
Geophys. J. Int. (2002) 151, 809–823

The time-averaged magnetic field in numerical dynamos
with non-uniform boundary heat flow

Peter Olson1 and U. R. Christensen2

1Department of Earth and Planetary Sciences, Johns Hopkins University, USA. E-mail: olson@jhu.edu
2Institut für Geophysik der Universität Göttingen, Germany

Accepted 2002 June 28. Received 2002 June 26; in original form 2001 November 14

S U M M A R Y
The time-averaged geomagnetic field on the core–mantle boundary is interpreted using numeri-
cal models of fluid dynamos driven by non-uniform heat flow. Dynamo calculations are made at
Prandtl number Pr = 1, magnetic Prandtl numbers Pm = 1–2, Ekman numbers E = 3×10−4 –
3 × 10−5 and Rayleigh numbers 10–30 times the critical value for different patterns of heat
flow on the outer boundary of a rotating, electrically conducting spherical shell. The results
are averaged over several magnetic diffusion times to delineate the steady-state magnetic field
and fluid motion. When the boundary heat flow is uniform the time-averaged flow approaches
axisymmetry and the magnetic field is mostly a geocentric axial dipole (GAD). The largest
departure from GAD in this case is the octupole field component. When the amplitude of the
boundary heat flow heterogeneity exceeds the average heat flow, the dynamos usually fail.
Lesser amounts of boundary heterogeneity produce stable dynamos with time-averaged mag-
netic fields that depend on the form of the boundary heterogeneity. Elevated heat flow in the
northern hemisphere produces a time-averaged axial quadrupole magnetic field comparable to
the inferred paleomagnetic quadrupole. Azimuthally periodic boundary heat flow produces a
time-averaged magnetic field component with the same azimuthal wavenumber, shifted in lon-
gitude relative to the heat flow pattern. Anomalously high and anomalously low magnetic flux
density correlate with downwellings and upwellings, respectively, in the time-averaged fluid
motion. A dynamo with boundary heat flow derived from lower-mantle seismic tomography
produces anomalous magnetic flux patches at high latitudes and westward fluid velocity in one
hemisphere, generally consistent with the present-day structure of the geodynamo.

Key words: dynamo models, Earth core dynamics, geodynamo, geomagnetic field, paleo-
magnetic field, thermal convection.

1 I N T R O D U C T I O N

One of the fundamental assumptions in paleomagnetism is that the
main geomagnetic field approaches a specific reference state when
averaged over sufficiently long times. The reference state most com-
monly used for the paleomagnetic field is a geocentric axial dipole,
or GAD. Long-term departures from the reference GAD are particu-
larly significant for the geodynamo, because they indicate influences
on the core by the mantle. Here we use numerical dynamo models to
investigate how heat flow heterogeneity on the core–mantle bound-
ary influences the geodynamo and the time-averaged structure of
the geomagnetic field.

Palaeomagnetic data from uniform polarity epochs (that is, away
from times of polarity reversal or excursions), indicate two primary
ways in which the geomagnetic field deviates from the GAD config-
uration in time average. First, there is evidence from palaeomagnetic
inclinations from 0 to 5 Ma for a time-averaged axial quadrupole
field component. Relative to the axial dipole, the amplitude of this

axial quadrupole is 0.04–0.05 (Merrill et al. 1996; Dormy et al.
2000). A persistent axial quadrupole term in the palaeomagnetic
field, even a small one, is significant for the core, as it indicates
that the geodynamo is not wholly symmetric about the equator in
its long-term average behaviour. Secondly, there is a growing body
of evidence from palaeomagnetic directions and intensities for de-
viations from axisymmetry in the 0–5 Ma palaeomagnetic field
(Johnson & Constable 1995, 1997; Kelly & Gubbins 1997;
Constable et al. 2000; Kono et al. 2000). Deviation from axisymme-
try in the time-averaged palaeomagnetic field is also significant; it
indicates that some effect breaks the rotational symmetry imposed
on the geodynamo by the Earth’s spin.

Because the timescale for magnetic field generation by motion
in the fluid outer core is relatively short, of the order of 104 yr
(Moffatt 1978), whereas the structure of the solid mantle changes
on timescales of order 108 yr (Schubert et al. 2001), the long-term
departures from GAD are generally thought to indicate some control
of the geodynamo by lateral heterogeneity in the D′′ region of the
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lower mantle. There are several types of lateral heterogeneity in the
D′′ region that might plausibly influence the geodynamo, including
anomalous topography at the core–mantle boundary, lateral hetero-
geneity in lower-mantle electrical conductivity, and lateral variations
in heat flow at the core–mantle boundary. The effects of these on the
geodynamo are usually referred to as topographic, electromagnetic
and thermal coupling, respectively (Buffett 2000).

In this paper we investigate some consequences of thermal core–
mantle coupling on the time-averaged structure of the geomagnetic
field, using numerical dynamo models. We focus on one aspect of
thermal coupling, the relationship of the pattern and amplitude of
core–mantle boundary heat flow variations to the pattern and am-
plitude of the time-averaged departures from GAD in the geomag-
netic field. We use high-resolution numerical dynamo models based
on the full Navier–Stokes, magnetic induction and heat equations,
without any ad hoc parametrizations, in order to delineate the phys-
ical relationships between the boundary heat flow variations, the
time-averaged fluid motions within the core and the time-averaged
structure of the dynamo.

2 C O R E – M A N T L E T H E R M A L
C O U P L I N G

The subject of thermal core–mantle coupling has a long history
(Hide 1970; Vogt 1975; Jones 1977; Gubbins & Richards 1986;
Gubbins & Bloxham 1987; Bloxham & Gubbins 1987; Bloxham &
Jackson 1990; Gubbins 1997; Bloxham 2000a,b). Although many of
the critical details are not yet understood, there is general agreement
on the following basic mechanism. Because velocities of flow in
the liquid outer core are far larger than in the solid mantle, the
core and the mantle respond very differently to the continuity of
heat flow and temperature at the core–mantle boundary. The lower
mantle sees the outer core as a perfect fluid, and sees the core–mantle
boundary as stress-free and isothermal. In contrast, the fluid outer
core sees the mantle as solid and sees the core–mantle boundary as
rigid with a prescribed heat flow. In this way, core–mantle thermal
interaction is analogous to the thermal interaction between the ocean
and the oceanic lithosphere. The lithosphere is sensitive to the ocean
temperature at the sea floor, whereas the deep ocean is sensitive to
heat flow variations imposed on it by the thermal structure of the
lithosphere. In thermal core–mantle coupling the outer core plays a
role similar to the ocean and the D′′-layer at the base of the mantle
plays a role similar to the lithosphere.

