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S U M M A R Y
This paper describes the development of a multidimensional resistivity inversion method that
is validated using two- and three-dimensional synthetic pole–pole data. We use a finite-element
basis to represent both the electric potentials of each source problem and the conductivities
describing the model. A least-squares method is used to solve the inverse problem. Using a least-
squares method rather than a lower-order method such as non-linear conjugate gradients, has the
advantage that quadratic terms in the functional to be optimized are treated implicitly allowing
for a near minimum to be found after a single iteration in problems where quadratic terms
dominate. Both the source problem for a potential field and the least-squares problem are solved
using (linear) pre-conditioned conjugate gradients. Coupled with the use of parallel domain
decomposition solution methods, this provides the numerical tools necessary for efficient
inversion of multidimensional problems.

Since the electrical inverse problem is ill-conditioned, special attention is given to the use
of model-covariance matrices and data weighting to assist the inversion process to arrive
at a physically plausible result. The model-covariance used allows for preferential model
regularization in arbitrary directions and the application of spatially varying regularization.
We demonstrate, using two previously published synthetic models, two methods of improving
model resolution away from sources and receivers. The first method explores the possibilities of
using depth-dependent and directionally varying smoothness constraints. The second method
preferentially applies additional weights to data known to contain information concerning
poorly resolved areas. In the given examples, both methods improve the inversion model and
encourage the reconstruction algorithm to create model structure at depth.

Key words: constrained inversion, domain decomposition, electrical conductivity, finite-
element methods, four-pole data, model-covariance matrices, pole–pole data.

1 I N T R O D U C T I O N

The goal of inversion of data from DC electrical experiments is to
reconstruct the conductivity distribution of a region of the Earth.
In geophysical applications electrical current is injected into the
ground by electrodes located either on the Earth’s surface or in bore-
holes. The resulting electrical field is a function of the conductivity
distribution in the Earth and is monitored by measuring voltages
between further electrodes. These voltages form the data that are
then inverted to calculate a conductivity distribution.

For many years standard electrode configurations, such as
Wenner and Schlumberger arrays were successfully used for pro-
filing and sounding experiments. Processing and interpretation of
the data consisted of plotting apparent resistivities for profiling ex-
periments and 1-D depth-profiles derived from matching synthetic
data from simple models (e.g. three layers of variable thicknesses

and resistivities) with field data. It was realized quite early on that
using simple assumptions (such as a 1-D Earth) could severely mis-
lead interpretation (Allaud & Martin 1977). Although data from a
2-D or 3-D subsurface can be inverted using a 1-D model, the use-
fulness of such a model is certainly debatable. In some instances
the model consists of spurious anomalies only. Another common
model simplification is the neglect of surface topography. For ex-
ample, surface topography can distort the electric field and result in
an electrical anomaly. The exclusion of topography in the processing
of data has a detrimental effect on model interpretation (Fox et al.
1980; Biswas & Bhattacharya 1998). A finite-element (FE)-based
inversion method such as that presented here has the geometrical
flexibility to model surface topography.

The introduction of digital computers in the interpretation of geo-
electrical data, made it feasible to assimilate data into arbitrary ge-
ometry models (Dey & Morrison 1979a,b; Spitzer 1995; Zhao &
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Yedlin 1996). It is now also possible to automate the inversion of
subsurface models, see, for example, Pelton et al. (1978), Smith &
Vozoff (1984) and Tripp et al. (1984) for 2-D inversion and Park
& Van (1991) for an early example of 3-D inversion. These exam-
ples demonstrate a steady progression in the level of sophistication
in the inversion algorithms along with an increase in the number
of parameters used to describe the subsurface. Electrical inversion
techniques have progressed from approximate inverse methods us-
ing a series of 1-D inversion steps (Li & Oldenburg 1994) to 3-D
inversion methods. The latter have been developed using linearized
and backprojection methods (Shima 1992), and non-linear optimiza-
tion techniques such as non-linear conjugate gradient techniques
(Ellis & Oldenburg 1994; Zhang et al. 1995). Other second-order
techniques that have been applied to inversion, involve solving a sys-
tem of linear equations for changes in material properties, using a
Hessian or approximate Hessian (Loke & Barker 1996; LaBreque
et al. 1996). The success of these methods is manifested by the
popularity of the Marquardt–Levenberg algorithm (e.g. Bishop
1995).

Furthermore, approximations to the equations describing the
physics of the forward and inverse problem of electrical prospect-
ing are frequently employed to make the inverse problem more
manageable on current computers (e.g. Beard et al. 1996). The
approximations usually allow the conductivities to vary only by a
‘small’ amount around a background or starting model. This allows
a low-contrast approximation to be used, thus speeding up the com-
putation. However, it has also been shown that current computers
are sufficiently fast to invert field scale data sets within a reason-
able time while solving the full non-linear inversion problem using
an accurate forward model (Ellis & Oldenburg 1994; Zhang et al.
1995).

Applications of resistivity inversion techniques are found in hy-
drogeological, hydrological and medical studies. For example, the
method has been successfully used to monitor hydraulic experiments
on the field scale (Daily et al. 1992), laboratory scale (Weller et al.
1996a) and on core samples (Binley et al. 1996). There is also an
abundance of literature on electrical inversion in medical imaging.
In medical imaging, the method is usually called electric impedance
tomography (EIT) and a recent summary of the state-of-the-art in
EIT is given in Cheney et al. (1999).

An inversion algorithm intended for geophysical data from a field
experiment must be capable of describing all the features of the
experiment to be modelled. It is only recently that errors in the
inverted model caused by an oversimplification of the modelling
have been studied systematically. For example, Sugimoto (1999)
studied the effect of neglecting to model the fluid-filled borehole in
crosshole tomography and showed that substantially skewed images
can result if boreholes are not modelled appropriately.

The inversion method described by this paper uses a flexible and
accurate inversion algorithm that is capable of modelling most fea-
tures of realistic experiments. For example, by using finite elements
to discretize the subsurface, the topography of the surveyed region
can easily be incorporated into the model. The result is that the
distorting effects of an undulated surface are modelled and cannot
be a source of error in the inversion. Furthermore, sources and re-
ceivers are not restricted to being situated on nodes of the grid. This
is essential in cases where electrodes cannot be placed on a regular
grid, for example in crosshole applications, where boreholes almost
always deviate from a straight line.

In the first section (Section 2) we briefly discuss a field study
that provided the starting point for developing the presented inver-
sion methodology and present a subsurface model resulting from

the inversion of the field data. We use this model to explain some
of the concepts of the inversion methodology put forward in this
paper. Specifically, we show the power of using model covariance
information for guiding inversion models in the desired direction
by solving a 3-D problem for a 2-D subsurface. We explain why
instead of using apparent resistivities (the ‘standard’ data in electri-
cal prospecting) we use resistances and data-dependent weighting
as input data for the inversion. It must be noted, however, that it is
not the purpose of this paper to present a case study. We use this
field data example to show that the proposed method is capable of
dealing with life-size surveys and to illustrate some of the novel
concepts involved in the proposed inversion method.

After motivating our approach, we state the equations controlling
the physics of the experiment in Section 3. The inverse problem of
deriving conductivities is posed as an optimization problem with
the aid of a functional containing data-misfit and model covariance
information (Section 4). The least-squares solution to the optimiza-
tion problem is described in Section 5. The numerical inversion
method is discussed in Section 6 and its parallel implementation
is presented in Section 7. To model arbitrarily complicated struc-
tures, we need to discretize the subsurface with a fine grid/mesh. For
life-sized problems, resulting finite-element meshes can contain up
to a million node-points with the result that current computational
resources are strained to their limit. In order to make the problem
tractable, we use the pre-conditioned conjugate gradient method for
the solution of the linear equations resulting from the discretization
of the forward problem and harness the power of parallel comput-
ing with domain decomposition techniques. We apply the parallel
inversion method to a synthetic example proposed in the literature
and test the performance of the algorithm on different parallel ar-
chitectures. The example can still be solved in a reasonable time
on a single processor. However, the real advantage of the proposed
method lies in its ability to solve massively large problems that can-
not be solved on a single processor or in applications where speed is
crucial.

In the final section we apply the inversion technique to three dif-
ferent synthetic test models. In testing an inversion method using
synthetic data, the quality of the inversion model can be gauged
against the known true subsurface model. In the first test we com-
pare the newly developed second-order technique described in this
paper with a non-linear conjugate gradient search and demonstrate
the superiority of the proposed technique in cross-well geometries.
The next two tests use synthetic models proposed in the literature
(Zhang et al. 1995; Ellis & Oldenburg 1994). We show that the
proposed method results in inversion models that are at least com-
parable in quality to published results. Additionally, we demonstrate
the necessity of including model covariance information in the in-
verse problem. We present a series of tests in which we use both
spatially and directionally varying smoothness constraints and test
the influence of these constraints on the inversion model. We also
demonstrate that using resistances as input data and using an ap-
propriate weighting, results in improved inversion images. The ex-
amples illustrate how the techniques described in this paper can be
used to help guide inversion of real data sets.

2 D E S I G N C R I T E R I A F O R
T H E I N V E R S I O N M E T H O D

2.1 Reskajeage field experiment

In 1998 we acquired an electric crosshole data set in the pole–pole
geometry at the Reskajeage hydrological testsite in Cornwall, UK.
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Figure 1. Sketch of electrical crosshole field experiment carried out at
Reskajeage Quarry, Cornwall, SW England. The experiment uses a quasi-
pole–pole geometry. The well-separation is approximately 25 m and the
surveyed depth extends roughly from 20 to 110 m with an electrode spacing
of 1 m. The remote electrodes are at 25 m from the respective borehole and
need therefore be included in the modelling.

A schematic sketch of the acquisition geometry is given in Fig. 1.
This sketch shows a current injection experiment, with the current
being injected between one electrode in the left borehole and a re-
mote electrode. The resulting lines of constant potential are depicted
by stippled lines. The potential can be monitored at all remaining
electrodes by measuring the voltage between the potential electrodes
and a remote electrode.

A total of 175 borehole electrodes and two remote electrodes were
used in the survey. The electrodes were deployed in two boreholes
spaced at approximately 25 m at a 1 m interval over a total depth in-
terval of approximately 80 m, resulting in 30 450 data points. Owing
to reciprocity of source and receiver electrodes, all inversion infor-
mation is contained in half the measurements. Including reciprocal
measurements in a measurement scheme allows for the calculation
of reciprocal errors, which can be used as one source of information
concerning data quality and can be included in a data-covariance
matrix.

Owing to access restrictions and safety regulations the remote
electrodes were placed 22 m from each borehole. This distance
hardly qualifies as infinity, therefore remote electrodes have been
included in the forward and inverse modelling. The resulting ac-
quisition geometry can be called a four-pole or quasi-pole–pole
geometry.

