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Abstract

The Box–Cox transformation is widely used to transform hydrological data to make it approximately Gaussian. Bayesian

evaluation of parameter uncertainty in stochastic models using the Box–Cox transformation is hindered by the fact that there is

no analytical solution for the posterior distribution. However, the Markov chain Monte Carlo method known as the Metropolis

algorithm can be used to simulate the posterior distribution. This method properly accounts for the nonnegativity constraint

implicit in the Box–Cox transformation. Nonetheless, a case study using the AR(1) model uncovered a practical problem with

the implementation of the Metropolis algorithm. The use of a multivariate Gaussian jump distribution resulted in unacceptable

convergence behaviour. This was rectified by developing suitable parameter transformations for the mean and variance of the

AR(1) process to remove the strong nonlinear dependencies with the Box–Cox transformation parameter. Applying this

methodology to the Sydney annual rainfall data and the Burdekin River annual runoff data illustrates the efficacy of these

parameter transformations and demonstrate the value of quantifying parameter uncertainty. q 2002 Elsevier Science B.V. All

rights reserved.
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1. Introduction

The Box–Cox transformation (Box and Cox,

1964) is widely used to transform hydrological data

to ensure the transformed data are approximately

Gaussian (Chander et al., 1978; Hirsch, 1979; Jain and

Singh, 1986; Salas, 1993). However, the proper

quantification of parameter uncertainty in models

using the Box – Cox transformation is rarely

attempted. This technical note describes a robust

method for quantifying uncertainty when using the

Box–Cox transformation.

The technical note uses as a case study the lag-one

autoregressive model (AR(1)) which is commonly

recommended for simulating annual hydrological

time series (Grayson et al., 1996; Salas, 1993;

Srikanthan and McMahon, 2000). To apply this

model the usual approach taken is to use maximum
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likelihood estimates of the AR(1) model parameters to

generate the synthetic hydrological time series. This

approach ignores parameter uncertainty. Stedinger

and Taylor (1982) have shown that incorporating

parameter uncertainty increases the simulated drought

risks and is as important as choosing the correct

model.

The goal is to quantify the parameter uncertainty of

the AR(1) model when used in conjunction with the

Box–Cox transformation to normalise hydrological

data. A Bayesian approach will be used to calculate

the posterior distribution of the AR(1) model

parameters. When the historical hydrological time

series follows a Gaussian distribution it is possible to

derive an analytical expression for the posterior

distribution (Stedinger and Taylor, 1982). However,

often hydrological data do not follow a Gaussian

distribution and it is necessary to apply an appropriate

transformation, such as the Box–Cox transformation

(Box and Cox, 1964), to ensure approximate Gaussian

behaviour. Unfortunately it is no longer possible to

derive an analytical expression for the posterior

distribution when a Box–Cox transformation is

used. It is noted that Box and Tiao (1973) provide

approximate analytical expressions for the posterior

distribution but disregard the truncation constraint

introduced by the transformation.

The contribution of this technical note will be to

describe a method for calculating the posterior

distribution of the AR(1) model parameters when a

Box–Cox transformation is used. The approach will

employ the Metropolis algorithm, a Markov chain

Monte Carlo (MCMC) method, to simulate the

posterior distribution of the model parameters.

MCMC methods are commonly used in cases such

as this one where it is not possible to derive analytical

expressions for the posterior (Gelman et al., 1995).

However, the implementation of the Metropolis

algorithm is not necessarily a straightforward task.

This was the case for the AR(1) model. This note

describes the problems implementing the Metropolis

algorithm and a robust resolution of the problems.

This technical note is organised as follows: after

outlining the AR(1) model the methodology used to

implement the Metropolis algorithm is described.

Three synthetic data case studies will be used to verify

that the MCMC procedure is able to recover the true

synthetic parameter values. Following that the results

of two case studies using real hydrological data, the

Sydney annual rainfall data and the Burdekin River

annual runoff data, will be presented to demonstrate

the importance of assessing parameter uncertainty.

These results will also be compared to the analytical

expressions given by Box and Tiao (1973) to illustrate

the effect of ignoring the truncation.