Considerations of heat transfer across the core–mantle boundary
suggest that convection in the fluid outer core is influenced by the
temperature structure of the lower mantle in two ways. First, the
average thermal gradient at the base of the mantle governs the total
heat flow from the core to the mantle. This, in turn, governs the
cooling rate of the whole core, the rate of inner-core solidification,
and the power available from convection to drive the geodynamo
(Loper 1978; Lister & Buffett 1995; Labrosse et al. 1997). Sec-
ondly, convection in the core responds to lateral variations in lower-
mantle thermal structure, particularly to variations in heat flow at the
core–mantle boundary. Thermal convection in the core is enhanced
where the core–mantle boundary heat flow is high and tends to be
suppressed where the core–mantle boundary heat flow is low. In
addition, a separate circulation system is produced within the outer
core on the scale of the boundary heterogeneity.

Since core convection is the major energy source for the geody-
namo, any long-term distortion of the convection pattern by non-
uniform core–mantle boundary heat flow should affect the structure

of the time-averaged geomagnetic field. Accordingly, there should
exist some relationship between the pattern of lower-mantle hetero-
geneity (as revealed by seismic tomography for example), the pattern
of the time-averaged flow in the outer core, and the time-averaged
structure of the geomagnetic field. Also, because the pattern of man-
tle heterogeneity evolves slowly, the coupling with the geomagnetic
field should persist for millions of years and should be evident in
the structure of the palaeomagnetic field.

The actual variations in heat flow on the core–mantle boundary
can be inferred only very crudely, by assuming a certain relation-
ship between seismic velocity variations and temperature variations
in the lower mantle. The usual assumption is that lateral temper-
ature variations in the lower mantle are anticorrelated with lateral
variations in seismic velocity (Yuen et al. 1993). According to this
assumption, those portions of the D′′-layer with anomalously high
seismic velocity (particularly high shear wave velocity) are relatively
cold, and there the thermal gradient and the core–mantle boundary
heat flow are relatively high. Conversely, where D′′-layer seismic
velocities are low the mantle is relatively hot, and there the ther-
mal gradient and the core–mantle boundary heat flow are relatively
low. This is the called the tomographic model of non-uniform core–
mantle boundary heat flow. It has many shortcomings. For example,
it ignores contributions to the seismic heterogeneity in the D′′-layer
from compositional variations, which could alter the relationship
between shear wave velocity and heat flow. In addition, it does not
constrain the amplitude of the non-uniform part of the core–mantle
boundary heat flow. In spite of these shortcomings, tomographic
heat flow has often been used as a thermal boundary condition
for numerical models of core–mantle thermal coupling (Olson &
Glatzmaier 1996; Glatzmaier et al. 1999; Gibbons & Gubbins
2000).

3 P R E V I O U S N U M E R I C A L S T U D I E S O F
C O R E – M A N T L E T H E R M A L C O U P L I N G

The early numerical studies of core–mantle thermal coupling were
aimed at finding the conditions necessary for locking the non-
axisymmetric parts of the convection and magnetic field to the
boundary heat flow heterogeneity pattern. Zhang & Gubbins (1992,
1993, 1996) showed that the azimuthal drift rate of the convection
planform in a rotating sphere is affected by thermal heterogene-
ity on the boundary. For small-amplitude convection near the crit-
ical Rayleigh number, where the planform is azimuthally periodic,
Zhang & Gubbins (1996) found steady states in which the azimuthal
drift rate vanishes and the convection planform becomes stationary
with respect to the boundary heterogeneity.

Gibbons & Gubbins (2000) used numerical models of finite am-
plitude rotating convection subject to spherical harmonic degree
and order two boundary heat flux variations to determine the lon-
gitudinal phase relationship between the boundary heat flow and
convection at higher Rayleigh numbers. At low rotation rates (rel-
atively large Ekman number), they found the radial motion to be
negatively correlated with the boundary heat flow. Downwellings
occur beneath the high boundary heat flow sectors, where the fluid
temperature is lowest. As the rotation rate is increased, they found
the locked convection planform shifts progressively eastward, so that
at the highest rotation rates considered (corresponding to an Ekman
number E = 10−4), the locked downwellings are located east of the
high heat flow sectors, close to the longitude where the boundary
heat flow anomaly is zero.

At higher Rayleigh numbers, rotating convection becomes
chaotic, in addition to being intrinsically time dependent. In this
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regime, thermal coupling occurs only in a statistical sense, as shown
for rotating convection by Sun et al. (1994) and for rotating mag-
netoconvection by Olson & Glatzmaier (1996). The presence of a
magnetic field and strong Lorentz forces further complicate the rela-
tionship between the convection pattern and the boundary heating.
For this reason, numerical dynamo models are preferable to both
rotating convection or rotating magnetoconvection for investigating
core–mantle thermal coupling, because the dynamo models include
the Lorentz force in a dynamically consistent way. A drawback of
dynamo models is that they are more expensive to run, so fewer
cases can be examined.

Sarson et al. (1997) examined the relationship between magnetic
field, fluid velocity and boundary heating patterns using a so-called
2.5-dimensional numerical dynamo model, in which the azimuthal
variation is restricted to wavenumbers m = 0 and 2. They find that
the fluid motion and the magnetic field near the outer boundary are
simply related: high magnetic flux density regions are located over
the fluid downwellings, and low magnetic flux density regions are
located over fluid upwellings. However, Sarson et al. (1997) also
found that the relationship between the boundary heat flow pattern
and the fluid motion is not so simple, and depends on the relative
strength of the Lorentz and Coriolis forces, that is, on the Elsasser
number �. For small �, rotation shifts the convection planform to
the east of the boundary heat flow pattern, whereas at larger � the
relationship is reversed, and the convection planform is shifted to
the west of the boundary heat flow pattern.