Fig. 2 shows an inversion model calculated from the Reskajeage
field data. The approximate positions of the two wells are indicated
by grey lines. We use a 3-D finite-element mesh consisting of 42 840
nodes to parametrize the subsurface. Only a small portion of the
mesh, extending 20 m around the boreholes, is shown. The mod-
elling domain extends 150 m beyond the region of interest between
the two wells. Application of Dirichlet boundary conditions at this
distance is a good approximation to the physically correct boundary
conditions of zero potential at infinity.

Figure 2. Inversion model of Reskajeage field-data. The part of the in-
version model shown extends 10 m beyond the region of interest in x- and
z-directions. The front of the inversion model is the plane of y = 0 and con-
tains the two boreholes. Note the exponential mesh-coarsening outside the
region of interest. Note further the smoothness of the inversion model in
y-direction. This is achieved by applying large smoothness constraints in the
y-direction.

2.2 Advantages of finite-element techniques

Note the exponential coarsening of the mesh moving away from
the region of interest. This allows small elements in the region of
interest to be used and large elements in the region where conduc-
tivities and the potential field are varying slowly. The total number
of nodes in the finite-element mesh can thus be reduced substan-
tially compared with a regular grid-spacing as would be employed
by finite-difference techniques.

Furthermore, finite-element techniques are ideally suited to deal-
ing with irregular model structure and irregularly shaped interfaces
at which boundary conditions need to be applied. For example, the
Earth’s surface usually exhibits topography. Using a finite-element
description of the subsurface, the effect of an undulating surface are
more easily implemented than using other techniques such as finite
differences.

2.3 Anisotropic and inhomogeneous
smoothness constraints

Since the two wells containing sources and receivers are nearly co-
planar (i.e. in the x-z plane), a 2-D subsurface model geometry can
be assumed. We achieve this by applying very large smoothness
constraints in the y-direction and only moderate smoothness con-
straints in the x- and z-directions. The effectiveness of this approach
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is clearly demonstrated by the homogeneity of the inversion model
in the y-direction (Fig. 2). Note that the solution of the forward
problem, that is the electrical potential in the domain, is a true 3-D
problem justifying the use of a 3-D mesh. The current approach for
this problem is to Fourier-transform the governing equations in the
out-of-plane direction and solve the Fourier-transformed equations
at discrete wavenumbers (Dey & Morrison 1979a). This approach
is computationally more efficient. The main benefit of our approach
is the added flexibility of allowing for 3-D structure. For example,
the effect of out-of-plane anomalies can be readily assessed.

Anisotropic smoothness constraints can also be used to incor-
porate a priori knowledge into an inversion model. For example,
in layered sedimentary environments, the structure of the Earth is
smooth within one layer and rough across layer boundaries. If the
general orientation of the layering is known, this knowledge can be
readily incorporated into anisotropic smoothness constraints.

2.4 Choice of input data

Observed voltages from the Reskajeage data set range from −1 to
3 V for constant injection currents of 100 mA and negative transfer
resistances (observed voltage divided by injection current) result.
Observed negative voltage or zero-voltage readings can result from
the geometrical arrangement of electrodes (Fig. 3). The example
shows the potential field of a crosshole experiment for the pole–
pole geometry (Fig. 3a) and for a four-pole geometry (Fig. 3b).
The Earth’s surface is assumed to be far removed and its effect has
not been modelled. For pole–pole geometries the observed voltage
is always positive (Fig. 3a). However, for the example shown in
the four-pole geometry (Fig. 3b) the observed voltage is zero and
electrode locations resulting in negative observed voltages are easily
identified.

Note that for the geometry shown in Fig. 3(b) the geometry fac-
tor G (see, for example, Telford et al. 1990) also becomes zero.
Calculating the apparent resistivity ρa,

Figure 3. Pole–pole and four-pole measurement geometry for crosshole surveys. (a) The observed potential difference for pole–pole data is always positive.
(b) The observed potential difference for the shown four-pole source–receiver geometry is equal to zero. Calculating apparent resistivities would involve a
division by zero (for the shown geometry) and the calculation of apparent resistivities becomes unstable.

ρa = 4π
1

G

V

I
, (1)

then involves a division of zero (for the voltage) by zero (for the ge-
ometry factor) and the calculation of apparent resistivities becomes
unstable.

In working with the Reskajeage field data, we experienced the
problem of dividing by very small numbers for the geometry factor.
Geometry factors for the quasi-pole–pole geometry of the Reska-
jeage experiment and the geometry factor of the experiment shown
in Fig. 3(b) are affected in the same manner by the numerical insta-
bility of division of two very small numbers (Herwanger 2001).

Using resistances as input data rather than the commonly used
apparent resistivities, the problem of numerical instability in the
calculation of apparent resistivities is avoided. On the other hand,
observed resistances can vary over orders of magnitude, an unde-
sired characteristic in an inversion problem. In order to avoid the
difficulties arising from the unstable calculation of apparent resis-
tivities, but retaining the advantage of scaled data, we introduce a
data-magnitude-dependent weight factor. In true pole–pole geome-
tries, this weighting factor can be chosen according to the inverse
1/G of the geometry factor G and in effect apparent resistivities
result as input data. In four-pole geometries and quasi-pole–pole
geometries the weighting factor can be chosen in such a way that
small data-values receive relatively more weight than large data-
values, while introducing an upper limit for the weight.

2.5 Solution techniques

The solution of both the forward and the inverse problem using a
finite-element method involves the solution of a large linear sys-
tem of equations for the number-of-model-parameter unknowns. To
achieve this, either direct or iterative solvers can be employed. In
the following, the advantages and disadvantages of either method
are stated and our choice of iterative solvers is motivated.
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The advantage of direct solvers is the speed by which multiple
source problems can be solved once an inverse matrix has been
found. Solving source problems reduces to a matrix–vector multi-
plication and is thus very fast. Forming an inverse matrix explicitly,
necessitates storing all elements of the inverse matrix in memory.
Since the inverse matrix loses the sparsity of the matrix describing
the forward problem, memory requirements become prohibitive for
large-scale 3-D problems.

Iterative solvers are memory efficient. However, their computa-
tion time scales linearly with the number of source problems solved.
This disadvantage can be somewhat remedied, by using a previous
solution of a similar source problem as the starting vector for the
iterative procedure.

The scale of problems that can result from modern 3-D surveys
using automated acquisition equipment, necessitate grid-sizes of up
to a million nodes. For these massive scale models, direct solvers
become impractical and we feel that iterative solvers present the
only viable way of solving inverse problems on the scale of up to a
million nodes.

3 G O V E R N I N G E Q U A T I O N S

The forward problems, describing the electrical potential ψs that
results from injecting a current Isδ(� − �s) into a region � at a
location �s with a conductivity distribution σ is given by

∇ · σ (�)∇ψs = Isδ(� − �s). (2)

The above equation describes a series of S source problems,
each denoted by a subscript s ∈ {1, 2, . . . , S}. The source in
eq. (2) is a Dirac delta function, centred at position �s of do-
main �. ψs is the potential owing to the source number s
and σ = σ (�) is the spatially dependent conductivity (σ = 1/ρ,
where ρ is the resistivity) and Is is the magnitude of the source
strength. In geo-electrical experiments current is usually injected
between two electrodes. This experiment can be simulated by
the superposition of two solutions of the above equation with
two point-sources with positive and negative injection currents,
respectively.

3.1 Boundary conditions

Boundary conditions need to be imposed on the entire surface �

of the solution domain. For geo-electrical problems there is a free-
surface boundary condition at the Earth’s surface, that is no current
is allowed to flow perpendicular across the boundary. The remain-
ing boundaries of the modelling domain result from the necessity
of limiting the size of the modelling domain and they are placed
at a somewhat arbitrary location. The boundaries should be suffi-
ciently far away from sources and receivers that the effect of these
boundaries models the effect of the physical boundary condition of
zero-potential at infinity sufficiently well.

The boundary conditions at the free surface �surf for each source
problem s are Neumann boundary conditions and are described
mathematically by the value of the normal derivative of the potential
field:

∂φs

∂n

∣∣∣∣
�surf

= 0, ∀s ∈ {1, 2, . . . , S}, (3)

and the Dirichlet boundary conditions at the remainder of the bound-
ary (� − �surf) of the domain are given by

φs |(�−�surf) = 0, ∀s ∈ {1, 2, . . . , S}. (4)

The latter Dirichlet boundary conditions in eq. (2) are exact at in-
finity and thus valid if the domain extends far enough away from
the sources for the zero-potential approximation to be good. The
approach adopted here is to use large finite elements near the bound-
aries of the domain to achieve a large modelling domain with a rea-
sonable number of elements. More accurate Robin boundary condi-
tions would allow the domain size to be made smaller (Zhang et al.
1995; Weller et al. 1996b). However, the gain in speed is not likely to
be very big, since we need only a small number of extra elements to
increase the modelling domain to an extent that Dirichlet boundary
conditions can safely be applied.

3.2 Finite-element approximation

In order to solve eq. (2) numerically using finite elements the source
term is subtracted from both sides and the equation is multiplied by
finite-element weight functions Qi and subsequently integrated over
the solution domain (Zienkiewicz & Morgan 1983). Additionally,
a finite-element approximation φs replaces the continuous potential
distribution ψs and a finite-element approximation Cs is used to
approximate the source function. The system of equations becomes∫

�

Qi (∇ · σ∇φs − Cs) d� = 0. (5)

The approximation φs for the potential field ψs for a source prob-
lem s is described using the finite-element basis functions Q j

(Zienkiewicz & Taylor 1991) via

ψs ≈ φs =
N∑

j=1

Q jφs j , ∀s ∈ {1, 2, . . . , S} (6)

and the conductivity σ = 1/ρ is similarly discretized by

σ =
N∑

j=1

Q jσ j . (7)

In the presented applications we use eight-node hexahedral elements
with tri-linear basis functions Q j = Q j (�), which are centred on
the nodes. The number of basis functions is N, the total number of
nodes in the FE mesh.

We use the Galerkin method (Zienkiewicz & Taylor 1991), that is
multiplying eq. (2) by a weighting function Qi that are the same as
the basis functions and carrying out the integration over the whole
domain. Using the above approximations for ψs and σ , the following
matrix equation results:

A�s = bs, ∀s ∈ {1, 2, . . . , S}. (8)

The matrix and right-hand-side vector elements are Ai j =
− ∫

�
∇Qi · σ∇Q j d� and bs i = ∫

�
Qi Cs d�, respectively. The in-

tegrals for calculating the elements of the matrix A and the source
vector bs are evaluated numerically using Gauss quadrature. Since
the finite-element basis functions are local, that is they are only non-
zero in a small part of the domain, the discretized set of equations
becomes sparse.

