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Abstract

High-quality palaeoceanographic reconstructions based on sequences preserved in shallow marine environments
demonstrate that these constitute significant archives of climatic and oceanographic change. Such sequences are
important, first, because their often very high-resolution, sometimes laminated, nature enables high-frequency cycles
to be resolved and provides the basis for establishing spatial and temporal variability in the marine radiocarbon
reservoir effect. Second, sea-level index points from shelves are important for the validation of glacio-hydro-isostatic
geophysical models and for understanding sea-level change during early deglaciation. Third, shallow marine sequences
contain excellent records of land^ocean interaction, often preserving paired terrestrial^marine proxies in the same
stratigraphic sequence. A new development in shelf sea palaeoceanography is documenting the long-term dynamics of
shelf sea stratification. This is the dominant hydrodynamic phenomenon of tide-dominated shelf seas in the middle
and high latitudes and has a profound influence on productivity and therefore global change through the carbon
cycle. Detailing the evolution of seasonal stratification during eustatic highstands is therefore of relevance to the
climate system.
* 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The collection of papers in this issue on Shelf
Sea Palaeoceanography: The Quaternary Record
arise out of a symposium held at the Geoscience
2000 meeting organised at the University of Man-
chester by the Geological Society of London. The
meeting itself, and the published contributions,

highlight the results of recent intensive research
in Europe on the palaeoceanographic potential
of shallow marine sequences funded both by na-
tional research agencies, notably in Scandinavia
and the UK, and by the EU. Several seminal
studies outside Europe in recent years have illus-
trated the signi¢cance of high-resolution records
from shallow marine contexts, most notably the
work on the shelf basins, such as the Santa Bar-
bara Basin o¡ California (Cannariato and Ken-
nett, 1999; Cannariato et al., 1999; Bull et al.,
2000; Emmer and Thunell, 2000; Field and
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Baumgartner, 2000; Hendy and Kennett, 2000;
Kennett et al., 2000; Kiefer et al., 2001; Pisias
et al., 2001), the semi-enclosed Cariaco Basin in
Venezuela (Hughen et al., 1996, 1998a,b, 2000)
and the laminated fjord sequence from Saanich
Inlet, British Columbia (Blais-Stevens et al.,
1997, 2001; Dean et al., 2001; Nederbragt and
Thurow, 2001). It is di⁄cult to underestimate
the signi¢cance of these investigations in the con-
text both of palaeoceanographic change and of
helping to resolve uncertainties surrounding the
marine radiocarbon reservoir e¡ect. Indeed, it is
the impact of these studies, and the potential of
similar future studies, that has driven the recent
developments and focus towards shallow drilling
as part of the Integrated Ocean Drilling Program
(IODP).

In Europe, these studies have helped to coun-
teract the widespread conviction that shallow ma-
rine environments are e¡ectively unconformities
in the making (e.g. Curry, 1989) and therefore
unlikely to contain depositional basins recording
the palaeoceanography of shelf seas, or as ar-
chives recording adjacent oceanic £uxes of heat
and salt. Of course, whilst large areas of continen-
tal shelves are indeed zones of net erosion, work
in Europe in the 1980s and 1990s demonstrated
that depositional basins covering at least the Ho-
locene do exist (Hald and Vorren, 1987; Hald et
al., 1991; Peacock et al., 1992; Scourse and Aus-
tin, 1994; Austin and Scourse, 1997). This realisa-
tion, along with the examples cited above, has
stimulated intensi¢ed research activity in this
¢eld, some of the results of which are published
here. These depositional basins are now the focus
of intense research interest in the context of very
high-resolution time series of Holocene climate
variability (as in the EU HOLSMEER project;
http://www.bangor.ac.uk/os/holsmeer) as these
proxies can be compared against instrumental re-
cords of observed changes in temperature, salinity
and nutrient status.

Why are studies of sedimentary sequences in
shallow marine environments important? First,
sedimentation rates in shallow marine basins can
be orders of magnitude greater than in the more
intensively investigated deep-sea environments, so
permitting detailed high-resolution studies of

palaeoenvironmental and palaeoceanographic
change, enabling high-frequency cyclicities to be
detected and their amplitude resolved. In some
settings these high sedimentation rates are coun-
teracted by thick mixed layers arising from exten-
sive bioturbation (e.g. Kershaw et al., 1983), but
ultra-high-resolution studies are enhanced by the
preservation of laminated sequences from low-
oxygen environments, notably silled fjords or sea
lochs and in anoxic shelf basins. These sequences
are critical for 14C calibration and documentation
of spatial and temporal change in the marine res-
ervoir e¡ect, and in the mid to high latitudes pro-
vide a viable equivalent to shallow water tropical
corals.