The extreme truncation of azimuthal wavenumbers in
2.5-dimensional dynamo models limits their application to situa-
tions where the Rayleigh number of the convection is close to the
critical value. Dynamo models with fully developed (highly super-
critical) convection and low Ekman numbers show that the convec-
tion consists of narrow, quasi-geostrophic columns that are chaot-
ically time dependent. In this regime it is unlikely that the entire
dynamo would be locked to the boundary heat flow pattern. Instead,
we expect that part of the magnetic field would be variable in time,
so that the effects of the boundary heterogeneity would be seen
best in long-term averages. Coe et al. (2000) analysed the time-
averaged structure of some time-dependent dynamos with polarity
reversals calculated by Glatzmaier et al. (1999). For a boundary heat
flow pattern derived from lower-mantle seismic tomography, the dy-
namo model of Glatzmaier et al. (1999) shows a positive correlation
between heat flow and the time-averaged non-dipole field: the non-
dipole magnetic field on the outer boundary is most intense where
the heat flow is highest (Coe et al. 2000). A qualitatively similar
result has also been reported by Bloxham (2001), using a different
time-dependent numerical dynamo model. Two explanations have
been given for the correlation between high heat flow and high mag-
netic field intensity on the boundary. One is that the time-averaged
(residual) fluid downwellings are located beneath high boundary
heat flow regions, and concentrate the magnetic flux there. Another
explanation is that the small-scale columnar convection is locally
intensified beneath high boundary heat flow regions, and the inten-
sified convection induces an anomalously strong magnetic field. Of
course, it is possible that the two effects work together. The impor-
tant point is that both of these mechanisms predict a close spatial
relationship between the non-uniform boundary heat flow and the
magnetic field intensity.

Dynamo models have also been used to interpret axisymmetric
departures from GAD. Recently, Bloxham (2000b) obtained a strong
axial octupole contribution to the time-averaged magnetic field by
imposing a boundary heat flux pattern of spherical harmonic order
two and degree zero. He also found that a pattern of spherical har-

monic degree and order two had little effect on the axisymmetric
part of the magnetic field.

4 N U M E R I C A L M O D E L

We use a modified version of the numerical dynamo model devel-
oped by G. A. Glatzmaier and described in Olson et al. (1999) and
Christensen et al. (1999). We consider 3-D, time-dependent thermal
convection in an electrically conducting, incompressible Boussi-
nessq fluid in a rotating spherical shell. The governing equations
are: (1) the Navier–Stokes equation with full inertia, Coriolis, and
Lorentz forces, using constant Newtonian viscosity; (2) the heat
transport equation for the temperature; (3) the induction equation
for the magnetic field. The spherical shell has the same ratio of inner
radius ri to outer radius ro as the Earth’s outer core, ri/ro = 0.35.
Both spherical boundaries are assumed to be rigid, impermeable and
electrically insulating. The electrically insulating outer boundary
condition is a justifiable approximation for the core–mantle bound-
ary, since the mantle is much less conducting than the core. Our
assumption of an electrically insulating inner boundary condition
is a matter of numerical convenience. It is not a priori justifiable
for the inner-core boundary, because the electrical conductivity of
the solid inner core is expected to be comparable to the fluid outer
core (Secco & Schloessin 1989). However, in a separate study using
this model, Wicht (2002) finds only minor differences in the be-
haviour of dynamos with electrically conducting versus insulating
inner-core boundaries. In particular, he finds very small differences
in the time-averaged fields with and without inner-core conduc-
tivity. Since we consider dynamos in the same general parameter
range as Wicht, we are confident that our interpretations of the time-
averaged states in this study apply equally to models with the same
parameters but with conducting inner cores. In this study we ex-
amine numerical dynamos in the fully developed regime of Olson
et al. (1999). These dynamos are dominated by stable, non-reversing,
nearly axial dipole magnetic fields, and produce well-defined time-
averaged states. Magnetic reversals have been obtained with the
model we use here, but at significantly larger Rayleigh numbers,
where the dipole field is more time variable (Kutzner & Christensen
2002).

The thermal boundary conditions we use are as follows. The inner
boundary is isothermal, with a prescribed uniform temperature. The
outer boundary has prescribed heat flow. The local heat flux on the
outer boundary q is the sum of a surface average qo plus a spatially
variable part q ′(θ, φ) representing the boundary heterogeneity. We
define the heterogeneity amplitude q∗ as half the ratio of the peak-
to-peak boundary heat flow heterogeneity to the average; that is,

q∗ = q ′
max − q ′

min

2qo
. (1)

The results of calculations using several different spatial patterns
of the boundary heat flow heterogeneity are compared. These in-
clude uniform heating (q∗ = 0), patterns consisting of individual
spherical harmonics q ′ ∼ Y m

l , and a tomographic pattern derived
by assuming −q ′ has the same pattern as the first four spherical
harmonic degrees in the model of lower-mantle seismic shear wave
heterogeneity by Masters et al. (1996). We refer to these different
cases as uniform Ylm and tomographic, respectively.

In addition to the boundary heterogeneity amplitude, the other
dimensionless input parameters are the Rayleigh number Ra, the
Ekman number E, the Prandtl number Pr and the magnetic Prandtl
number Pm. The lower the Ekman number, the higher the spatial
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Table 1. Dynamo model parameters.