2. AR(1) model

The AR(1) model has the following form:

zt ¼ mþ f1ðzt21 2 mÞ þ 1t ð1Þ

where zt is the value of the time series at time step, t, m

is the mean of the time series, f1 is the lag-one

autoregressive parameter and 1t is an uncorrelated

Gaussian random variable, with zero mean and

variance s2
1; such that 1t , Nð0;s2

1Þ:
The first step in applying the AR(1) model is to

calibrate its parameters using the hydrological time

series, denoted as YN ¼ {y1;…; yn}: From Eq. (1) it

can be seen that given the value for zt21; zt must

follow a Gaussian distribution, such that ztlzt21 ,
Nðmþ f1ðzt21 2 mÞ;s2

1Þ: Therefore, to calibrate the

AR(1) model the hydrological data YN must also

follow a Gaussian distribution. When this is not the

case, a Box–Cox transformation (Box and Cox, 1964)

is commonly applied such that

zt ¼

ylt 2 1

l
l – 0

log yt l ¼ 0

8><
>: ð2Þ

where l is the transformation parameter chosen to

ensure the transformed hydrological data Z are

approximately Gaussian. It is important to note that

this transformation places a constraint on the

transformed values such that ztlþ 1 . 0: Hence the

zt’s actually follow a truncated Gaussian distribution

(refer to Appendix A for more detatils). This

truncation was ignored by Box and Tiao (1973)

when deriving their approximate analytical

expressions for the AR(1) posteriors. The transform-

ation parameter is included in the vector of unknown
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AR(1) model parameters, which is defined as

u0 ¼ ðm;s1;f1; lÞ ð3Þ

3. Model calibration—the Metropolis algorithm

The goal of model calibration is to infer the

posterior distribution of the parameters conditioned

on the observed data, pðulYNÞ: In the case of the AR(1)

model used together with the Box–Cox transform-

ation it is not possible to derive an analytical

expression for the posterior distribution—refer to

Appendix A. Hence an MCMC method known as the

Metropolis algorithm is used to simulate values from

the posterior distribution.

Tierney (1994) provides a detailed description of

the theoretical aspects of MCMC merthods. Chib and

Greenberg (1995) provide a more intuitive tutorial of

MCMC methods and the Metropolis algorithm, while

Gelman et al. (1995) provide useful tips for their

application. Here, a brief description will be given.

The Metropolis algorithm produces a Markov chain

sequence of samples that constitute a random walk in

the parameter space. Each iteration of the algorithm

proceeds by first generating candidate parameter

samples using a suitable arbitrary probability distri-

bution refered to as the jump distribution. These

candidates are then either accepted or rejected using a

criterion which ensures the algorithm is sampling

from the posterior distribution when the Markov chain

has become stationary.

The application of the Metropolis algorithm for

drawing {u1;…; un} samples from the posterior is

outlined as follows:

Step 1. Initialise u with arbitrary starting value u 0:
Step 2. Repeat for i ¼ 1; 2;…; n

Generate a candidate u p from qð·lu iÞ and u from

Uð0; 1Þ

If u # aðu plu iÞ

set u iþ1 ¼ u p

else

set u iþ1 ¼ u i

Step 3 Return the values {u 1; u 2;…; u n}:

where qð·lu iÞ is the jump density, which generates a

candidate sample based on the previous sample u i;

and aðu plu iÞ represents the jump probability, which is

the probability of jumping from u i to u p: When using

the Metropolis algorithm to simulate Bayesian

posteriors the jump probability is calculated using

the ratio of the posterior density for candidate u p and

the current sample u i: When the jump density is

chosen as symmetric, such that qðu jlu iÞ ¼ qðu i þ u jÞ;
then the probability of jump is calculated as

aðu plu iÞ ¼ min
pðYN lu pÞpðu pÞ

pðYN lu iÞpðu iÞ
; 1

� �
ð4Þ

where pðYN luÞ is the likelihood function and pðuÞ is

the prior density function. If uniform priors are

assumed then the jump probability simplifies to

aðu plu iÞ ¼ min
pðYN lu pÞ

pðYN lu iÞ
; 1

� �
ð5Þ

Hence, all that is required is the ability to calculate the

likelihood density for a particular set of parameter

values. For the AR(1) model the constraint imposed

by the Box–Cox transformation complicates the

evaluation of the likelihood function—see Appendix

A for derivation of the likelihood function.