Second, cyclic global sea-level changes in excess
of 120 m between glacial and interglacial stages
every 100 000 years result in evacuation and £ood-
ing of continental shelves with dramatic impacts
on climate and, in particular, primary production
and the carbon cycle (Walsh, 1988). Detailed
records of glacio-eustatic change have emerged
from coral-based studies in low latitude shallow
marine environments (Fairbanks, 1989; Bard et
al., 1996). These are not only critical for con-
straining eustatic input functions for glacio-hy-
dro-isostatic models, but they provide key con-
straints on the palaeoceanography of shelf seas,
both in terms of routeways (Larsen et al., 1999;
Ahmad et al., 1995) and tidal dynamics which
often control regional hydrography and primary
production (Austin, 1991; Scourse and Austin,
1995). Glacio-hydro-isostatic model data (Lam-
beck, 1995, 1996) for the NW European continen-
tal shelf provide predictions of shoreline migra-
tion from the Last Glacial Maximum (21 ka BP)
to the mid-Holocene (5 ka BP). These models
combine the e¡ects of deglacial eustatic and iso-
static signals, and provide key evidence on mantle
rheology and constraints on ice loads. Whilst
these models are well-constrained by 14C-dated
index points for the Holocene (10^5 ka) from es-
tuarine and shallow embayments in unglaciated
areas and for the Late Glacial (14^10 ka) from
uplifted shorelines in glacially loaded areas, they
are currently less well-constrained otherwise be-
cause data from o¡shore cores has hitherto been
lacking. These are critical because both isostatic
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Fig. 1. Predicted global distribution of seasonally strati¢ed shelf seas (adapted from Elliott and Li, 1999). Dark areas are shelf seas in which the strati¢cation pa-
rameter S= 6 8 (representative of conditions on the NW European shelf), where S= log10(H/CDU3) (Pingree and Gri⁄ths, 1978); H=water depth, CD =bottom
drag coe⁄cient, U=amplitude of the tidal surface current.
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and eustatic components show the greatest rates
of change and, therefore, the most rigorous test of
the geophysical models in the period 20^13 ka BP.
Sea-level index points for this period are now o¡-
shore and can only be accessed by coring. New
and recent studies are now addressing this need,
notably in the North Sea (Shennan et al., 2000),
on the Patagonian shelf (Guilderson et al., 2000)
and on the Australian shelf (Yokoyama et al.,
2000).

Third, marine sequences deposited close to land
register the imprint of changes in terrestrial envi-
ronments in parallel with those in the ocean.
Land^ocean interactions are of great signi¢cance
both as forcing agents of and as keys for unlock-
ing archives documenting the climate system. For
instance, the identi¢cation of geochemically dis-
tinct tephra layers both onshore and o¡shore en-
ables documentation of spatial and temporal
changes in the marine reservoir e¡ect (e.g. Austin
et al., 1995; Ha£idason et al., 2000), which can be
linked to palaeoceanographic change. The marine
reservoir e¡ect can therefore be seen not as merely
a problem for the construction of age models but
as a palaeoceanographic tool. Recent work on
very high-resolution sequences of both Late Gla-
cial and Holocene age containing multiple tephras
from the north Icelandic shelf (e.g. Eir|¤ksson et
al., 2000a,b) is revealing a pattern of reservoir

age shifts consistent with changes in current pat-
terns, notably changes in the relative strength of
the Irminger and East Greenland currents.

A particular focus of the Geoscience 2000 sym-
posium was the documentation of the long-term
dynamics of seasonal strati¢cation in shelf seas.
Such studies highlight the de¢ciencies of existing
models of shelf sedimentation which rely purely
on hydrodynamic controls. It is becoming clear
that, in such settings, tidal dynamics have a crit-
ical part to play in controlling primary production
and that the nature of organic particles and their
processes of sedimentation are crucial for a com-
plete understanding of sedimentary facies on con-
tinental shelves. In other words, biogeochemistry
is at least as important as physical processes for
understanding and interpreting shelf sequences. A
background summary of shelf seasonal strati¢ca-
tion is therefore given below.