Input parameter Definition Range

Prandtl number Pr = ν/κ 1
Magnetic Prandtl Pm = ν/λ 1–2

number
Ekman number E = ν/�D2 0.3–3 × 10−4

Rayleigh number Ra = αgoqo D4/kκν 2.5 × 106–2 × 108

Boundary heterogeneity q∗ = (q ′
max − q ′

min)/2qo −0.5 to +1.25

Output parameter Definition Outer core
Magnetic Reynolds Re = u D/λ 500

number
Elsasser number � = σ B2/ρ� ∼1
Gauss ratios (Glm, Hlm) = (gm

l , hm
l )/g0

1 −0.1 to +0.1

Notes: D = ro − ri shell thickness; ν, κ, λ viscous, thermal, magnetic
diffusivities; k thermal conductivity; σ electrical conductivity; α thermal
expansivity; go outer boundary gravity; ρ average density; � rotation
angular velocity; qo, q ′ mean, variable boundary heat flows; u fluid
velocity; B magnetic induction; gm

l time-averaged magnetic field Gauss
coefficients.

and temporal resolution that is required. In our calculations we trun-
cate at spherical harmonic degree lmax = 53 at E = 3 × 10−4 and
lmax = 106 at E = 3 × 10−5. These spherical harmonic truncations
were chosen on the basis of spectral resolution tests by Christensen
et al. 1999 at E = 1 × 10−4. As shown in Fig. 10 (in Section 5), the
time-averaged magnetic field spectra decrease by at least a factor of
103 over this spectral range. Our lowest Ekman number is several
orders of magnitude too large for the core, even if a turbulent vis-
cosity is assumed, so the viscosity and thermal diffusivity are more
important in our calculations than in the core.

Two important output parameters are the volume-averaged
Elsasser number �, a measure of the dynamo magnetic field
strength, and the volume-averaged magnetic Reynolds number Rm,
a measure of the fluid velocity in the dynamo. To characterize the
departures of the time-averaged magnetic field from the reference
GAD, we follow the convention used in palaeomagnetism (Merrill
et al. 1996), in which magnetic field anomalies are described us-
ing ratios of individual Gauss coefficients gm

l or hm
l to the Gauss

coefficient of the axial dipole magnetic field g0
1 . We refer to these

as Gauss ratios, Glm or Hlm, respectively. The definitions of the
dimensionless parameters in terms of physical quantities are given
in Table 1. Table 2 gives the notation of all the variables we use
in analysing the calculations, the fundamental scaling for the basic
variables and the numerical values of the scalefactors we use for
converting our results to dimensional form.

The calculations are started from dynamo solutions that were
obtained previously using isothermal boundary conditions but oth-
erwise with comparable parameters (Christensen et al. 1999). When
thermal equilibrium is reached, as indicated by statistically steady

Table 2. Scaling.

Notation Variable Scale factor Value

θ, φ Colatitude, east longitude — —
r Radius D 2260 km
t∗ Averaging time D2/λ 122 000 yr
Br Radial magnetic field at ro

√
ρ�/σ 1.16 mT

ur Radial velocity near ro λ/D 5.87×10−7 m s−1

ψ Toroidal streamfunction near ro λ 1.33 m2 s−1

To Temperature at ro Dqo/k —

flow, the outer boundary condition is changed from the prescribed
temperature to the prescribed heat flow. Each calculation is then
continued beyond its initial transient response to the new bound-
ary condition, until an approximate global equilibration is reached,
where the time-series of total magnetic and kinetic appear to be sta-
tistically stationary. We then continue the calculation and compute
running time averages of the temperature, velocity and magnetic
fields. These time averages provide the basic data for our analysis.
We stop the calculation at an averaging time t∗ when the change in
the time-averaged radial magnetic field at the outer boundary Br be-
comes sufficiently small. As used here, the term ‘sufficiently small’
is somewhat arbitrary. We have adopted a practical definition, in
which a calculation is stopped when the large-scale pattern of Br

on the outer boundary has stabilized. The averaging times shown in
Table 2 are given in magnetic diffusion time units, based on the fluid
shell thickness. In terms of our scaling, one magnetic diffusion time
is very nearly equal to four dipole diffusion times. Assuming an
electrical conductivity of σ = 6 × 105 S m−1 (Secco & Schloessin
1989) for example, one magnetic diffusion time unit corresponds to
approximately 122 000 yr in the core.

Finally, we point out that all of the dynamo solutions shown in
this paper have magnetic fields dominated by a dipole component
with ‘reversed’ polarity, that is, a polarity opposite to the present-
day geomagnetic field. The reverse dipole polarity is a result of
the initial conditions we use, and otherwise has no effect on our
interpretations.

5 R E S U LT S

Table 3 gives the input parameters for all the calculations in terms
of the notation from the previous section. Table 3 also summa-
rizes some of the important results for each case, including the
Elsasser and magnetic Reynolds numbers, the time-averaged ki-
netic and magnetic energies (as defined in Olson et al. 1999), and
the Gauss coefficient of the axial dipole part of the time-averaged
magnetic field, g1

0 .
Most of the calculations we analyse are made at Ra = 2.5 × 106

and E = 3 × 10−4. As shown in Table 3, the magnetic energy ex-
ceeds the kinetic energy in these cases, although not by as much as it
probably does in the core. Table 3 also shows the volume-averaged
magnetic Reynolds and Elsasser numbers are about 145 and 5, re-
spectively, in these dynamos. These are broadly in the range of the
geodynamo, although they are slightly low and slightly high, respec-
tively, compared with typical estimates from the present-day geo-
magnetic field. Similarly, the Gauss coefficients of the axial dipole
g0

1 are typically 60 per cent higher than the present-day geomagnetic
field. For comparison purposes we have also included two additional
cases of the Y22 boundary heating pattern at higher Rayleigh number
and lower Ekman number, respectively.

Fig. 1 shows the structure of the dynamo with uniform boundary
heating averaged over t∗ = 6.7 magnetic diffusion times, equivalent
to about 800 000 yr in the core. The flow pattern in Figs 1(a) and (b)
is taken close to the boundary but below the viscous Ekman layer.
The time-averaged magnetic field and fluid motion are nearly ax-
isymmetric and nearly antisymmetric about the equator. The small
departures from true axisymmetry seen in the figure are tending to-
ward zero with increasing averaging time. The time-averaged mag-
netic field in Fig. 1(c) is clearly dominated by the GAD component.
The most noticeable departure from GAD is seen at high latitudes
in both hemispheres, and consists of a low-intensity field directly
over the poles, the polar cap minima and rings of high-intensity
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Table 3. Summary of results.