3.1. Implementation

The Metropolis algorithm may seem simple

enough but there are some issues that need to be

addressed to ensure successful implementation.

The Metropolis algorithm requires that the par-

ameter vector be first initialised with arbitrary starting

values. To provide the arbitrary starting values for the

AR(1) model an optimisation algorithm was used to

estimate the parameters which correspond to the

mode, um; of the likelihood function. The Metropolis

algorithm also requires the selection of a suitable

jump density. In this application the multivariate

Gaussian density was used. This jump distribution

requires the specification of its location (defined by

the mean vector mJ) and its scale (or spread), as

defined by the covariance matrix SJ. In this algorithm

the location was set to the current value of the

parameter samples u i: This has the advantage that

only the spread of the jump distribution needs to be

tuned while the algorithm is proceeding. Hence the

jump distribution used to generate candidates in this
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algorithm was

u p , Nr u i;SJ

� �
ð6Þ

where r is the dimension of the multivariate

distribution which is equal to the number of elements

in the parameter vector u.

The spread of the jump distribution has important

implications for the efficiency of the algorithm. It has

a major influence on the acceptance rate, which is the

percentage of times a candidate sample is accepted. If

the spread of the jump distribution is too large relative

to the posterior then the acceptance rate will be very

low and the algorithm will converge slowly. On the

other hand if the spread is too small then the

acceptance rate will be higher. However, the algor-

ithm will take a longer time to explore the full region

of the posterior and hence the tails of the distribution

may be undersampled. In practise the spread is tuned

during the iterations of the Metropolis algorithm to

ensure the acceptance rate remains within a suitable

range.

The covariance matrix of the jump distribution is

given starting values based on a Taylor series

expansion of the log posterior density at the mode,

where each element of the covariance matrix is

calculated as

S21
ij ¼

2›log pðulYNÞ

›ui ›uj

					
u¼um

ð7Þ

The derivatives given above are approximated using a

finite difference scheme. Gelman et al. (1995)

recommend scaling this initial guess by the factor c2

where c ¼ 2:4=
ffiffi
r

p
:

After a number of iterations the covariance matrix

of the jump distribution is updated to be proportional

to the estimated posterior covariance matrix calcu-

lated from the samples already completed. This

produces an adaptive simulation algorithm. Gelman

et al. (1995) state that the optimal acceptance rate for

a multivariate Gaussian distribution is around 0.44 in

one dimension reducing to about 0.23 in higher

dimensions ðr . 5Þ: In a general context these optimal

acceptance rates are only approximate because they

are based on the assumption that the posterior is also a

multivariate Gaussian distribution, which may not be

the case. In this application the covariance matrix was

scaled to bring the acceptance rate toward these

approximate optimal values.

Once initialised the Metropolis algorithm is

allowed to continuously sample until the Markov

chain induced by the Metropolis algorithm has

converged to a stationary distribution. Once con-

verged the samples from the Metropolis algorithm can

be considered to be samples from the posterior. The

most critical issue in the implementing MCMC

methods is how to determine whether convergence

has been achieved. The question is “How many

iterations, say b, should the Markov chain be allowed

to ‘warm-up’ before the simulated output can be

treated as samples from the posterior?” As there is no

general technique for determining the number of

iterations required for convergence, some form of

analysis must be performed on the Metropolis

algorithm to assess convergence. Such methods are

collectively known as convergence diagnostic tools.

Cowles and Carlin (1996) provide an expository

review of numerous convergence diagnostic tools.

Their recommendations to use a variety of diagnostic

tools and multiple independent parallel Markov

chains were adopted in this study. Compared to a

single Markov chain, multiple chains are able to more

widely explore the parameter space. Ten chains with

1000 samples in each chain producing a total of

10,000 samples were found to provide enough

samples for a good approximation to the posterior.