2. Seasonal strati¢cation in shelf seas

Seasonal thermal strati¢cation is the dominant
hydrodynamic phenomenon of tide-dominated
shelf seas in the middle and high latitudes (Fig.
1). In these settings, heating of the surface waters
induces buoyancy and stability, but the turbulence
generated by the action of bottom friction on ti-

Fig. 2. Cartoon of the three-dimensional structure of a tidal front.
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dal currents acts against this and may generate
su⁄cient kinetic energy to maintain vertical mix-
ing throughout the depth of the water column.
During winter, the entire water column is mixed
with relatively uniform temperature, salinity and
density characteristics throughout. In early spring,

when heat £uxes from the atmosphere to the sea
surface, a warm surface layer develops. This layer
is separated from the colder bottom waters by a
sharp density gradient, the pycnocline, which re-
stricts the exchange of heat and nutrients between
the two water bodies (Fig. 2). In the Celtic Sea,

Fig. 3. AVHRR SST satellite image of Celtic Sea taken at 0419 GMT on 12 July 1999. The temperature gradient representing
the Celtic sea front is shown clearly. Black areas represent cloud or land; temperature scale shown at top of image. Reproduced
with the kind permission of the Remote Sensing Data Analysis Service (RSDAS) at the Plymouth Marine Laboratory (NERC),
UK.
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where salinities are generally high throughout, the
pycnocline generally coincides with the thermo-
cline, de¢ned as the sharp temperature gradient
between the surface and bottom waters (Elliott
et al., 1991). In autumn, as atmospheric cooling
begins, the surface layer loses heat both upwards
and downwards. Eventually the two layers be-
come equal in temperature, the thermocline disin-
tegrates and the whole water column becomes,
once again, mixed by convective overturning. Var-
iations in tidal mixing and water depth result in
some areas of the shelf becoming strati¢ed whilst
adjacent waters are mixed; the transition between
the two is marked by a strong horizontal gradient
known as a front.

The Celtic Sea front is one such shelf sea front
extending between Britain and Ireland and curv-
ing southwards, at around 51‡N, along the British
coast (Fig. 3). This intensively researched front
(Pingree, 1975, 1979; Simpson, 1976; Simpson et
al., 1978; Simpson and Bowers, 1979, 1981;
Wang et al., 1990; Elliott and Li, 1991; Elliott
et al., 1991) can be recognised in summer by tem-
perature measurements across the boundary area
and may sometimes be recorded by satellite im-
agery which detects the sharp, horizontal, surface
temperature gradients (Fig. 3; Simpson and
Bowers, 1979). The mixed zone is con¢ned to
the shallower (generally 6 100 m) inshore waters
in the north and east of the study area, whilst the
deeper water over the central and outer shelf
strati¢es during the summer months.

Much of the enhanced biological productivity
of shallow water marine environments is associ-
ated with seasonal thermal strati¢cation (Holli-
gan, 1981; Scott et al., in press). The e¡ects of
vertical stability on phytoplankton distributions
during the summer months on the NW European
shelf are well-established (Pingree et al., 1975,
1976; Houghton, 1988). Nutrient renewal along
fronts during the summer due to mixing by
wind and tide combined with surface stabilisation
during settled weather and neap tides intermit-
tently create conditions suitable for rapid phyto-
plankton growth (Pingree et al., 1975; Tett et al.,
1986). Such growth in turn leads to enhanced
particulate £ux to the sea bed in the vicinity of
the frontal region (Jones et al., 1998). Given the

spatial extent of seasonal strati¢cation on a global
scale, detailing the evolution of this phenomena is
therefore of relevance to the carbon cycle, to cli-
mate change on a global scale and, in particular,
to the modulating e¡ect of sea level on global
change. Whilst the example given here relates to
seasonal strati¢cation in the Celtic Sea, the prin-
ciples invoked are applicable to tide-dominated
shelf seas worldwide and therefore have implica-
tions for the signi¢cance of this phenomenon as-
sociated with eustatic highstands in the global cli-
mate system during the Quaternary.
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