Pattern q∗ Ra E Pm Ekin Emag Rm � t∗ g0
1 (nT)

Uniform 0 2.5 × 106 3 × 10−4 2 2540 4280 143 5.1 6.7 57 620
Y22 0.3125 2.5 × 106 3 × 10−4 2 2580 4140 144 5.0 9.3 55 643
Y22 0.625 2.5 × 106 3 × 10−4 2 2700 3730 147 4.5 12 50 500
Y22 1.25 2.5 × 106 3 × 10−4 2 Failed Failed na na na na
Y22 0.5 2.8 × 107 1 × 10−4 2 13 500 27 500 329 11 3.3 73 756
Y22 0.5 2.0 × 108 3 × 10−5 1 35 400 15 100 266 9.1 1.0 81 300
Y10 0.5 2.5 × 106 3 × 10−4 2 2590 4450 144 5.3 6.9 57 962
Y11 0.5 2.5 × 106 3 × 10−4 2 2750 4030 148 4.8 8.6 49 765
Y20 0.5 2.5 × 106 3 × 10−4 2 2630 4670 145 5.6 5.3 48 989
Y20 1.0 2.5 × 106 3 × 10−4 2 Failed Failed na na na na
Y20 −0.5 2.5 × 106 3 × 10−4 2 2700 3560 147 4.3 5.3 56 766
Tomographic 0.5 2.5 × 106 3 × 10−4 2 2600 4270 144 5.1 7.2 53 014

field at the latitude of the inner-core tangent cylinder, the tangent
cylinder maxima. As indicated by the time-averaged radial velocity
pattern, the two polar cap minima result from magnetic flux diver-
gence by upwelling polar plumes, and the tangent cylinder maxima
result from magnetic flux concentration by surface convergence and
downwelling along the tangent cylinder.

It is customary to describe the departures from GAD in the time-
averaged magnetic field in terms of specific Gauss ratios. As shown
in Fig. 2, the quadrupole ratio for the uniform boundary heat flow
case is G20 = 0.001, indicating very little difference between the
northern and southern hemisphere fields. In contrast, the axial oc-
tupole ratio is G30 = 0.061, and is by far the largest departure from
GAD in this case. The size of the ‘flux lobe anomaly’ is indi-
cated by the following Gauss ratios: G31 = 0.002, H31 = 0 and
G32 = −0.002 and H32 = 0. These non-axial coefficients are very
small and are tending toward zero with increasing averaging time
as the magnetic field approaches axisymmetry.

We have examined the response of model dynamos to vari-
ous amounts of spherical harmonic degree two and order two
boundary heat flow heterogeneity. The Y22 heat flow pattern has
been used in previous studies as a simplified representation of the
core–mantle boundary heat flow heterogeneity (Sarson et al. 1997;
Glatzmaier et al. 1999; Gibbons & Gubbins 2000) because of its
similarity to the long-wavelength seismic structure of the lower man-
tle, which contains a large signal at this harmonic (Masters et al.
1996).

As indicated by the results in Table 3, very large amplitude het-
erogeneity tends to kill dynamo action, for both the Y20 and Y22

heat flow patterns. This behaviour is consistent with the results
of magnetoconvection calculations by Olson & Glatzmaier (1996),
who found that large lateral heterogeneity in boundary heating de-
stroys the columnar convection and destabilizes the dipole field.
When the amplitude of the heat flow heterogeneity exceeds the
average boundary heat flow, that is, when q∗ exceeds one, stable
thermal stratification forms beneath regions where the boundary
heat flow is low. This tends to segment the fluid into convecting
regions separated by non-convecting regions, and creates strong
thermal winds that are ill-suited to maintaining a stable GAD-type
dynamo.

Fig. 3 shows instantaneous dynamo structure for the Y22 boundary
heat flow with amplitude 0.625. The instantaneous flow is dominated
by elongated convection columns, and the instantaneous magnetic
field is concentrated in high-intensity flux patches with dimensions
comparable to the cross-section of the convection columns. Com-
parison of Figs 3(a) and (c) shows that the high-intensity magnetic

flux patches correlate with cyclonic vortices in which the radial
flow near the outer boundary is downward. These flux patches are
formed within and are concentrated by fluid downwellings in the
cores of the cyclones. Individual flux patches are transient, but the
summation of the magnetic fields from all the patches produces
the net GAD. We see evidence in a series of snapshots for a mod-
ulation of the convection by the boundary heat flow, particularly
at low latitudes. Statistically, the most intense low-latitude con-
vection occurs in the longitude sectors with high boundary heat
flow. This particular modulation has most effect at low latitudes
where the time-averaged radial magnetic field is weak. At high lat-
itudes where the radial field is most intense, the modulation occurs
by a different mechanism.

Figs 4 and 5 show the structure of the same model with Y22

heating, averaged over t∗ = 12 diffusion times, equivalent to about
1.5 Myr in the core. The time-averaged magnetic field and fluid
motion both have clearly defined structure at azimuthal wavenum-
ber m = 2. As seen in the streamfunction pattern, the time-averaged
toroidal flow in each hemisphere consists of two parts: a polar vor-
tex inside the inner-core tangent cylinder (which intersects the outer
surface at 69◦ latitude), and an m = 2 columnar flow outside the tan-
gent cylinder attributed the boundary heat flow heterogeneity. As
shown in Fig. 5, the vorticity reverses sign between the pole and
the inner-core tangent cylinder, so that the surface integral of the
polar vortices is nearly zero. This shields the fluid outside the tan-
gent cylinder from the vortex circulation inside; in effect, the two
regions are isolated from each other. The amplitude of the residual
toroidal flow corresponds to a magnetic Reynolds number of about
15, which is smaller than (but not insignificant in comparison with)
the Rm � 100 for the instantaneous flow in the snapshot shown in
Fig. 3.