Each of these multiple chains was started at a point

close to the mode of posterior with the starting

parameter values as derived above. This contradicts

Gelman et al. (1995) and Cowles and Carlin (1996)

who recommended the starting points be drawn from a

distribution believed to be overdispersed with respect

to the stationary distribution (the posterior). However,

if the jump distribution is a poor approximation to the

posterior, it is our experience that sampling from an

overdispersed distribution is counterproductive and

hinders convergence. Once initialised, each of the 10

chains was allowed to independently explore the

parameter space. During sampling SJ was updated

every time all of the ten chains had completed 1000

samples by estimating the covariance matrix of the

10,000 samples. Initially using a different covariance

matrix for each chain was trialled. However, it was

found that using the same covariance matrix for all the
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chains increased the mixing rate and therefore

increased the convergence rate.

To assess the convergence of these multiple chains

the R statistic (as defined by Gelman et al. (1995)) was

monitored for each of the parameters. The R statistic

is a measure of the between-chain and within-chain

variances. If the multiple chains are not mixing

properly in the parameter space the R statistic will be

relatively high. As the calculations for the R statistic

are based on Gaussian theory approximations, the

reliability of this diagnostic may be questionable for

nonGaussian applications (Cowles and Carlin, 1996).

In addition to the R statistic, time series plots of the

percentiles of the sample distributions were moni-

tored. These provide an indication when the sample

distributions become stationary. The acceptance rate

was also plotted for each of the chains to ensure that it

remained in the vicinity of the optimal values as given

above. If all these diagnostic plots did not show any

signs of convergence failure then the output from the

Metropolis algorithm was treated as samples from the

posterior pðulYNÞ:

3.2. Development of parameter transformations

During initial calibration runs it was found that the

Metropolis algorithm had a very low acceptance rate

ð, 0:1Þ; and continued to stay low no matter how the

covariance matrix of the jump distribution was scaled.

Investigations revealed there was a distinct curvilinear

relationship between the Metropolis samples of the

Box–Cox l and the mean m and the standard

deviation s1; as shown in Figs. 1(a) and 2(a),

respectively, for the Sydney annual rainfall data

(introduced in Section 4.2.1). The multivariate

Gaussian jump distribution is unable to provide a

good approximation to this kind of curvature. This is

why the acceptance rate was very low. The cause of

this problem is that the Metropolis algorithm is

sampling the parameters m and s1 which have a strong

nonlinear dependence on the transformation par-

ameter l. Therefore, it was deemed necessary to

develop suitable parameter transformations that

removed this dependence. First-order approximations

(refer to Appendix B) provided the motivation for

using the following expressions as parameter trans-

formations:

m ¼

ml
y 2 1

l
l – 0

log my l ¼ 0

8><
>: ð8aÞ

s1 ¼ ml21
y sy

ffiffiffiffiffiffiffiffiffi
1 2 f2

1

q
ð8bÞ

where my and sy represent a first-order approximation to

the expected value and the standard deviation of the

untransformed rainfall data, Y. Using these expressions

the following alternative scheme was implemented: use

the Metropolis algorithm to sample the parameters my

and sy and then apply the parameter transformations

given in Eqs. (8a) and (8b) to calculate the AR(1)

likelihood function. This has the advantage that the

parameters my and sy are virtually independent of l, as

demonstrated in Figs. 1(b) and 2(b). Hence the multi-

variate Gaussian jump distribution is able to provide a

much better approximation when sampling in the

transformed parameter space of my and sy: This is

illustrated by the acceptance rates which increased to the

optimal range of 0.2–0.4. Hence the parameter

transformations given by Eqs. (8a) and (8b) provide a

general approach for the implementation of the

Metropolis algorithm for the simulation of posteriors

of models using the Box–Cox transformation.

4. Case studies

4.1. Synthetic data

Synthetic data generated using the AR(1) model

was analysed to verify that the MCMC procedure

outlined previously was able to recover the known

synthetic parameter values. Three sets of synthetic

parameter values are used to test the MCMC

procedure under a variety of conditions. For each set

synthetic time series with n ¼ 100; 1000 and 10,000

data points were generated because as the number of

data points increases it would be expected that the

posterior would converge to the true synthetic

parameter value.