Note that a total of S source problems must be solved. Each
source problem results in a solution vector for the potentials �s =
(φs 1φs 2 . . . φs N )T. By solving the system of eq. (8) a solution for the
potential at all points of the FE mesh is obtained. In an experiment,
the potential will be observed at discrete points at surface electrodes
or borehole electrodes in the domain �. The potential at a receiver
location is calculated using a Gaussian function to interpolate the
potential from the adjacent nodes to the location of the receiver.
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3.3 Treatment of sources

If the source-position �s is at a node, then Cs in its simplest form
is equal to the finite-element basis function centred on the node
multiplied by a scalar Is = ∫

Cs d� such that the source is scaled
to the correct strength. If the source is inside an element, it must be
distributed to the nodes associated with that element and possibly
nodes associated with neighbouring elements. We have chosen to
achieve this with a Gaussian function such that the finite-element
approximation

Cs =
N∑

j=1

Q j Cs j (9)

is defined by the nodal values Cs i of Cs :

Cs i = 1

n s
exp

[−(xi − �s)2

l2
s

]
. (10)

In this equation, ls is the width of the Gaussian employed and thus
controls the contribution to non-nearest node cells, �s and xi are
the positions of the source s and of node i, respectively, and the
normalization coefficient ns is chosen such that

∫
�

Cs d� = Is .
Usually, we choose the width of the Gaussian ls to be the size of the
elements in the vicinity of source s, unless the source is situated on
a node. In that case, we choose ls to be small relative to the mesh
spacing. This places the source on to this node. If a small value of ls

is used this will effectively place the source on to the nearest node.
The use of ls provides control over spreading of the sources to the
nearest nodes; that is particularly important when the sources are
not positioned on the nodes. This is the situation for the problem
involving real data solved in Section 2.

4 T H E F U N C T I O N A L

The functional to be optimized to obtain a solution to the inverse
problem is

F = Fd + Fr, (11)

in which Fd is the data misfit between observed data and predicted
data and Fr is a regularization term, which can be used to encourage
certain types of models. In the following we first discuss the form of
the data-misfit functional in the pole–pole geometry and in a general
four-pole geometry, allowing for any acquisition geometry. We then
discuss the error-functional used for imposing structural constraints
and for steplength damping. We designed the functional for applying
structural constraints in such a way that we can impose anisotropic
and inhomogeneous structural constraints. In Section 8 we show how
this new form of error-functional can be used to steer the inversion
process in a desired direction. This new error-functional is also the
key to forcing a 2-D inversion model in Fig. 2.

4.1 Pole–pole data

The data misfit Fd for pole–pole data is given by the difference
between the observed and calculated potentials with

Fd = 1

2

S∑
s=1

R∑
r=1

N∑
i=1

wr
s i

(
φs i − dr

s i

)2
. (12)

This expression is the weighted sum of the squared differences be-
tween observed data (e.g. from a field experiment) and data pre-
dicted from a given conductivity distribution for all S sources and
R receivers. The datum dr

s is the potential observed at detector r

(position �r
s ) for source problem s and φs i is the potential at node

i for source problem s. The total number of sources is S and the
total number of receivers is R. The additional loop over all N nodes
is caused by the way the receivers are distributed via a Gaussian
function.

The weighting factor

wr
s i = w̃r

s

nr
s

exp

[
−

(
xi − �r

s

)2

l2
r

]
(13)

consists of three contributions. In the first two contributions, w̃r
s is

used to weight the datum associated with each source–receiver pair
according to (1) the ‘confidence’ in this datum and (2) for preferen-
tial weighting of this datum. Typically, the confidence contribution
to this weight will be one over the estimated standard deviation
of this datum. When using w̃r

s for preferential weighting, typically
large weights are given to small data-values. Since we are using
resistances as input data (see Section 2) this can be used to affect
a similar result as the use of apparent resistivities achieves. The
success of this approach is demonstrated in Section 8.3. The final
contribution in the weight factor wr

s i arises from the way we treat
receivers, by distributing them to the nearest nodes via a Gaussian
in exactly the same way as sources are distributed (see eqs 9 and
10). For the ith node at position xi , the rth detector at position �r

s

and the sth source problem this contribution is

1

nr
s

exp

[
−

(
xi − �r

s

)2

l2
r

]
. (14)

In this equation, lr is the length over which interpolation is performed
and the normalizing coefficient nr

s is chosen such that

1

nr
s

∫
�

∑
i

Qi exp

[
−

(
xi − �r

s

)2

l2
s

]
d� = 1. (15)

In matrix form, the functional eq. (12) is

Fd = 1
2 (�̂ − d)TW(�̂ − d) (16)

in which

�̂T = (
�T

1 �T
2 · · · �T

S, · · · , �T
1 �T

2 · · · �T
S

)
, (17)

and

dT = (
d1

1
T
d1

2
T · · · d1

S
T
, · · · , dR

1
T
dR

2
T · · · dR

S
T)

. (18)

The superscript ‘T’ is used to indicate the transpose of a vector. Each
of the data vectors of predicted data �s and observed data dr

s is of
the length of the number of nodes. This is caused by the use of a
Gaussian to interpolate sources and receivers on to the nodes of the
FE mesh. The data covariance matrix W−1 in our work is diagonal
and contains the weights w̃r

s associated with each datum. The vector
�̂ − d represents the residuals (data misfit) at each node for a given
source problem and for a given receiver or receiver pair.

4.2 Four-pole data

Pole–pole data cannot be obtained in a physical experiment since
the current needs to be injected between two electrodes and po-
tentials can only be monitored by measuring a potential difference
between two points. However, one of the current and potential elec-
trodes might be placed at a large distance, assumed to be at infinity
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for the pole–pole realization, from the electrodes in the domain of
interest. In this case the above calculation for the error-functional
Fd is a good approximation to reality. If both source and receiver
electrodes are placed near the zone of interest, one can speak of
four-pole measurements. For experiments in the four-pole configu-
ration, a different functional from the pole–pole eq. (12) needs to
be evaluated:

Fd = 1

2

S∑
s=1

R∑
r=1

w̃r
s

N∑
i=1

[(
g1r

s i − g2r
s i

)
φs i − T r

s dr
s

]2
. (19)

Now w̃r
s is the weight associated with the source injection pair s

and receiver pair r, g1r
s i and g2r

s i being Gaussian distributions at
node i associated with the potential difference between points 1 and
2, respectively, T r

s is the integral under these Gaussians and dr
s is

independent of i and contains the potential difference for the source
experiment s and receiver pair r.

4.3 Regularization

Most electrical inverse problems are ill-posed and a standard method
to achieve a unique result is to introduce a regularization term Fr

into the error-functional to be minimized, constraining the solution
to certain classes of models (Constable et al. 1987). The usual ap-
proach in geo-electrical inversion is to use a smoothness constraint,
where the smoothness is locally defined by the square of the gradient
or the square of the curvature of the model. We have designed a reg-
ularization term that is an extension to this isotropic smoothing. For
example, in a layered environment the subsurface is smooth in the
layering plane, but rough perpendicular to the layering. To enable
us to be able to use this kind of model, we introduce anisotropic
smoothness constraints. Additionally, the smoothness constraints
are also allowed to vary spatially. If a good starting model can be
obtained, it can be advisable to include a penalty for deviation from
this starting model into the error-functional.

4.3.1 Anisotropic smoothness constraints

The regularization functional we designed to achieve anisotropic
smoothing is given by

Fr = 1

2
λ

∫
�

∇Tmk∇m d�. (20)

In this equation, λ is a Lagrange multiplier allowing the desired level
of regularization to be applied and m are the material properties, in
this case m = ln(σ ). The gradient ∇m measures the smoothness
and the local structure of the model is measured by ∇Tmk∇m. Pe-
nalizing structure as a function of direction is achieved by using k, a
symmetric positive-definite 3×3 matrix. By this definition, k defines
a scalar product, making the integrand positive in the whole domain
and thus Fr is positive. In the case that k equals a unit-matrix, this
form of smoothness constraints reduces to the traditional gradient
smoothing. In the general form k can be formed with the use of a
rotation matrix R and a diagonal matrix � by k = RT�R, with the
diagonal matrix � containing the eigenvalues of k. The directions
of maximum and minimum smoothing coincide with the directions
of the eigenvectors associated with the largest and smallest eigen-
value of the matrix k. If inhomogeneous smoothing is desired, the
elements of k need to be a function of location � in the domain. In
one of the synthetic examples (see Fig. 8), we investigate the effect
of using inhomogeneous and/or anisotropic regularization.

In matrix notation, using the FE description m = ∑
j Q j m j ,

eq. (20) becomes

Fr = 1
2 λmTKm. (21)

The elements Ki j of the constraint matrix K are given by Ki j =∫
�

∇Qi k∇Q j d�, and K−1 is the model covariance matrix. The
vector mT = (m1, m2, . . . , m N ) = [ln(σ1), ln(σ2), . . . , ln(σN )] con-
tains the discretized material properties, where σ j denotes the con-
ductivity centred on node j, while m j = ln(σi ) is called the material
property in this paper.

Note the use of the logarithm of conductivity m in the definition of
the roughness penalty and not the conductivity σ . In the next section,
we describe a second-order inversion scheme to invert for these
material properties. If we regularize m, the resulting contributions to
the error-functional are quadratic. In this case the functional is easily
optimized with standard inversion methods (e.g. Bishop 1995). In
addition, σ can vary over many orders of magnitude, which would
make the direct regularization of σ vary over orders of magnitude.
This was considered undesirable—regularization of m does not have
this problem.

4.3.2 Penalizing deviation from a starting model

The penalty for an updated model mnew to deviate from a starting
model mold is given by

Fr = 1

2
ν

∫
�

(mnew − mold)2 d�. (22)

Using a finite-element approximation for both the old model mold

and an updated model mnew this equation becomes:

Fr = 1
2 ν(mnew − mold)TM(mnew − mold). (23)

The mass matrix M is given by Mi j = ∫
�

Qi Q j d� in eq. (27) and
M can be approximated by the row sum lumped mass matrix ML.
ML is a diagonal matrix defined by its diagonalsMLi i = ∫

�
Qi d�.