The locations of the columnar vortices in the time-averaged flow
are controlled by the boundary heat flow pattern. In the E = 3×10−4

case, equatorial downwellings occur in the high boundary heat
flow sectors, as shown in Fig. 4. In detail, the equatorial down-
wellings are shifted slightly eastward relative to the heat flow max-
ima. Each equatorial downwelling generates an axially cyclonic
convection column to its west and an axially anticyclonic column
located to its east. Since the axial flow in cyclonic columns is down-
welling near the outer boundary, these structures tend to accumulate
magnetic flux, whereas the near-surface upwellings in the anticy-
clonic columns tend to expel magnetic flux. If the residual flow
consisted of azimuthally periodic m = 2 columns only, the high-
intensity magnetic flux patches would be located directly over the
cyclonic columns. Instead, Fig. 4 shows that the anticyclones are
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(a)

(c)

(b)

Figure 1. Time-averaged dynamo with uniform boundary heat flow. (a) Toroidal streamlines at depth ro − r = 0.04, contour interval 1; (b) radial velocity at
depth ro − r = 0.04, contour interval 0.8; (c) radial magnetic field at ro, contour interval 0.16. Dark = positive, light = negative.

slightly stronger than the cyclones, and in addition, there is also mag-
netic flux concentration by the axisymmetric downwelling along the
tangent cylinder. The effect of this combination of flows is to dis-
place the magnetic flux patches poleward and eastward from the
cyclone centres.

The specific relationship between the magnetic flux patches and
the residual circulation can be understood in terms of a balance be-
tween magnetic field line stretching by downwellings and upwellings
versus magnetic diffusion. At high latitudes, the dominant compo-
nent of magnetic diffusion is tangential, that is, diffusion over the
spherical surface. The balance of these terms in the time-averaged

magnetic induction equation for the radial component of the mag-
netic field near the outer boundary r0 gives

Br ur � (ro − r )∇2
H Br , (2)

where Br and ur are time averages of the dimensionless radial
magnetic field and radial fluid velocity, respectively. According
to eq. (2), the anomalously low-intensity flux patches (for exam-
ple, patches in the northern hemisphere where ∇2

H Br is large and
positive) are related to the fluid upwellings (ur > 0), and anoma-
lously high-intensity flux patches are related to fluid downwellings
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Figure 2. Ratios of Gauss coefficients normalized by the GAD term g0
1 from the time-averaged magnetic fields of six cases with different boundary heat flow

patterns in Table 3. (a) Uniform; (b) Y22, q∗ = 0.625; (c) Y10, q∗ = 0.5; (d) Y20, q∗ = 0.5; (e) Y11, q∗ = 0.5; (f) tomographic, q∗ = 0.5. The error bars indicate
the range of palaeomagnetic estimates of the ratios G20 and G30.

(ur < 0). The relationship implied by (2) can be seen by comparing
Figs 5(b) and (d), which shows the close similarity between ur and
∇2

H Br over the northern hemisphere of the dynamo model.
A linear relationship between the amplitude of the anomalous

magnetic field and the amplitude of the boundary heat flow hetero-

geneity can be seen from the results of calculations with the same
heat flow pattern but different amplitudes. Fig. 2 shows the Gauss
ratios G2

3 and H 2
3 used to characterize the magnetic flux patches

produced by the Y22 boundary heat flow variation with q∗ = 0.625.
Comparing these ratios with the same ratios from the other Y22-type
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cases in Table 3 indicates that the amplitudes of G32 and H32 are
directly proportional to the non-uniform heat flow amplitude q∗.

Most of our conclusions are drawn from cases with Ekman num-
ber E = 3×10−4. This Ekman number allows for calculations with
a long averaging time t∗ and provides well-defined time-averaged
flow and magnetic field structures. For comparison, we have also
examined dynamos with the same Y22 boundary heat flow pattern
but lower Ekman number, specifically E = 1 × 10−4 and 3 × 10−5.
Some of the global properties of the time-averaged results of these
cases are given in Table 3. The cases with lower Ekman number
have shorter averaging times. However, the same basic structures
in the time-averaged magnetic field seen in Figs 4 and 5 are also
present in the lower Ekman number cases. One significant differ-
ence is that the azimuthal phase shift between the time-averaged
magnetic field and the boundary heating pattern changes with
Ekman number. Fig. 6 indicates that the westward shift of the mag-
netic field relative to the boundary heating decreases with decreasing
Ekman number. The same trend is found for the radial fluid veloc-
ity. It is possible that the phase shift vanishes or even changes sign
at lower Ekman numbers, but we have not been able to verify this
with our model, owing to the extraordinarily high spatial resolution
needed for such a calculation. Finally, we note that, even though the
intensity of the anomalous flux patches increases with the boundary
heat flow anomaly q∗, their locations and shapes are insensitive to
this parameter.

The cases with Y22-type heating show that the locations of anoma-
lous magnetic flux patches are controlled by the residual circulation
and do not necessarily correspond to the longitudes of maximum
boundary heating. The same general result is found in all of the
dynamo models in this study. It can be seen particularly well in the
case of Y11-type boundary heat flow shown in Fig. 7. Here a sin-
gle high-intensity flux patch forms in each hemisphere. In this case
the m = 1 residual circulation consists of two columnar cells that
are spiral shaped in cross-section with a pronounced prograde tilt,
similar to what has been seen in laboratory experiments (Sumita &
Olson 1999). The spiral shape shifts the centre of the cyclonic cell
so far to the west that the high-intensity flux patches lie in the low
heat flow hemisphere, not in the high one.

North–south hemispheric asymmetry is another type of bound-
ary heterogeneity that may be important for the geodynamo. As dis-
cussed in the introduction, the palaeomagnetic field appears to have
a persistent axial quadrupole part, which might be caused by differ-
ences in heat flow between the northern and southern hemispheres
of the core–mantle boundary. We have examined the response of a
dynamo model to north–south hemisphere differences in boundary
heat flow. Fig. 8 shows meridional cross-sections of the dynamo
structure with a Y10 (i.e. cos θ ) boundary heat flow pattern and am-
plitude q∗ = 0.5. In this case the average heat flow in the northern
hemisphere is 50 per cent above its average in the southern hemi-
sphere. The meridional sections in Fig. 8 are averages, both in az-
imuth and over a time t∗ = 4.6. The effect of elevated heat flow in the
northern hemisphere is to enhance the convection and the meridional
circulation there, which tends to concentrate the poloidal magnetic
flux in the northern hemisphere and remove it from the southern
hemisphere. The Gauss ratios in Fig. 2 clearly show the sensitivity
to north–south heat flow differences. The quadrupole ratio in this
case is G20 = 0.07, significantly larger than any of our cases without
a north–south heat flow difference. For comparison, the quadrupole
ratio we obtain in this case is larger than the quadrupole ratio inferred
for the 0–5 Ma palaeomagnetic field (Merrill et al. 1996; Dormy
et al. 2000). This calculation indicates that a relatively small north–
south difference in heat flow can support time-averaged quadrupole

magnetic fields comparable to those inferred from palaeomagnetic
inclinations.