The true synthetic parameter values and the

posterior results for each synthetic series are sum-

marised in Table 1. For every parameter of all the

series the true value is within one standard deviation
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of the posterior mean. This indicates that the MCMC

procedure is able to recover the true synthetic

parameter value. Also note that the decrease in the

posterior standard deviation as the sample size of the

synthetic data increases indicates that the posteriors

do converges to the true parameter values. The

difference between the series S1 and S2 is that the l

parameter was increased from 0.1 to 1.0. This

illustrates that the MCMC procedure is robust across

a range of values for l. The MCMC posterior of l for

S1, n ¼ 100 series is compared to the posterior

calculated using the analytical expression given by

Box and Tiao (1973) in Fig. 3(a). There is little

difference between the two posteriors. A similar result

is found for series S2 (not shown). This demonstrates

that ignoring the truncation has little effect on the

posteriors for series S1 and S2. This is to be expected

as the proportion of the transformed data distribution

that is truncated is negligible ð, 0:1%Þ for the S1 and

S2 parameter sets. However, when s1 is increased to

5.0 in synthetic series S3 this proportion increases to

approximately 11%. Fig. 3(b) compares Box and

Tiao’s analytical posterior to the MCMC samples for

series S3 and shows there is a considerable difference

between the two. In fact, the true synthetic parameter

value is located only just ½Pðl , 0:5lYNÞ , 0:4%�

within the Box and Tiao’s analytical posterior. This

leads to the conclusion that Box and Tiao’s (1973)

analytical expressions may give misleading results for

the posteriors when the truncation is significant.

Fig. 1. Scatter plot of Metropolis algorithm samples showing relationship of the mean m in transformed space and its first-order approximation

my in untransformed space to l for the Sydney annual rainfall data.

Fig. 2. Scatter plot of Metropolis algorithm samples showing relationship of the standard deviation (SD) s in transformed space and its first-

order approximation sy in untransformed space to lambda l for the Sydney annual rainfall data.
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4.2. Real hydrological data

4.2.1. Sydney annual rainfall

The Sydney annual rainfall data was chosen for

the first case study of real hydrological data.

Sydney is a city located at a latitude of

approximately 348S on the east coast of Australia.

Monthly rainfall data was available for the period

January 1859 to April 1997. The monthly data set

was aggregated to annual values using the

September–August water year. This gauge has

remained in basically the same position over the

period of record, and although it may have been

subject to changes in measurement technique, it is

assumed to be a reasonably homogenous data set.

Sample estimates for the statistical properties of

the Sydney annual rainfall data are given in

Table 2.

Fig. 4 shows the calibration results in the form of

the posteriors for each of the AR(1) parameters. Of

primary interest is the posterior of the autoregressive

parameter, f1; which is a measure of the year-to-year

persistence. If f1 ¼ 0 there is no persistence. The

posterior of f1 (Fig. 4(c)) indicates there is some year-

to-year persistence, although it is not considered very

strong. The mode of the f1 posterior corresponds to a

value of f1 ¼ 0:17: This compares well with the

single value parameter estimate for f1 of 0.19 (Table

2), which is considered to be significant at the 95%

level. This result for the single value estimate of f1

would lead to the conclusion that there is a significant

lag-one correlation. In contrast, when the uncertainty

of the f1 parameter is considered (Fig. 4(c)) the

hypothesis that the data are uncorrelated cannot be

outrightly rejected. The posterior probability that

f1 , 0; Pðf1 , 0lYNÞ ¼ 4%: This demonstrates the

differences in the conclusions that can be drawn when

parameter uncertainty is quantified.

Fig. 4(d) shows that the posterior of l obtained

from the MCMC samples is reasonably close to Box

and Tiao’s analytical posterior. This result is similar

to synthetic series S1 and S2 and indicates that

ignoring the truncation has only a minor effect on the

Table 1

MCMC posterior results for the synthetic data

Parameter True value Posterior mean (SD)

n ¼ 100 n ¼ 1000 n ¼ 10,000

Synthetic series S1

m 5.0 4.58 (1.16) 5.07 (0.39) 4.91 (0.11)

s1 1.0 0.75 (0.41) 1.01 (0.14) 0.97 (0.04)

f1 0.5 0.43 (0.09) 0.49 (0.03) 0.50 (0.01)

l 0.1 0.05 (0.11) 0.11 (0.03) 0.093 (0.01)