5 L E A S T - S Q U A R E S I N V E R S I O N

5.1 Inversion method

Linearizing about a starting model and using the abbreviation for
the data misfit ε = �̂ − d, the data misfit for an updated model can
be approximated by

ε(mnew) ≈ ε(mold) + J(mnew − mold). (24)

Here, mold represents the previously available best (in terms of cor-
responding data misfit) model and mnew is an updated model. The
notation ε(mnew) and ε(mold) is used to indicate that the residual-
vector ε is a function of the updated model and the old model,
respectively. The Jacobian matrix J is given by

J = ∂ε(mold)

∂mold
. (25)

The elements of the Jacobian consist of the changes in the data misfit
ε(mold) for the source–receiver pair s and r, caused by a perturbation
of the model parameters moldi , ∀i ∈ {1, 2, . . . , N }.

Using the approximation for the residuals given in eq. (24), the
error-functional F in eq. (11) becomes
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F = 1
2 [ε(mold) + J(mnew − mold)]W[ε(mold) + J(mnew − mold)]

+ 1
2 λmT

newKmnew + 1
2 ν(mnew − mold)ML(mnew − mold).

(26)

Here we have used eq. (16) for the finite-element approximation
of the data contribution Fd to the error-functional F, and eqs (21)
and (23) as a measure for the regularization penalty Fr, quantifying
the structure penalty and the penalty for deviation from a starting
model, respectively.

Differentiating eq. (26) with respect to mnew and equating to zero
(∂ F/∂m is zero at an extremum) yields

(
JTWJ + λK + νML

)
�m = ∂ F

∂mold

= −JTWTε(mold) − λKmold.

(27)

This least-squares system for model updates �m = mnew − mold is
usually referred to as Marquardt–Levenberg method. Once model
updates have been calculated, the old model is updated. If the inverse
problem is non-linear, one can re-linearize about the updated model
and calculate a further model update.

Eq. (27) can be abbreviated to:

B�m = g (28)

with

B = JTWJ + λK + νML (29)

and

g = −JTWTε(mold) − λKmold. (30)

The term νML in eq. (27) controls the magnitude of the model
update �m. If ν is chosen to be large, �m stays small. Therefore,
this part of the equation can be called a ‘creep’ term. In addition,
this term will increase the diagonal dominance of the matrix B in
eq. (28) and therefore the conditioning of the matrix B above.

5.2 Calculations involving the Jacobian

This section discusses calculations involving the Jacobian J and
the employed approximate Hessian JTWJ. The method described
is computationally efficient as neither the Jacobian J nor the ma-
trix JTWJ are explicitly formed and stored and only matrix–vector
multiplication with these matrices are required.

The Jacobian J in eq. (27) is given by

J = IT



J1

J2
...
JS


 , (31)

where IT = (I1 I2 . . . IS) and the Is for s ∈ [1, 2, . . . , S] are identity
matrices of order N × N . Each of the Js contains the change in the
potential at a node caused by a perturbation of the material property
at another node. These sensitivities of the potentials with respect to
conductivity perturbations are calculated for every source forward
problem s. The multiplication by the matrix IT affects a summation
of the individual Jacobians Js of every source experiment into the
Jacobian J for the entire data set.

The Jacobian Js of the sth-source experiment is calculated from

Js = A−1Ls (32)

in which the matrix A describing the forward problem is defined
in eq. (8), the matrix Ls is given by Ls = (ls 1ls 2 . . . ls N ) and the nth
column vector ls n is given by

ls n = ∂σn

∂mn

∂A

∂σn
�s (33)

and(
∂A

∂σn

)
i j

= −
∫

�

∇Qi Qn∇Q j d�. (34)

For the partial derivatives of the conductivity σ with respect to the
material properties m we have used ∂σn/∂mn = exp (mn), which
is exact at the nodes. Since the nodal values of σn only manifest
themselves in A in a small region in the local vicinity of node n, the
matrix ∂A/∂σn has very few non-zeros entries, i.e. of the order of 10s
per row when linear finite elements are used. Thus ls n also has only a
small number of non-zeros that makes manipulations involving ls n

computationally efficient. Matrix–vector multiplication involving
Ls or its transpose LT

s is demonstrated using the two vectors

q = (q1q2 . . . qN )T (35)

and

v = (v1v2 . . . vN )T, (36)

each of length N. The matrix–vector multiplications take on the form

Lsq = q1ls 1 + q2ls 2 + · · · + qN ls N (37)

and

LT
s v =




lT
s1v

lT
s2v
...

lT
s N v


 , (38)

for multiplication by Ls and its transpose, respectively.
Multiplications involving Ls and LT

s are required to form JTWJq.
This matrix–vector multiplication for an arbitrary vector q of length
N, becomes

JTWJq =
S∑

s=1

LT
s A

−1WsA
−1Lsq, (39)

where Ws = ∑R
r=1 W′

s r and the diagonal matrix W′
s r has diago-

nal elements wr
d i (see eqs 12 and 13). Examining eq. (39) reveals

that in order to obtain the vector JTWJq the solution of two ma-
trix equations involving the matrix A are required for each source
problem. In contrast, if the approximate eq. (26) was not employed
and the Hessian was instead used, this would require four matrix
equations involving the matrix A to be solved for each source prob-
lem. We are unclear whether using the exact Hessian, instead of this
approximation to it, would result in a more efficient algorithm.

6 N U M E R I C A L S O L U T I O N
O F T H E I N V E R S E P R O B L E M

The non-quadratic functional F defined by eq. (11) is minimized by
solving a series of least-squares (Marquardt–Levenberg, see eq. 28)
problems. After calculating a model update �m in each iteration,
the previous model is updated and the error-functional is evaluated
again with the updated model. In the presented algorithm both the
magnitude of the step length damping and the regularization can be
adjusted between the solution of each least-squares problem.
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6.1 Solution method

We use an iterative pre-conditioned conjugate gradient (PCG) so-
lution procedure (see Golub & Van Loan 1996) to solve both
the forward problem of calculating potentials for a source prob-
lem A�s = bs (see eq. 8) and the least-squares inverse problem
B�m = g (see eq. 28). The following equation exemplifies the
procedure using the least-squares inverse problem matrix equation
as an example:

for initialization:

r0 = g − B�m

Bz0 = r0 (40)

p0 = z0

and for each iteration:

αk = zk · rk

pk · Bpk

rk+1 = rk − αkBpk

�mk+1 = �mk + αkpk (41)

Bzk+1 = rk+1

βk+1 = zk+1 · rk+1

zk · rk

pk+1 = zk+1 + βk+1pk .

The vectors pk, zk and rk are working vectors used only in the PCG
algorithm above. The factors α and β are weighting and accelera-
tion factors, respectively, and the superscript k denotes the iteration
number. The pre-conditioner B is an approximation to the matrix B.
We use

B = λK + νML , (42)

as a pre-conditioner. Note that the pre-conditioner consists of the
matrices containing structural constraints and steplength damping.
The matrix B is non-singular and symmetric positive definite for a
positive non-zero ν and thus can be solved efficiently using PCG.
Typically, 20 iterations are required to solve a matrix equation in-
volving matrix B during inversion. If αn in the PCG algorithm above
is greater than 0.01 on the final PCG iteration then we assume that
the PCG is ‘converging well’. An α close to 1 usually means the
pre-conditioner is a close approximation to B. Convergence to a lo-
cal minimum is assumed when the maximum percentage difference
in the conductivity updates from two consecutive iterations is less
than a certain tolerance.

6.1.1 Choice of the steplength damping coefficient

The steplength damping coefficient ν controls the convergence of the
PCG solution method in two ways. First, ν controls the conditioning
(or diagonal dominance) of the matrix B. Without this conditioning,
B can be singular. Secondly, the pre-conditioner B contains the
diagonal matrix νML , which is also contained in B. Increasing ν

thus makes B a better approximation to B.
An initial value for the steplength damping parameter is supplied

and the level of steplength damping ν is adjusted according to the
following heuristics: (1) increase ν by a factor of 10, if either the
conjugate gradient method above is not converging well or the up-
dated model is worse than the previous model, measured by the
functional F in eq. (11); (2) if using a larger steplength damping
coefficient does not decrease the value of the functional F, the pre-
vious steplength damping coefficient is used; (3) if the conjugate

gradient solution of B�m = g is converging well and the value of
the new functional is less than the value of the old functional, then
ν is reduced by a factor of 10.

6.1.2 Choice of structure penalty level

The structure penalty level λ influences the relative importance
of the structure penalty functional to the error-functional. Using
smoothness constraints as a structural penalty, large values of λ af-
fect a smooth model and for small values of λ rough models are
allowed.

The strategy for choosing the penalty level λ we adopt is to ini-
tially use a large penalty level and gradually, at each subsequent
Marquardt–Levenberg step, relax the penalty level. This forces
large-scale structure to emerge at early iteration stages. For later
iteration stages structurally more complex models emerge. The mag-
nitude λ of the regularization is relaxed according to the expression

λl = γ λl−1, (43)

where l is the iteration level. The relaxation factor γ needs to be
chosen to be less than or equal to one.

The inversion process is stopped when the observed data are pre-
dicted to a pre-determined level or the model updates become neg-
ligibly small. At that point we have found a model that is as smooth
as possible and as rough as necessary to fit the data to a sufficient
level.

6.2 Practical computational implementation

6.2.1 Speed

To decrease the quantity of CPU usage, the potentials �s for all
source problems s are stored. Storing the potentials has the advan-
tage that for each iteration involving a matrix–vector multiplication
involving the approximate Hessian JTWJ, the potentials do not need
to be recalculated. Additionally, storing all potentials speeds up sub-
sequent solutions to a forward problem since a good starting vector
for the PCG algorithm is provided. However, if we have a very large
number of source problems then it may not be practical to store all
the potentials from the source problems (�s, ∀s). In this case we
store as many of the potentials (�s) as will fit in main memory and
recalculate the other �s as they are needed.

Storing �s also benefits inversion using conjugate gradients with
line searches, another optimization technique for minimizing the
functional F (see Bishop 1995). We use non-linear conjugate gradi-
ents with line searches for comparison with the presented algorithm
in the applications section. As a line search is performed, the mate-
rial properties change little as a minimum is approached. Thus using
the previously obtained �s as an initial guess for the iterative so-
lution for �s substantially reduces the number of iterations needed
for the PCG solution of the forward problem.

6.2.2 Memory

Assuming that each vector is of length equal to the number of nodes
N, the memory requirements of the method are: three vectors for
the coordinates (3N real numbers), 12N real numbers for the two
nested PCG solution methods, 3N real numbers for work space,
27N real numbers for the regularization matrix K (see eq. 21; the
stencil size for the hexahedral elements used here is 27 points for
approximating structure) and 27N for the matrix A (eq. 8) used
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to solve for potentials. The resulting memory requirements are thus
69N real numbers. However, if the potentials are also stored for each
source problem then one needs to also store S × N real numbers.
The potentials can be either stored or recalculated as and when
they are required in the inversion algorithm, the former is used in
the applications presented here. Note that using direct solvers, the
memory requirements for storing the (full) inverse matrix would be
N × N and are thus very much larger for large meshes.

