestimated when above the upper training limit.

The maximum percentage discrepancy between actual

and estimated S values was 217% and the minimum

discrepancy was 38%. Unlike the type curve method,

the difference between the actual and ANN estimated

S values never exceeded an order of magnitude. In

general, the ANN estimated T values more accurately

than S values.

4.2. Example 2: analysis of Wikramaratna (1985)

data

In this example, the pumping test data of draw-

down in the well (sw) versus time (t ) for large

diameter well are taken from Wikramaratna (1985).

As reported earlier, the number of time–drawdown

data points of this example is 20, and a complemen-

tary data set consisting of six points was added to form

a valid input vector. For this particular example, the

complementary data are obtained from the analytical

solution. Table 2 lists time–drawdown data for this

example, and the complementary data are presented in

bold face.

One input vector consisting of normalized time–

drawdown data and well diameter is presented to the

trained network. Values of T, S, Q, rw, and rc are given

as 86.4 m2/day, 0.01, 432 m3/day, 0.2, and 0.2,

respectively. Assuming the Q, rw, and rc, are known,

values of T and S are treated as idealized results from

the pumping test. The MSE during micro-scale

training of this network is shown in Fig. 3. The

micro-scale training sets were obtained by narrowing

the wide range of aquifer parameter values as

explained above. Rough estimates of T and S

(68.4 m2/day and 0.0484, respectively) are obtained

by the manual type curve matching procedure. The T

and S values predicted by the trained network were

85.3 m2/day and 0.00961, respectively. Table 3 shows

results obtained by the ANN of this example as well as

values of T and S obtained by the curve matching

technique of Papadopulos and Cooper (1967). Results

obtained by the network show very good agreement

with the idealized T and S values, especially when

micro-scale training is used. This indicates that the

designed network is capable of learning and testing

the non-linear behavior represented by the time-

drawdowndrawdown data and accurately predicting

the T and S values.

One of the advantages of the ANN approach is that

it overcomes the questionable reliability in the

estimation of S values obtained by traditional type

curve matching methods. This is due to the fact that

matching the time-drawdown data to the appropriate

type curve match is highly subjective, and the shape of

the type curve differs only slightly when a differs by

an order of magnitude. The property of T is not as

sensitive as S. This is made clear by Table 3, where

three matching points corresponding to three different

type-curves are presented, as well as the correspond-

ing T and S values. As shown, the change in T values

is not significant as compared to the change in S

values, where the change is an order of magnitude. In

short, T changes only slightly when moving from

adjacent type curves, whereas S changes by a

complete order of magnitude.

Table 2

Reported time–drawdown data of examples 2 and 3

Example 2 (Wikramaratna,

1985)

Example 3 (Sakthivadivel and

Rushton, 1989)

Time (min) Drawdown (m) Time (min) Drawdown (m)

0.167 0.34 11.5 0.13

0.5 0.84 21.6 0.24

1 1.36 24.8 0.32

1.25 1.54 28.1 0.36

1.5 1.71 34.6 0.44

2 1.97 41.0 0.48

3 2.32 49.7 0.55

2.9 2.51 55.1 0.60

5 2.69 60.5 0.64

10 3.11 63.0 0.68

15 3.31 65.5 0.71

17.5 3.8 72.4 0.76

20 3.44 79.2 0.79

30 3.63 85.7 0.85

40 3.75 92.2 0.88

45.8 3.8 103.0 1.00

50 3.85 113.8 1.10

60 3.92 121.0 1.22

90 4.09 128.2 1.30

104.2 4.15 158.4 1.18

120 4.21 162.0 1.27

150 4.3 165.6 1.31

180 4.37 175.7 1.36

213.8 4.43 185.8 1.39

240 4.49 193.7 1.41

300 4.58 201.6 1.44

Bold numbers: complementary data set.
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4.3. Example 3: field data

The field data of this example are taken from the

experiment conducted by Sakthivadivel and Rushton

(1989). These data include time versus drawdown

during pumping at a constant discharge of 67 m3/day

from a 1.88 m diameter well. Only 15 time–draw-

down data were available (Table 2) as reported for this

example. An input vector of time–drawdown data

was prepared by adding a set of complementary data

before presenting it to the trained network. Initial

rough estimates of T and S that are used in generating

a micro-scale training set were 53.7 m2/day and

0.0013, respectively. The development of MSE

corresponding to the micro-scale training step is

shown in Fig. 3.

Aquifer parameters obtained by the ANN for both

macro and micro-scale training steps are shown in

Table 3. The table also shows the results obtained by

Sakthivadivel and Rushton, as well as those by

Herbert and Barker (1990) for the same aquifer. As

expected, results obtained by the network trained in

micro-scale are much better than those trained in

macro-scale. The micro-scale trained network results

closely agree with the published values of Herbert and

Barker. Note that T and S values obtained by

Sakthivadivel and Rushton are significantly different

from those obtained by Herbert and Barker because

the former analysis accounted for the dynamic

seepage face. For more details, see Herbert and

Barker (1990).

5. Summary and conclusion

In this paper, a new alternative approach to the

curve matching method has been presented and

demonstrated for aquifer parameter determination in

large diameter wells. This approach is based on the

application of ANN methodology, which has the

capability of matching input to output. The designed

network is trained to learn the underlying complex

relationship between input and output patterns of

normalized drawdown data generated from the

analytical solution of Papadopulos and Cooper

(1967) and its corresponding T and S values. The

ANN was trained with a fixed number of input

drawdown data points obtained from the analyticalT
ab
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solution for a pre-specified ranges of aquifer par-

ameters values and time-series data.

The trained network is capable of producing

aquifer parameter values for any given input pattern

of normalized drawdown data and well diameter size.

The values of aquifer parameters obtained using the

ANN approach are in a good agreement with those

obtained by other published results. Macro and micro-

scale training introduced here shows a systematic way

of network training. Prior knowledge about aquifer

parameter values served as a valuable piece of

information in the ANN approach. Because of its

ability to mimic complex input–output relationships,

the ANN methodology presented here proved to be a

useful tool in the field of aquifer hydraulics. Both

macro- and micro-scale training are recommended for

optimal ANN design and performance in future work.
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