Synthetic series S2

m 5.0 3.98 (1.58) 5.16 (0.77) 4.82 (0.22)

s1 1.0 0.70 (0.45) 1.04 (0.23) 0.95 (0.07)

f1 0.5 0.43 (0.10) 0.89 (0.07) 0.50 (0.01)

l 1.0 0.73 (0.36) 0.48 (0.03) 0.97 (0.04)

Synthetic series S3

m 5.0 5.02 (1.83) 4.61 (0.98) 4.94 (0.17)

s1 5.0 6.16 (2.43) 5.84 (1.04) 4.85 (0.26)

f1 0.5 0.47 (0.13) 0.47 (0.05) 0.50 (0.02)

l 0.5 0.55 (0.11) 0.55 (0.05) 0.49 (0.01)

Fig. 3. Comparison of the posterior obtained from the MCMC samples and the analytical expression given by Box and Tiao (1973) for synthetic

series S1 and S3.
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posteriors for the Sydney annual rainfall. The

posterior of l also illustrates whether the application

of the Box–Cox transformation to render the rainfall

data approximately normal was justified. If l ¼ 1 then

no transformation was required. The mode of the

posterior corresponds to a l value of approximately

0.3 and there is a very low posterior probability that

l . 1 ð, 0:1%Þ: These results indicate that the use of

the Box–Cox transformation is justified for the

Sydney annual rainfall data. Fig. 6(a) shows that the

observed data distribution is within the 90% confi-

dence limits of the posterior predictive distribution (as

defined by Gelman et al. (1995)). This indicates that

the calibrated model is able to successfully reproduce

the observed data.

4.2.2. Burdekin River annual runoff

The Burdekin River is a major tropical river

system located in northern Queensland, on the east

coast of Australia. Over 90% of the annual runoff

occurs in the summer wet season (December–

April). Annual runoff data aggregated to the

October–September water year was available for

the period 1894–1992. The sample estimates of

the statistical properties (Table 2) indicate that the

data is more highly skewed and nonGaussian than

the Sydney annual rainfall data.

The posteriors for each of the AR(1) model

parameters calibrated to the Burdekin River annual

runoff are shown in Fig. 5. The posterior of the

autoregressive parameter f1 (Fig. 5(c)) indicates that

Table 2

Sample estimates of the statistical properties for the real hydrological data

Series No. of years Mean SD Skew Kurtosis Lag-1 serial correlation coefficient

Sydney rainfall 137 1223.7 334.7 0.63 3.29 0.19

Burdekin runoff 99 65.4 62.6 2.31 11.80 0.08

Fig. 4. Posterior distributions for the Sydney annual rainfall data (m and s1 are shown a with log scale for ease of viewing).
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there is some year-to-year persistence; the mode of the

f1 posterior corresponds to a value of f1 ¼ 0:12:

Furthermore, as the posterior probability that f1 , 0;

Pðf1 , 0lYNÞ ¼ 15%; there is a significant prob-

ability that the data are uncorrelated. Fig. 5(d) shows

that there is a distinct difference between the posterior

of l obtained from the MCMC samples and Box and

Tiao’s analytical posterior. This indicates that ignor-

ing the truncation has a significant effect on the l

posterior for the Burdekin River annual runoff. This

result demonstrates the utility of the MCMC pro-

cedure outlined in this paper. The mode of the

posterior corresponds to a l value of approximately

0.45 and there is a very low posterior probability that

l . 1 ð, 0:1%Þ which indicates the use of the Box–

Cox transformation is justified for the Burdekin River

annual runoff data. Fig. 6(b) shows that the observed

data is within the 90% confidence limits of the

posterior predictive distribution and shows that the

calibrated model is able to successfully reproduce

the observed data, even when it is highly skewed.

5. Discussion and conclusions

A procedure was described for fully evaluating the

uncertainty of the parameters in the AR(1) model

when used with the Box–Cox transformation to

normalise hydrological data. This procedure rigor-

ously accounted for the complications introduced by

the Box–Cox transformation. This appears to have

been hitherto an unsolved problem.