The integer requirements of the algorithm are negligibly small
compared with the amounts of memory used for the real numbers. In
parallel inversion/modelling the nodes and associated variables local
to subdomains (see the next section) are stored on each processor,
spreading the memory load across the processors.

7 P A R A L L E L I Z A T I O N

Parallelization of the presented inversion algorithm is accomplished
by subdividing the spatial domain into P subdomains and attach-
ing a processor to each of the subdomains. Each processor is then
responsible for forming and solving the equations internal to the
subdomain it is attached to. For efficient parallel assembly of the
equations, all the elements surrounding the internal nodes of a sub-
domain are stored on the processor holding that subdomain. In this
approach no communication is necessary to assemble the equations,
at the slight expense of storing the elements that contain the halo
nodes on more than one processor. Halo nodes are the nodes that
lie at the perimeter of the subdomains in the vicinity of the sub-
domain interfaces. Thus the algorithm experiences a near-optimal
speed up of the assembly of the equations, forming the equations as
and when they are needed. We illustrate how this procedure works
using a source problem for the potential �s with N equations and N
unknowns. The parallelization of the inverse problem works in ex-
actly the same way. Recall the discretized form of Laplace equation
(see eq. 8):

A�s = bs . (44)

This system of equations can be written in a partitioned form as:


A11 · · · A1P
...

. . .
...

AP1 · · · APP







�s 1
...

�sP


 =




bs 1
...

bsP


 (45)

and can be solved iteratively via a PCG procedure similar to that
above for the inverse problem. Since the Ai i are principal submatri-
ces of a symmetric positive-definite matrix, they are also symmetric
positive definite and so

A =




A11 0 · · · 0
0 A22 · · · 0
...

. . .
...

0 · · · 0 APP


 (46)

is therefore a viable pre-conditioner. A single domain iteration thus
involves the solution of a system of equations of the form

Aẑ = r̂ (47)

at the pre-conditioning stage. Eq. (47) contains P independent sub-
matrices, and equations containing A can be solved independently
on separate processors. Once the pre-conditioning step in eq. (47)
has been performed, the values of ẑ at the halo nodes of a subdomain
are passed from the processor holding that subdomain to processors
holding the neighbouring subdomains. Apart from performing the
global vector dot products involving vectors spread (fragmented)

across processors (subdomains) and determining the termination
within the PCG algorithms, this is the only time communication is
needed between the processors.

The solution of the pre-conditioner Aẑ = r̂ is approximated
with m-step parametrized (Adams 1983) forward backward Gauss–
Seidel (FBGS) or symmetric successive over relaxation (SSOR)
pre-conditioning (Golub & Van Loan 1996). These form an alterna-
tive to the more commonly used incomplete Choleski factorization
method. For example, two-step FBGS pre-conditioning involves two
FBGS iterations starting from a guess of zero and SSOR is similar
to FBGS but with a relaxation parameter. For parallel problems typ-
ically parametrized five-step FBGS pre-conditioning (Adams 1983)
is used within each subdomain to pre-condition the PCG method.
This method has the advantage that the quantity of work done in
each subdomain can be predicted (in contrast to solving the subdo-
main problems iteratively allowing them to converge) and therefore
the load on each processor can be balanced, for example by making
the number of nodes on each processor approximately equal.

A precursor to parallelizing the FEM method is that the domain
spanned by the finite-element mesh must be partitioned into sub-
domains. Ideally, this should be accomplished in a manner that si-
multaneously balances the load associated with each subdomain
and minimizes the communication between the subdomains. Parti-
tioning unstructured meshes, the situation here, is achieved using
the recall mechanism of a mean field neural network (Pain et al.
1999). To exemplify the domain decomposition method, the five-
prism problem (see Section 8.3), discretized with 19 025 nodes has
been decomposed into 16 subdomains. Each subdomain contains
between 1128 and 1274 nodes and there are 30 677 edges of the
finite-element stencil between the subdomains, which reflects the
communication cost between the subdomains. The domain decom-
position is shown in Fig. 4.

7.1 Performance test of the parallel implementation

Table 1 shows the results of a performance test of the parallel per-
formance of the presented algorithm for one Marquardt–Levenberg
iteration on a shared memory computer comprising of four Alpha
ev6 833 MHz processors and on a distributed cluster of 16 Alpha
ev6 667 MHz processors. We test the performance on both machines
as a function of the number of processors and the solver parameters.

Figure 4. Decomposition of FE mesh for parallel computation. The mesh
shown above is the mesh used in the inversion of the five-prism problem.
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Table 1. Table showing the parallel performance of the inversion algorithm for a single Marquardt–Levenberg iteration
and for the 3-D single block inversion problem. The performance (CPU and wall clock time in seconds) of the algorithm
as functions of computer architecture (shared and distributed memory) and number of processors. We also explore the
effect of solver options (number of SSOR and FBGS iterations, SSOR with relaxation, FBGS with parametrization) on
the time used for one iteration.

Computer No of procs SSOR its Relax Parametrization CPU of proc. 1 Wall clock time

(1) Shared 1 1 1.0 No 4199 4372
(2) Shared 2 1 1.0 No 2332 2553
(3) Shared 4 1 1.0 No 1472 1937
(4) Shared 1 5 1.0 Yes 5257 5406
(5) Shared 4 5 1.0 Yes 1396 1753
(6) Shared 4 5 1.5 No 1266 1608
(7) Shared 4 1 1.5 No 1572 2096
(8) Distributed 1 1 1.0 No 4853 4955
(9) Distributed 4 1 1.0 No 1290 1857

(10) Distributed 16 1 1.0 No 358 1276
(11) Distributed 1 1 1.5 No 4855 4956
(12) Distributed 1 5 1.5 No 4586 4681
(13) Distributed 16 5 1.0 Yes 450 1270
(14) Distributed 16 5 1.5 No 431 1283

The different architectures of the two parallel machines, necessitate
different solver options. The communication speed of the shared
memory computer is superior to that of a distributed memory cluster,
which only allows communication between distributed processors
via a 100 Mb s−1 switch. Thus it is advisable to minimize commu-
nication between processor on a distributed memory computer. We
achieve this by adjusting solver options (i.e. the number of SSOR
iterations and the relaxation parameter), to vary the amount of work
before processors need to communicate.

7.1.1 Speedup with number of processors

Table 1 lists the wall clock time and the CPU time for processor 1
of the employed P processors used for one Marquardt–Levenberg
iteration. The wall clock time includes the CPU time used for nu-
merical calculations, the time it takes to read and write disk files
and the time necessary for communication between processors. As-
suming perfect load balancing and neglecting the time used for disk
access, the difference between the wall clock time and the listed CPU
time equals the time used for communication. Thus, the difference
between the wall clock time and the CPU time for processor one
shows how the performance of the algorithm is affected owing to
communication costs as the fragmentation of the problem increases
with the number of subdomains/processors.

We note, that the CPU time of processor 1 is approximately that
of the other processors since there is good load balancing with a
maximum of 10 per cent difference in the number of nodes on
each processor and the cost of each SSOR iteration and matrix–
vector multiplication is approximately proportional to the number
of nodes. The matrix manipulations dominate the CPU time of the
inversion.

Both parallel computers exhibit a nearly linear speed up in terms
of CPU time used (tests 1–3 for the shared memory computer and
tests 8–10 for the distributed memory computer in Table 1). For
example, using the CPU times measured on the distributed memory
parallel computer (using one SSOR relaxation step with a relaxation
parameter of w = 1), the CPU time is reduced by a factor of 3.8 by
using four processors instead of one. A further CPU time reduction
by a factor of 3.6 is observed when employing 16 processors instead
of four.

On the shared memory computer, this speed-up in terms of CPU
time used translates into a marked reduction of total computation
time, measured by the wall clock-time. For example in tests 3, using
four processors on the shared memory computer, the wall clock time
equals 1937 s, out of which 1472 s are spent for numerical calcula-
tions on the processors, i.e. a total of 76 per cent of the wall clock
time is taken up by the CPU. On the distributed parallel computer
only 34 per cent of the wall clock time is taken up by CPU (see
test 10) and the reduction in total computation time resulting from
using 16 processors instead of one is only a factor of 4. This be-
haviour reflects the large amount of time spent for communication
via the slow 100 Mb s−1 switch. However, for inversion problems
using larger meshes, the communication overhead is smaller than
in this test case. In this example, the ratio of the number of halo
nodes, involved in communication between processors, to the num-
ber of nodes in each subdomain is high. For larger meshes, the ratio
between the number of halo nodes and nodes in each subdomain
is smaller and relatively more time is spent on each CPU before
communicating the results. For example, we have seen 85 per cent
CPU usage for a 500 000 node problem. This indicates that dis-
tributed memory parallel computers perform well for large-scale
problems.

7.1.2 Choice of solver options

In this section we discuss the possibility of saving computation time
by adjusting solver options. In our computational framework we
have two options available that can influence computation time.

First, the number of iterations at the pre-conditioning stage on
each processor (using SSOR or FBGS solvers for the solution of
the equation involving the pre-conditioner A) can be increased. In
so doing, the amount of work done on each processor before the
processors communicate is increased and communication costs are
reduced. In Table 1 CPU time usage and wall clock time are listed
for a series of tests using either one or five SSOR iterations (Adams
1983). Using five SSOR iterations, the time spent on communication
between processors (i.e. the difference between wall clock time and
CPU time) is reduced for both parallel computers (tests 3, 5, 6
and 7 on the shared memory computer and tests 10, 13 and 14
on the distributed memory computer). The saving in wall clock

C© 2002 RAS, GJI, 151, 710–728



Multidimensional resistivity inversion 721

time on the shared memory computer is of the order of 15 per cent
(a reduction in time from 1937 to 1608 s in tests 3 and 6). On the
shared memory computer the savings in communication time are
offset by the increase in CPU time, and the resulting wall clock time
is almost independent of the number of SSOR iterations.

The second solver option to fine-tune the performance of the
solver involves adjusting the relaxation parameter w used with SSOR
iteration (w = 1 or 1.5, see Golub & Van Loan 1996). In addition,
FBGS iterations are used with parametrization of the resulting series
expansion (see Adams 1983). Timing results from these tests are
again listed in Table 1. The changes in both CPU time and wall clock
time caused by changes in relaxation w or parametrization (using
the FBGS method) are small compared with the total time used and
no clear pattern in computation time savings can be discerned.