All of the dynamos in this study contain large axial octupole
components in their time-averaged magnetic fields, with positive
G30-ratios. The octupole components can be seen in the Gauss
ratio spectra in Fig. 2, and also in the maps of time-averaged radial
magnetic field, where the presence of the octupole field causes the
intensity of the radial magnetic field at low latitudes to be less than
for a purely axial dipolar field. The Gauss ratio of the axial octupole
G30 is typically 0.06 or greater for most of the cases in Table 3.
This is substantially larger than the 0.01 ± 0.01 range inferred for
G30 by Merrill et al. (1996) for the 0–5 Ma palaeomagnetic field.
However, we note that there is evidence from statistical analyses of
globally distributed palaeoinclinations for a strong axial octupole
contribution prior to 250 Ma, with G30-values up to +0.25 (Kent
& Smethurst 1998; Bloxham 2000b). There is also evidence from
northern hemisphere palaeolatitudes for a relatively strong octupole
during 300–40 Ma, with G30 � 0.1 (Van der Voo & Torsvik 2001).
So perhaps the departure from GAD in our dynamo models is more
typical of the ancient palaeomagnetic field.

We have investigated the sensitivity of G30 to different axisym-
metric patterns of boundary heat flow heterogeneity, including pos-
itive and negative Y20-variations. As shown in Fig. 2 and Table 3,
negative Y20 heat flow variations (with elevated heat flow at the
equator relative to both poles) reduces G30, whereas a positive Y20

boundary heat flow actually increases G30 above the values shown
for the other cases in Fig. 2. Unfortunately G30 is not very sensitive
to this type of boundary heat flow, and probably a very large nega-
tive Y20 contribution to core–mantle boundary heat flow would be
required to entirely suppress this ratio in the time-averaged magnetic
field.

The calculations described so far have periodic boundary heat
flow variations proportional to a single spherical harmonic. These
cases show it is possible to account for the axial quadrupole de-
parture from GAD with a small amount of Y10 boundary heating,
and the flux lobe departures from GAD with Y22 boundary heating.
However, these same cases contain an axial octupole that is signif-
icantly larger than inferred for the 0–5 Ma palaeomagnetic field.
To reduce the axial octupole, additional zonal harmonics must be
added to the boundary heat flow pattern. In principle, it would seem
possible to construct an ad hoc boundary heat flow spectrum con-
sisting of a sum of spherical harmonic contributions, which would
produce a time-averaged magnetic field consistent with all of the
palaeomagnetic constraints.

An alternative approach is to assume that the heat flow spectrum
on the core–mantle boundary is similar to the spectrum of lower-
mantle heterogeneity imaged by seismic tomography, and calculate
the resulting time-averaged magnetic field. Fig. 9 shows the dynamo
structure with a boundary heat flow pattern proportional to the lower-
mantle seismic shear wave model of Masters et al. (1996), truncated
at spherical harmonic degree and order l, m = 4, with amplitude
q∗ = 0.5. For this case the averaging time is t∗ = 7.2, equivalent to
about 0.9 Myr in the core. The Gauss ratios from this case are shown
in Fig. 2.

The tomographic heat flow pattern generates a time-averaged
magnetic field that includes all of the components found in the peri-
odic cases discussed above. In particular, the magnetic field in Fig. 9
includes the polar minimum and tangent cylinder maximum, plus
high-intensity flux patches in each hemisphere. It also includes sig-
nificant departures from symmetry with respect to the equator. There
are two unequal flux patches in the northern hemisphere, and only
one in the southern hemisphere. In addition, the longitude of the lone
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(a) (b)

(c) (d)

Figure 5. North polar views of time-averaged dynamo with Y22 boundary heat flow pattern, q∗ = 0.625, E = 3 × 10−4. Tick marks indicate longitudes
with maximum boundary heat flow. (a) Radial magnetic field at ro, contour interval 0.16; (b) radial velocity at depth ro − r = 0.04, contour interval 0.8; (c)
temperature at ro, contour interval is 1/17 of the mean temperature contrast between inner and outer boundary; (d) ∇2

H Br at ro. Dark=positive, light=negative.

(a) (b) (c)

Figure 6. North polar views of filtered time-averaged radial magnetic fields at ro from dynamos with Y22 boundary heat flow pattern at various Ekman
numbers. The filtering removes the axial dipole term, and all terms with odd m and even l, in order to enhance the flux patches. Tick marks indicate longitudes
with maximum boundary heat flow. (a) E = 3 × 10−4; (b) E = 1 × 10−4; (c) E = 3 × 10−5. Dark = positive, light = negative.

southern hemisphere patch differs slightly from the longitude of the
largest one in the northern hemisphere. The time-averaged magnetic
field produced by the tomographic boundary heat flow is similar in
these respects to the time average of the historical geomagnetic field

on the core–mantle boundary (Bloxham & Jackson 1992). It also has
points of similarity with some models of the 0–5 Ma time-averaged
palaeomagnetic field (Johnson & Constable 1995; Kelly & Gubbins
1997).
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(a)

(b)

(c)

Figure 9. Time-averaged dynamo with tomographic boundary heat flow pattern, q∗ = 0.5, E = 3 × 10−4. (a) Boundary heat flow heterogeneity; (b) toroidal
streamlines (with velocity direction arrows), contour interval 1, at depth ro − r = 0.04; (c) radial magnetic field at ro, contour interval 0.16. Red = positive,
blue = negative.
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Figure 10. Time average of the magnetic energy versus the harmonic order
for uniform (circles) and Y22 (diamonds) boundary heat flow cases. The
uniform heat flow spectrum is shifted down one decade to avoid overlap.