The Metropolis algorithm, an MCMC method, was

used to simulate the posterior distribution of the

model parameters. This method only requires the

ability to calculate the likelihood function for the

AR(1) model. The derivation of the likelihood

function for the AR(1) model with the Box–Cox

transformation was given. Transformation of the

parameter space was required to ensure successful

implementation of the Metropolis algorithm. This

transformation removed the strong nonlinear depen-

dence of the AR(1) parameters on the Box–Cox

transformation parameter l which was found to

severely degrade the ability of the Metropolis

Fig. 5. Posterior distributions for the Burdekin River annual runoff data (s1 is shown with a log scale for ease of viewing).
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algorithm to explore the entire parameter space. The

approach presented here can be applied to other

stochastic models which make use of the Box–Cox

transformation to render data approximately normally

distributed. The extension of this methodology for

cases where other transformations are more suitable

(e.g. the two-step Box–Cox transformation (John and

Draper, 1980)) is the subject of future research.

The technique was demonstrated by calibrating the

AR(1) model to three synthetic case studies and two

real hydrological data sets; the Sydney annual rainfall

data and the Burdekin River annual runoff. The

synthetic data studies verified that the MCMC

procedure was robust across a range of values for

the transformation parameter. For both the real data

case studies the posterior of the lag-one autoregres-

sive parameter indicated there was some year-to-year

persistence, although the hypothesis that the data was

uncorrelated could not be rejected outright. The

posterior of the Box–Cox transformation parameter

indicated that the application of the Box–Cox

transformation was justified. Comparison to Box and

Tiao’s (1973) analytical expressions revealed that

when the truncation caused by the Box–Cox trans-

formation is significant their results can be

misleading.

This study demonstrates the utility of Bayesian

MCMC methods for evaluating parameter uncertainty

in stochastic models. It is believed that the evaluation

of parameter uncertainty has the potential to provide

far greater hydrological insight than merely using

single estimates of model parameter values. Despite

this, the evaluation of parameter uncertainty is often

sadly lacking in hydrological modelling endeavours.

However, recently several studies have demonstrated

the ability of MCMC methods to evaluate parameter

uncertainty in conceptual hydrological models (Bates

and Campbell, 2001; Kuczera and Parent, 1998). It is

hoped that studies like these will motivate the

increased use of techniques such as MCMC methods

to investigate parameter uncertainty in hydrological

modelling.
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Appendix A. Likelihood function for AR(1) model

The likelihood function for the AR(1) model

parameters for a time series of rainfall data pðYN luÞ
will first be derived in terms of the transformed data

pðZN luÞ:
To derive the likelihood function for a single

tranformed data point zt it must be realised that there

are complications caused by the Box–Cox transform-

ation. If Eq. (2) is rearranged in terms of zt; then

yt ¼
ðztlþ 1Þ1=l l – 0

expðztÞ l ¼ 0

8<
: ðA1Þ

This places a constraint on the transformed rainfall

values, namely ztlþ 1 . 0: Hence the zt’s actually

Fig. 6. Comparison of the observed data to the sampling distribution of the posterior predictive distribution for the hydrological data case

studies. CL ¼ confidence limits.
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follow a truncated Gaussian distribution, such that

ztlzt21 , TN ~zt;s
2
1

� �
ðA2Þ

where TNðm;s2Þ denotes a truncated Gaussian

distribution subject to some constraint, in this case

ztlþ 1 . 0; and ~zt ¼ mþ f1ðzt21 2 mÞ: The corre-

sponding probability density of a single observation zt

assumed to follow this truncated Gaussian

distribution, is written as

pðztlzt21; uÞ

/

1

Pl
t

s21
1 exp 2

1

2

zt 2 ~zt

s1

� 
2
" #

if ztlþ 1 . 0

0 otherwise

8>><
>>:

ðA3Þ

where Pl
t is a normalising probability which rep-

resents the region of the distribution that is not

truncated, such that

Pl
t ¼

ð1

21=l

1ffiffiffiffi
2p

p
s1

exp 2
1

2

x 2 ~zt

s1

� 
2
" #

dx if l . 0

ð21=l

21

1ffiffiffiffi
2p

p
s1

exp 2
1

2

x 2 ~zt

s1

� 
2
" #

dx if l , 0

8>>>><
>>>>:

ðA4Þ

For a distribution to be a proper probability distri-

bution the integral of its density must sum to 1. When

a distribution is truncated its integral will not sum to 1.

Therefore, Pl
t is introduced to ensure the integral will

sum to 1.