The achieved speed-up on the shared memory computer as a
result of increasing the number of SSOR iterations, the indepen-
dence of run-time on number of SSOR relaxation on the distributed
memory computer and the marginal run-time differences caused by
changes in the relaxation parameter w make it difficult to draw gen-
eral conclusions and we recommend that similar tests be performed
for every problem and a given parallel machine. However, if there
is a reluctance to perform such tests then five SSOR iteration and
w = 1 would not be too far from optimal and could be used.

7.1.3 Discussion of the future potential of the parallel method

We have presented results for meshes and problems comparable to
those solved in the literature using other methods. However, the
method presented here can solve larger problems (in terms of num-
bers of grid points) than any other method presented so far in the
literature on DC geo-electrical inversion, with inversion involving
millions of nodes becoming feasible. In addition, the use of unstruc-
tured meshes provides the flexibility to use large domains without a
large CPU penalization, since large elements can be used in domain
regions, where both the material properties and the potential field
vary slowly. For example, we use this quality of unstructured finite
elements for imposing Dirichlet boundary conditions at a large dis-
tance. For the future, we envision remeshing according to sensitivity,
placing small elements only in regions where the resolution is high
and needed.

We note that this method may not be as fast as other highly opti-
mized methods for regular meshes. However, it is memory efficient
and uses efficient scalable iterative solvers. The parallel solver has
a reduced communication overhead, in terms of percentage of run
time, for larger problems.

We further note that the domain decomposition methods may not
be the most efficient method of parallelizing a multisource problem.
For these problems, it would be particularly efficient to send each
source problem to a separate processor that can then be solved in-
dependently. However, for the large parallel problems of the future
each of these source problems may need to be parallelized using
a domain decomposition solution algorithm such as that described
above. Furthermore, for a fast communicating parallel computer
parallelization by the domain decomposition method is nearly as
efficient as parallelization by subdivision into source problems.

8 A P P L I C A T I O N S

In this section we present three synthetic data inversion tests. In a first
test (Section 8.1) we use the presented algorithm and compare the
resulting inversion model with a model derived using a non-linear
conjugate gradient search. This example is used to demonstrate the

advantage of treating regularization implicitly. In the following two
tests, we use synthetic models from the literature. In the inversion
of the test case of one single conductive prism at depth (Section 8.2)
we explore the influence of various forms of model regularization.
The tests clearly show the benefits of the newly developed regular-
ization functional. In the last example, the test model contains five
prism-shaped anomalies and we explore the influence of weighting
data points in the error-functional according to their amplitude. We
show that the use of resistances and appropriate data weighting has
the same performance characteristics as using apparent resistivities
as input data. We have shown in Section 2 that the calculation of
apparent resistivities can become unstable for unfortunate but en-
tirely reasonable electrode configurations. Using resistances does
not suffer from this disadvantage. We conclude that we have found
a valuable alternative to using apparent resistivities.

8.1 2-D inversion—a comparison of methods

In this section we compare the performance of the method pre-
sented here with that of non-linear conjugate gradients with line
searches (Bishop 1995). Using both methods we invert syntheti-
cally generated data from a model containing an L-shaped region
with a conductivity of 2 S m−1. The remainder of the domain has
a conductivity of 1 S m−1. The functional Fd given by eq. (12) is
used to gauge data miss-fit. As far as possible the two inversions are
performed using the same parameters. For both methods a constant
regularization coefficient of λ = 0.01 is applied. The starting model
for both inversions is the background conductivity of 1 S m−1.

The extent of the 2-D domain is x ∈ [−100, 150] and y ∈
[−100, 150] with an infinite extent in the z-direction. The coor-
dinates and dimensions of the model are in metres (m). The extent
of the modelling domain is large enough to make the imposition
of zero Dirichlet boundary conditions for the potentials valid. Each
element in the inner region defined by x ∈ [0, 50] and y ∈ [0, 50]
has dimensions of 1 × 1 m2. A graphical representation of the FE
mesh employed is given in Fig. 5. On the left-hand side of the figure,
the whole domain is shown and the exponential coarsening can be
seen. On the right-hand side, a close-up view of the inner, regular
part of the mesh is shown. The L-shaped anomaly is seen in the
true model shown in Fig. 6. The coordinates of the corner points
of the L-shaped anomaly are (x, y) =: (15, 25), (18, 25), (18, 35),
(35, 35), (35, 38) and (15, 38).

We use 18 sources and 18 receivers in a pole–pole configuration,
roughly simulating a cross-hole geometry. Synthetic data are gen-
erated from this model for each source and each receiver (except
the one where the source and receiver coincide), resulting in a total
of 18 × 17 simulated measurements. Nine electrodes are at a con-
stant x-coordinate of x = 5 m, with y-coordinates ranging from 5
to 45 m in increments of 5 m and nine electrodes are at a constant
x-coordinate of x = 45 m, with y-coordinates ranging from 5 to
45 m in increments of 5 m.

Figs 6(b) and (c) compare the fully converged inversion results
for both methods against the true model given in Fig. 6(a). The
number of elements and nodes for this problem are 4500 and 4601,
respectively, and as with all inversions presented here the same mesh
is used to generate the synthetic data and to perform the inversions.

The non-linear conjugate gradient method adjusts the material
properties mainly around the sources and receivers, since it is here
that the sensitivities (given by the elements of the Jacobian in eq. 25)
are largest and the non-linear conjugate method is guided mainly
by the gradient. For example, on the first iteration the gradient
contains no regularization contribution since the initial model is
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50m50m

(a) (b)

Figure 5. (a) Mesh used in 2-D inversion. Note the exponential coarsening towards the boundaries of the modelling domain. (b) Detailed view of the region
of the modelling domain containing structure.

homogeneous. Thus the model after the first non-linear conjugate
gradient iteration is not influenced by regularization and the ‘dam-
age’ caused by a step in a structurally unconstrained direction re-
mains throughout the inversion.

In contrast, the least-squares method described in this paper treats
the regularization terms implicitly. For example, if the regulariza-
tion were chosen to be large, then the resulting model after each
iteration would be a uniform field. It is this implicitness that al-
lows this method to modify the material properties in the L-shaped
region on the first iteration. Both methods converged at 30 itera-
tions to an approximately equally small data miss-fit F defined by
eq. (12).

At this point we have found two models that predict the data
equally well and for which the employed inversion algorithm has
converged to a local minimum. More iterations do not change
the inversion model significantly. This is a demonstration of the
non-uniqueness of the solution to the inverse problem. The non-
uniqueness of the inversion model is certainly caused by insuf-
ficient data: we invert 306 data points (of which only 153 are
independent) for 4601 model parameters. This non-uniqueness is
entirely expected. However, the presented example shows that in-
version methods that treat regularization implicitly, are better suited
for finding the class of model requested by the structural constraints.

8.2 Inversion of a 3-D single prism at depth

In this section we describe the inversion for a single conductive prism
at depth using synthetically generated data. We use this example to
show the effectiveness of using model covariance information to
encourage the presented inversion algorithm to preferentially create
structure in certain parts of the model.

The model geometry and a summary of the FE mesh employed are
given in Table 2. A uniform mesh is used in the region containing
the anomaly and the electrodes and an exponentially coarsening
mesh is used away from this region. The mesh is shown in Fig. 7(a)
and the synthetic 3-D subsurface model with source and receiver
locations indicated is shown in Fig. 7(b). A rectangular array of

5 × 5 electrodes is deployed on the surface of the domain and an
additional five electrodes are deployed in a borehole located in the
corner of the surface array. We calculate synthetic data in the pole–
pole configuration. For a given source problem, potentials at all
receivers are observed with the exception of the receiver situated
at the source. A vertical slice along the plane x = 125 m through
the true subsurface model, is depicted in Fig. 8(a) together with the
colour bar used for plotting the true model and inversion models.
This model was advocated in Zhang et al. (1995) to assess their
inversion algorithm.

By applying prior knowledge about the smoothness in different
parts of the model or in different direction of the model, the inversion
process can be guided towards a desired model. We use the functional
Fr presented in eqs (20) and (21) to impose the desired structural
constraints. In Fig. 8 the inversion results using a series of different
tensors k, resulting in different model covariance matrices K−1, are
used and the inversion models are compared.

8.2.1 Unconstrained inversion

In a first test, we invert without applying the smoothness constraints.
This corresponds to a covariance matrix filled with all zeros. The
resulting inversion model after ten iterations is shown in Fig. 8(b) to-
gether with a plot of the error-functional versus number of iterations.
Structure in the inversion model is concentrated near the surface
where the sensitivities of the error-functional to changes in conduc-
tivity are largest. The final inversion model does not resemble the
true model, even though the data-misfit is markedly reduced. The
error-functional has reached a plateau—more inversion iterations
do not reduce the error-functional further. However, the minimum
found by this inversion is not a global minimum; the smoothness
constrained inversions produce models that predict the observed
data with a smaller misfit than the unconstrained inversion.

The unconstrained inversion does not find a good model for the
same reasons that the non-linear conjugate gradient method pro-
duces a poor quality model. This is because the inversion is largely
guided by the gradient ∂ F/∂ ln(σ ), which is largest near sources
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Table 2. Model description of a one-prism inversion. This model is suggested in Zhang et al.
(1995). See Fig. 7 for a graphical representation of the FE mesh and the model.

Modelling domain (m) x ∈ [−150, 400], y ∈ [−150, 400], z ∈ [−300, 0]
Inner region (m) x ∈ [0, 250], y ∈ [0, 250], z ∈ [−100, 0]
Dimension of elements 6.25 × 6.25 × 6.25 m3

Total number of elements 56 320
Total number of nodes 60 743
Background conductivity σ = 0.01 S

m (=100 � m)
Prism anomaly x ∈ [75, 175], y ∈ [75, 175], z ∈ [−56.25, −31.25]

σ = 0.1 S
m (=10� m)

Electrodes
5 × 5 surface electrodes 50 m apart in x- and y-directions starting

at corner point (25, 25, 0)
Five borehole electrodes x = 225 m, ∀ electrodes

y = 225 m, ∀ electrodes
z = [−87.5, −68.75, −50.0, −31.25, −12.5]

and receivers. Therefore, the largest adjustments to the conductivity
distribution are made near to the surface. This initially decreases
the data-misfit, but prohibits updates of the model at depth in later
iterations and the search algorithm is guided into a local minimum
(see Table 3 for a listing of data misfit versus the number of least-
squares iterations).

8.2.2 Inversion using homogeneous, isotropic constraints

The results shown in Fig. 8(c) are obtained with a homogeneous
isotropic regularization based on the squared gradient, as described
in Section 4.3. The strength of the regularization is λ = 1.0 (see
eq. 21), which is reduced by a factor of γ = 1

3 from one least-squares
inversion iteration to the next (see eq. 43). The inversion procedure
starts off with large regularization, resulting in materials that are
relatively uniform. As λ is reduced, more structure can emerge in
the material properties. The resulting model (see Fig. 8c), is much
closer to the true model than the inversion model produced without
regularization. However, the inversion model in Fig. 8(c) still fails to
reproduce deep conductivity information. This behaviour is caused
by the large values of the sensitivities near the surface, where most
of the sources and receivers are located, and the rapid decay of
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Figure 7. FE mesh and model for inversion of a one-block model. (a) Finite-element mesh. Note the fine mesh in the inner region and the coarsening of the
mesh towards the boundary. (b) Model used for inversion tests. Surface electrodes are denoted by circles and borehole electrodes are denoted by crosses. The
outlines of the prism-shaped anomaly are projected on to the coordinate planes to facilitate reading of the prism size. This model is proposed in Zhang et al.
(1995).

sensitivity with increasing depth. This affects large adjustments to
model parameters near the surface, where sensitivities are large. At
depth, where the sensitivities are small, only minor model changes
are made. Again, the inversion process is trapped in a local minimum
(see Table 3).

8.2.3 Inversion using depth-dependent, isotropic constraints

One way to assist an inversion scheme in adjusting model parameters
in regions of the model space with small sensitivities is to increase
sensitivities by some physically motivated empirical rule (e.g. Zhang
et al. 1995; Li & Oldenburg 1996). Another way to achieve the same
goal is to encourage structure to be created by including model
covariance information in certain parts of the model space. This is
the approach adopted here. It is realized by using spatially varying
smoothness constraints. In the presented case, large smoothness
constraints are imposed near sources and receivers that are mostly
situated at the surface, discouraging structure to be created in areas
where sensitivities are large. For increasing depths, the smoothness
constraints are relaxed, thus allowing structure to be created.

We use an exponentially decaying function with depth with a fixed
lower limit to improve depth-dependent smoothness constraints. The
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Table 3. Error-functional of a one-prism inversion with number of iterations for various smoothing strategies. For each strategy, the value of
the error-functional before (Fd) and after (F) imposing the roughness penalty is tabulated. The different strategies used are: (1) no smoothness
constraints, (2) homogeneous, isotropic smoothness constraints, (3) depth-dependent, isotropic smoothness constraints and (4) depth-dependent,
directionally varying smoothness constraints.

Iteration Unconstrained Homogeneous, Depth dependent, Depth dependent,
inversion isotropic constraints isotropic constraints anisotropic constraints

Fd F Fd F Fd F Fd F

0 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119
1 0.982E−01 0.982E−01 0.117 0.117 0.116 0.117 0.116 0.117
2 0.398E−01 0.398E−01 0.103 0.103 0.101 0.102 0.100 0.102
3 0.655E−02 0.655E−02 0.775E−01 0.779E−01 0.729E−02 0.758E−01 0.721E−01 0.754E−01
4 0.188E−02 0.188E−02 0.713E−01 0.730E−01 0.580E−01 0.647E−01 0.564E−01 0.636E−01
5 0.157E−02 0.157E−02 0.630E−01 0.679E−01 0.406E−01 0.512E−01 0.379E−01 0.491E−01
6 0.120E−02 0.120E−02 0.484E−01 0.571E−01 0.191E−01 0.317E−01 0.170E−01 0.291E−01
7 0.112E−02 0.112E−02 0.264E−01 0.396E−01 0.660E−02 0.146E−01 0.565E−02 0.130E−01
8 0.112E−02 0.112E−02 0.869E−02 0.192E−01 0.212E−02 0.550E−02 0.182E−02 0.474E−02
9 0.106E−02 0.106E−02 0.267E−02 0.725E−02 0.117E−02 0.215E−02 0.100E−02 0.182E−02

10 0.106E−02 0.106E−02 0.119E−02 0.269E−02 0.599E−03 0.893E−03 0.499E−03 0.736E−03

isotropic diffusion tensor (see eq. 20) as a function of depth ‘z’ is
defined by its diagonal entries:

k j j (z) = (1 − 0.02) exp(−0.1|z|) + 0.02, (48)

and all off-diagonal elements of the tensor are set to zero. The regu-
larization magnitude defined by k j j decays exponentially with depth
to a lower limit of 0.02. In using this function for the diagonal ten-
sor elements, structure in the shallow part of the model is penalized
more strongly than structure in the lower part of the model. The
roughness penalty level λ is again relaxed after each iteration as
described previously.

This choice of roughness penalty successfully discourages con-
ductivities from becoming non-uniform near sources and receivers
and forces the model conductivities to adjust at depth. The resulting
and much improved inversion result is shown in Fig. 8(d). The mis-
fit Fd (see eq. 12) between the data predicted by this model and the
observed ‘synthetic’ data has improved by a factor of 2 compared
with the misfit calculated using the unconstrained inversion (see
Table 3). Furthermore, the subsurface model derived from inver-
sion with depth-dependent smoothing is a lot closer to the true
model than the inversion model using no regularization or ho-
mogeneous smoothing. This demonstrates the power and advan-
tages of including model-covariance information into the inversion
procedure.

8.2.4 Inversion using depth-dependent, anisotropic constraints

Assuming a horizontally layered subsurface, the model is smooth
in horizontal directions and rough in the vertical direction. In other
words, we can assume anisotropic smoothness constraints. In prac-
tice this is realized by making use of the diffusion tensor k in eq. (20).
In this example, we desire a smooth model in x- and y-directions but
allow a rough model in the z-direction. Besides anisotropic smooth-
ness constraints, the same depth-dependent smoothness constraints
as in the previous example are imposed. The diagonal elements of
the diffusion tensor are defined by

k j j (z) = k̂ j j [(1 − 0.02) exp(−0.1|z|) + 0.02], (49)

with k̂11 = k̂22 = 1 and k̂33 = 0.001, where the 1, 2 and 3 in-
dices refer to the x-, y- and z-coordinates, respectively. Note that the
smoothness constraints in the horizontal x- and y-directions are a fac-

tor of 1000 stronger than the constraints in the vertical z-direction.
The off-diagonal entries of the diffusion tensor are zero.

The resulting inversion model is shown in Fig. 8(e). The shape of
the conductive prism is recovered remarkably well. Note especially
the flat top surface with a large conductivity contrast of the recovered
conductive structure at exactly the same depth as the top of the prism
in the true model. This large change of conductivity in the z-direction
is a direct consequence of the anisotropic smoothness constraints,
allowing large contrasts in z-direction.

This example clearly demonstrates the need for using appropri-
ate model-covariance information. Without any additional guidance
in the form of smoothness constraints, the inversion procedure pro-
duces a skewed subsurface model that hardly resembles the true sub-
surface distribution of conductivities. Additionally, this test demon-
strates again how the minimization procedure can be trapped in
a local minimum when no model covariance information is used.
The use of standard smoothness constraints, that is smoothness con-
straints that are the same in all regions of the model and that are not
directionally varying, results in a model with a slightly improved
error-functional (see Table 3), and a slightly improved subsurface
model. However, only the use of spatially varying smoothness con-
straints, ‘boosting’ sensitivities at depth, enabled a good reconstruc-
tion of the true subsurface.

8.3 Five-prism inversion

In this section a further inversion test using synthetic data is pre-
sented. We aim to show the influence of the weights w̃r

s applied to
the individual contributions to the error-functional (see eqs 12 and
13). The observed voltages (and resistances) in geophysical electri-
cal experiments vary over orders of magnitude. It stands to reason
that large data values will form a larger contribution to the error-
functional than small data values. However, the small data values
possibly contain important information. For example in pole–pole
surveys, large potentials are encountered when sources and receivers
are closely spaced and therefore the model is especially sensitive to
the small region between and around the source and receiver. Small
potentials at receivers are observed for large source–receiver spac-
ings. These potentials (data) are sensitive to changes in conductivity
over a much larger part of the region under investigation. Therefore,
it can be desirable to give greater ‘importance’ to these data. This
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Table 4. Model description of five-prism inversion. This model is suggested by Li & Oldenburg
(1994). See Fig. 9 for a graphical representation of the FE mesh and the model.

Modelling domain (m) x ∈ [−600, 1600], y ∈ [−600, 1600], z ∈ [−800, 0]
Inner region (m) x ∈ [0, 1000], y ∈ [0, 1000], z ∈ [−500, 0]
Dimension of elements 50 × 50 × 50 m3

Total number of elements 17 280
Total number of nodes 19 025
Background conductivity σ = 0.001 S

m (=1000 �m)
Prism 1 x ∈ [250, 350], y ∈ [250, 350], z ∈ [−25, 0]

σ = 0.005 S
m (=200 �m)

Prism 2 x ∈ [300, 700], y ∈ [400, 500], z ∈ [−25, 0]
σ = 0.01 S

m : (=100 �m)
Prism 3 x ∈ [350, 700], y ∈ [650, 700], z ∈ [−25, 0]

σ = 0.0005 S
m (=2000 �m)

Prism 4 x ∈ [300, 650], y ∈ [300, 400], z ∈ [−250, −50]
σ = 0.0005 S

m (=2000 �m)
Prism 5 x ∈ [400, 500], y ∈ [500, 700], z ∈ [−275, −75]

σ = 0.01 S
m (=100 �m)

Electrodes
9 × 9 surface electrodes (m) 100 m apart in x- and y-directions, starting

at corner point (100, 100, 0)
4 × 10 borehole electrodes (m) (100, 100, zi ), (100, 900, zi ),

(900, 100, zi ), (900, 900, zi )
with zi = [−500, −450, −400, . . . , −50]

is achieved by choosing the weight w̃r
s proportional to the inverse

of the observed data. This has a similar effect as using apparent
resistivities as data.

To investigate the influence of the weights w̃r
s , we use the five-

prism model proposed by Li & Oldenburg (1994) and Ellis &
Oldenburg (1994). Three near-surface prisms with resistivities of
100, 200 and 2000 �m and two prisms at depth with resistivities
of 100 and 2000 �m are embedded in a homogeneous background
with a resistivity of 1000 �m. For further details of the model and
the survey geometry see Table 4. The FE mesh used for the gen-
eration of synthetic pole–pole data and for inversion is shown in
Fig. 9(a) and the geometry of the experiment is shown in Fig. 9(b).

In Fig. 10 we compare the true subsurface model with three in-
version results. In one of the inversions, all weights are chosen to

(a) (b)

Figure 9. FE mesh and model for inversion of a five-block model. (a) Finite-element mesh. Note the fine mesh in the inner region and the coarsening of the
mesh towards the boundary. (b) Model used for inversion test. Surface electrodes are denoted by circles and borehole electrodes are denoted by crosses. This
model is proposed by Li & Oldenburg (1994).

be w̃r
s = 1 (Fig. 10b). Note that at the surface in Fig. 10(b) the data

has been overfitted resulting in a rough inversion model. The other
two inversions are obtained using the weights w̃r

s = 1/(dr
s )2, where

dr
s is the observed data (see eq. 12).