To determine the probability density of a single

rainfall data point yt the following change of variable

transformation is applied to the density given in Eq.

(A3)

pðytlyt21; uÞ ¼
dzt

dyt

				
				pðztlzt21; uÞ ¼ yl21

t pðztlzt21; uÞ

/
ðytÞ

l21 Pl
t s1

� �21
exp 2

1

2

zt 2 ~zt

s1

� 
2
" #

if ztlþ 1 . 0

0 otherwise

8>><
>>:

ðA5Þ

Now to calculate the full likelihood function for a time

series of rainfall data YN the following relationship is

used (the notation Yt ¼ {y1;…; yt} as adopted by

(Chib, 1996) is used)

pðYN luÞ ¼ pðynlYn21; uÞpðYn21luÞ

¼ pðynlyn21; uÞpðYn21luÞ ðA6Þ

In the first line the conditional probability theorem is

applied and in the second the assumed Markovian

property of the data is used. By repeated application of

Eq. (A6) we obtain the expression

pðYN luÞ

¼ pðynlyn21; uÞ· · ·pðytlyt21; uÞ· · ·pðy2ly1; uÞpðy1luÞ
ðA7Þ

The probability density of the typical term in

this recursion pðytlyt21; uÞ is given in Eq. (A5).

When all the probability densities for each of

the terms given in Eq. (A4) are multiplied

together the following expression for the full

likelihood results:

where Pl
t and zt are as given above. It is important to

note that the normalising factor Pl
t changes for each

data point zt because it is dependent on ~zt: This

expression does not include the likelihood density for

the terminal point pðy1luÞ: In general terms, the

likelihood for the terminal point can be calculated

using

pðy1luÞ ¼
ð

pðy1ly0; uÞpðy0luÞdy0 ðA9Þ

However, this marginal density is not easily derived.

Instead, the following expression is used:

pðy1luÞ ¼
dz1

dy1

				
				pðz1luÞ ¼ yl21

1 pðz1luÞ ðA10Þ

Ignoring the truncation, the marginal density for zt; as

pðYN luÞ /

Yn

t¼2

yl21
t

Pl
t s1

 !
exp 2

1

2

Xn

t¼2

zt 2 ~zt

s1

� 
2
" #

pðy1luÞ ztlþ 1 . 0 ;t ¼ 2; n

0 otherwise

8>><
>>: ðA8Þ
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given by Box and Jenkins (1970), is

pðztluÞ , N m;
s2
1

1 2 f2

 !
ðA11Þ

Ignoring the truncation for only the terminal point is

not expected to have a major impact on the inference.

Appendix B. First-order approximations of the

AR(1) model parameters

Using first-order approximations it is possible to

derive a relationship between the parameters of the

AR(1) model, m and s1 which are in transformed

space to their first-order equivalents in untransformed

space, my and sy: This derivation begins by using the

knowledge that zt ¼ f ðytÞ; as defined in Eq. (2).

Applying a Taylor series expansion to this function

gives

zt ¼ f ðmyÞ þ
dzt

dyt

				
yt¼my

ðyt 2 myÞ þ · · · ðA12Þ

Taking expectations and neglecting all the terms

higher than the first-order gives

E½zt� < E½f ðmyÞ� þ
dzt

dyt

				
yt¼my

E½ðyt 2 myÞ� ¼ E½f ðmyÞ�

ðA13Þ

This implies

m ¼

ml
y 2 1

l
l – 0

log my l ¼ 0

8><
>: ðA14Þ

To derive a similar expression for s1 the Taylor series

expansion is utilised again. Taking expectations and

ignoring all the terms higher than the first order yields

E ðzt 2 f ðmyÞÞ
2

h i
< ð

dzt

dyt
yt¼my

			 �2
E ðyt 2 myÞ

2
h i

t
ðA15Þ

which gives

s2
z ¼ m2ðl21Þ

y s2
y ðA16Þ

Using the knowledge that s2
z ¼ s2

1=ð1 2 f2Þ (Box and

Jenkins, 1970) then Eq. (A16) can be rearranged to

give an expression in terms of s1; where

s1 ¼ ml21
y sy

ffiffiffiffiffiffiffiffiffi
1 2 f2

q
ðA17Þ
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