The inversion result using data weighting according to amplitude
(Fig. 10c) is closer to the true model (Fig. 10a) than the inversion
result calculated using uniform data weights (Fig. 10b). In the lowest
horizontal slice at a depth of −200 m, both the conductive prism
and the resistive prism are markedly better resolved by the inversion
employing the data weighting. Adjusting the weights in the error-
functional also adjust the sensitivities, (or the Jacobian). Giving
large weights to residuals from data points with a small amplitude
will generally emphasize residuals from source–receiver pairs with
a long spacing. Sensitivities for these data points show, that they
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are influenced noticeably by conductivities in the bottom part of the
model. Thus emphasizing the contributions from these data results
in better resolution at depth.

We note, that in the case of pole–pole data, the proposed use of
data weights w̃r

s = 1/(dr
s )2 is similar to using apparent resistivities as

input data. For homogeneous subsurface models, the two approaches
are identical. However, our approach can work robustly without ad-
verse geometrical effects for four-pole problems. We have shown in
Section 2 that geometry factors and observed voltages can become
very small for four-pole geometries, causing problems in the calcula-
tion of apparent resistivities since a division by a very small number
is involved. In the case of the proposed data weighting scheme, the
weights can be chosen in such a way that data weights for small data
are large, while ensuring that the weights cannot grow out of bounds.
Here we have satisfied our aim of demonstrating the viability of our
approach of using resistance as input data and using data-dependent
weighting to account for large differences in the magnitude of input
data.

In the previous section, we demonstrated the advantage of using
depth-dependent regularization. We again apply depth-dependent
smoothness constraints, using a diffusion tensor (see eq. 20) with
diagonal elements given by

k j j (z) = (1 − 0.02) exp

(−|z|
25

)
+ 0.02, ∀i ∈ {1, 2, 3}, (50)

and zero entries for the off-diagonal entries. This tensor affects
isotropic, depth-dependent smoothness constraints. The resulting
inversion model shows a close similarity with the true model. The
inversion model shows a marked increase in resolution at depth (see
Fig. 10d). We have also used anisotropic regularization as used for
the previous problem and the inversion result is marginally better
than the result presented here, particularly at depth. This seems to
suggest that anisotropic constraints may be optimal for inversion
with mainly surface electrodes.

9 C O N C L U S I O N S

We have presented a multidimensional algorithm for solving the for-
ward and inverse problem of geo-electrical experiments. The pro-
posed method has been used to invert two problems proposed in the
published literature (see Li & Oldenburg 1994; Ellis & Oldenburg
1994; Zhang et al. 1995). The inversion images produced in this
work are of similar quality to those given in the literature. Using
these examples we have explored in depth: (1) the influence of
smoothing operators (by use of the model-covariance matrix) and
(2) data weights (by use of the data-covariance matrix) on the inver-
sion results. Both methods can be used to improve model resolution
away from sources and receivers. Special attention has been given to
the construction of the operator measuring structure (see eq. 20). By
allowing directionally varying smoothness constraints at every loca-
tion in the modelling domain (anisotropic smoothness constraints)
and also allowing spatially varying smoothness constraints (inho-
mogeneous smoothness constraints) a great degree of control can
be exerted on the solution of the (ill-posed) inverse problem.

Furthermore, we have demonstrated the importance of treating
the regularization terms implicitly by comparing the performance
of the advocated least-squares method (Marquardt–Levenberg-type
approach) solved with pre-conditioned conjugate gradients, with a
non-linear conjugate gradient method. The latter method performed
poorly because of the explicit treatment of regularization. In fact,
relaxing the magnitude of the regularization, from large to small

values during the inversion, is the key to the success of the proposed
method.

We believe that 2-D inversion and associated approximations will
increasingly be found to be lacking the power to describe real geo-
physical imaging problems—providing the motivation for this work.
The necessary efficiency for these computationally intensive prob-
lems has been achieved with appropriate pre-conditioning and adap-
tive control of the diagonal dominance of the least-squares problem
and the implementation of these techniques on parallel computers.
The meshing flexibility of the finite-element method and associated
representations of electrical conductivity and potential will become
increasingly important, for example to capture surface topography
and for computational economy in order to place the mesh resolution
in regions where it is required.

A C K N O W L E D G M E N T S

The authors would like to thank Andrew Binley of Lancaster
University, UK for advice provided at a particularly difficult stage
in this work, Bo Holm Jacobson of Aarhus University, Denmark for
constructive comments on this work, Gerard Gormon for advice on
the parallel computations, Adrian Umpleby for providing computa-
tional support and the reviewers for greatly improving the content
of this paper.

R E F E R E N C E S

Adams, L., 1983. An m-step pre-conditioned conjugate gradient method for
parallel computations, in IEEE Parallel Computation Conference Pro-
ceedings, pp. 36–43, IEEE, Bellaire, MI.

Allaud, L. & Martin, M., 1977. Schlumberger, the History of a Technique,
Wiley, New York.

Beard, L.P., Hohmann, G.W. & Tripp, A., 1996. Fast resistivity/IP inversion
using a low-contrast approximation, Geophysics, 61, 169–179.

Binley, A., Shaw, B. & Henry-Poulter, S., 1996. Flow pathways in porous
media: electrical resistance tomography and dye staining image verifica-
tion, Meas. Sci. Technol., 7, 384–390.

Bishop, C.M., 1995. Neural Networks for Pattern Recognition, Oxford
University Press, Oxford.

Biswas, D. & Bhattacharya, B.B., 1998. 2-D electrical modeling over undu-
lated topography, Geophysics, 63, 898–907.

Cheney, M., Isaacson, D. & Newell, J.C., 1999. Electrical impedance tomog-
raphy, SIAM Rev., 41, 85–101.

Constable, S.C., Parker, R.L. & Constable, C.G., 1987. Occam’s inversion:
a practical algorithm for generating smooth models from electromagnetic
data, Geophysics, 52, 289–300.

Daily, W., Ramirez, A., LaBreque, D. & Nitao, J., 1992. Electrical resistivity
tomography of vadose water movement, Water Resources Res., 28, 1429–
1442.

Dey, A. & Morrison, H.F., 1979a. Resistivity modeling for arbitrarily shaped
two-dimensional structures, Geophys. Prospect., 27, 106–136.

Dey, A. & Morrison, H.F., 1979b. Resistivity modeling for arbitrarily shaped
three-dimensional structures, Geophysics, 44, 753–780.

Ellis, R.G. & Oldenburg, D.W., 1994. The pole–pole 3-D DC-resistivity
inverse problem: a conjugate-gradient approach, Geophys. J. Int., 119,
187–194.

Fox, R.C., Hohmann, G.W., J, K.T. & Rijo, L., 1980. Topographic effects in
resistivity and induced-polarization surveys, Geophysics, 45, 75–93.

Golub, G. & Van Loan, C., 1996. Matrix Computations, 3rd edn, Johns
Hopkins University Press, London.

Herwanger, J., 2001. Seismic and electric crosshole tomography for fracture
detection and characterization, PhD thesis, Imperial College of Science,
Technology and Medicine, London.

LaBreque, D.J., Miletto, M., Daily, W., Ramirez, A. & Owen, E., 1996.

C© 2002 RAS, GJI, 151, 710–728



728 C. C. Pain et al.

The effects of noise on Occam’s inversion of resistivity tomography data,
Geophysics, 61, 538–548.

Li, Y. & Oldenburg, D.W., 1994. Inversion of 3-d DC resistivity data using
approximate inverse mapping, Geophys. J. Int., 116, 527–537.

Li, Y. & Oldenburg, D.W., 1996. 3-d inversion of magnetic data, Geophysics,
61, 394–408.

Loke, M. & Barker, R., 1996. Practical techniques for 3-D resistivity surveys
and data inversion, Geophys. Prospect., 44, 499–523.

Pain, C.C., de Oliveira, C.R.E. & Goddard, A.J.H., 1999. A neural network
graph partitioning procedure for grid-based domain decomposition, Int.
J. Numer. Methods Eng., 44, 593–613.

Park, S.K. & Van, G.P., 1991. Inversion of pole–pole data for 3-D resistivity
structure beneath arrays of electrodes, Geophysics, 56, 951–960.

Pelton, W.H., Rijo, L. & Swift, C.M., 1978. Inversion of two-dimensional
resistivity and induced-polarization data, Geophysics, 43, 788–803.

Shima, H., 1992. 2-D and 3-D resistivity image reconstruction using cross-
hole data, Geophysics, 57, 1270–1281.

Smith, N. & Vozoff, K., 1984. Two-dimensional DC resistivity inversion
for dipole–dipole data, IEEE Trans. Geosci. Remote Sensing, GE-22, 21–
28.

Spitzer, K., 1995. A 3-D finite-difference algorithm for DC resistivity mod-
elling using conjugate gradient methods, Geophys. J. Int., 123, 903–914.

Sugimoto, Y., 1999. Shallow high-resolution 2-D and 3-D electrical cross-
hole imaging, Leading Edge, 12, 1425–1428.

Telford, W., Geldart, L. & Sheriff, R., 1990. Applied Geophysics, 2nd edn,
Cambridge University Press, Cambridge.

Tripp, A.C., Hohmann, G.E. & Swift, C., 1984. Two-dimensional resistivity
inversion, Geophysics, 49, 1708–1717.

Weller, A., Gruhne, M., Seichter, M. & Börner, F.D., 1996a. Monitoring hy-
draulic experiments by complex conductivity tomography, Eur. J. Environ.
Eng. Geophys., 1, 209–228.

Weller, A., Seichter, M. & Kampke, A., 1996b. Induced-polarization mod-
elling using complex electrical conductivities, Geophys. J. Int. 127, 387–
398.

Zhang, J., Mackie, R.L. & Madden, T.R., 1995. 3-D resistivity forward mod-
elling and inversion using conjugate gradients, Geophysics, 60, 1313–
1325.

Zhao, S. & Yedlin, M.J., 1996. Multidomain Chebyshev spectral method for
3-D DC resistivity modeling, Geophysics, 61, 1616–1623.

Zienkiewicz, O. & Taylor, R., 1991. Finite Element Method: Solid and Fluid
Mechanics Dynamics and Non-Linearity, 4th edn, Vol. 2, McGraw-Hill,
New York.
Zienkiewicz, O.C. & Morgan, K., 1983. Finite Elements and Approxima-

tion, Wiley, New York.

C© 2002 RAS, GJI, 151, 710–728