The tomographic dynamo model in Fig. 9 differs from the histori-
cal geomagnetic field on the core–mantle boundary in some aspects.
One difference is that the high-intensity magnetic flux patches in
the tomographic dynamo model are shifted slightly in longitude and
latitude with respect to their locations in the geomagnetic field. For
example, the most intense northern hemisphere flux patch in Fig. 9
occurs beneath the western arctic of North America, rather than be-
neath the northcentral part of North America as it does in the time
average of the historical geomagnetic field (Bloxham & Jackson
1992). Similarly, the weaker of the two northern hemisphere patches
in Fig. 9 is centred beneath Scandinavia, as opposed to its location
beneath central Siberia in the historic geomagnetic field. The patch
locations may be biased by the relatively large Ekman number used
in this calculation. As shown in Fig. 6, decreasing the Ekman num-
ber toward a more realistic value for the core shifts the magnetic flux
patches to the east, which would put them closer to their locations in
the geomagnetic field. In the southern hemisphere, however, the lone
high-intensity flux patch in Fig. 9 is located approximately at the
same position as in the time-averaged geomagnetic field (Bloxham
& Jackson 1992).

The streamfunction of the toroidal velocity shown in Fig. 9 offers
another point of comparison with the geomagnetic field. Models of
core flow based on frozen flux inversions of the geomagnetic secu-
lar variation (see Bloxham & Jackson 1991, for a review of these)
usually include a large-scale anticyclonic gyre in the southern hemi-
sphere, with an equatorward limb located beneath the Indian Ocean
and a poleward limb located somewhere beneath South America
or the Eastern Pacific, depending on the model. The northern limb
of this gyre beneath Africa and the equatorial Atlantic is one of
the main expressions of westward drift in the geomagnetic field.
Fig. 9 includes an anticyclonic gyre in the southern hemisphere, with
a structure quite similar to the southern hemisphere gyre inferred
from the geomagnetic secular variation. The transport velocity in the
anticyclonic gyre in Fig. 9 is too small by a factor of 10 to explain the
westward drift rates in the historical geomagnetic field. However,
the dynamo model flow represents an average over nearly 1 Myr, as
opposed to the time interval of a few centuries represented in the
historical secular variation. In addition, the flow velocity measured
by the magnetic Reynolds number is too low in this dynamo model

by a factor of 3 or 4, compared with the core. If the results in Fig. 9
were rescaled to the core using the advection timescale instead of the
magnetic diffusion time, the transport velocity of the time-averaged
flow would be higher. Another difference between the tomo-
graphic dynamo model streamfunction pattern and the flow inferred
from the geomagnetic secular variation is the gyre beneath North
America. The North American gyre in Fig. 9 is cyclonic, consistent
with fluid downwelling and a high magnetic field intensity there.
Many core flow maps derived using frozen flux and the geomagnetic
secular variation also contain a North American gyre (see Bloxham
& Jackson 1991, for examples) but it is usually anticyclonic.

Finally, we point out that the heterogeneous boundary heat flow
effects seen in time averages are more difficult to detect in snap-
shots of the magnetic field. For example, Fig. 10 compares the time
average of snapshot magnetic energy spectra for the uniform and
Y22 boundary heating cases. The energy at spherical harmonic order
m = 2 is very slightly elevated in the Y22 heating case, but the ef-
fect is very subtle. Differences in the secular variation among these
models are also subtle, and will be considered in a subsequent study.

In comparison with other dynamo models with boundary heat
flow heterogeneity, our results are in accord with some of the ear-
lier findings, but also show some differences. We find that the Y20

component of the heat flow anomaly controls the relative size of
the axial octupole, In agreement with Bloxham (2000b), but in his
model a small heat flow anomaly seems to have a larger influence
than in our model. Other dynamo models with non-zonal bound-
ary heat flow heterogeneity by Sarson et al. (1997), Glatzmaier
et al. (1999) and Bloxham (2001) find, as we do, high-intensity flux
patches in the time-averaged field at high latitudes, although those
models show a more direct relationship between the longitude of
the flux patches and the longitude of maximum boundary heating
than we find. There are parameter differences between those dynamo
models and ours, but the biggest difference is that the other three
use hyperdiffusivities (that is, scale-dependent functions in place of
the diffusion coefficients), whereas we use constant diffusion co-
efficients. It is known that dynamo models with uniform boundary
conditions produce different results with and without hyperdiffu-
sion (Grote et al. 2000), and it is expected that these differences
will persist with heterogeneous boundary conditions.

6 C O N C L U S I O N S

The time-averaged structure of the magnetic fields in our numerical
dynamos differs substantially from instantaneous, snapshot pictures.
Snapshot images of the magnetic field on the outer boundary are
dominated by short-wavelength, concentrated magnetic flux patches
that are created by the columnar convection. Owing to chaos and
longitudinal drift of the convection columns, the short-wavelength
part of the magnetic field tends to average toward zero over time.

Uniform boundary heat flow produces an axisymmetric time-
averaged magnetic field with hemispherical antisymmetry. The
time-averaged field is dipole dominated in this case, but it also in-
cludes an octupole component with the same sign as the dipole. In
terms of spatial structure, the primary departure from the GAD con-
figuration is found at high latitudes in both hemispheres. It consists
of a low-intensity magnetic field directly over the poles, the polar
cap minima, and rings of high-intensity field at the latitude of the
inner-core tangent cylinder, the tangent cylinder maxima. The polar
minima are results of flux divergence by upwelling polar plumes,
and the tangent cylinder maxima are results of flux concentration
by convergence and downwelling along the tangent cylinder. In
terms of spectral components, the largest departure from GAD is the
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axial octupole ratio G30 � +0.06, which is several times larger than
inferred for the 0–5 Ma palaeomagnetic field by Merrill et al. (1996),
but is comparable to G30 estimated for the Palaeozoic field by Kent
& Smethurst (1998).

At the other extreme, we find that very strong boundary hetero-
geneity tends to suppress dynamo action, rather than simply locking
the magnetic field to the boundary heterogeneity as some other stud-
ies have found. In several cases where the amplitude of the boundary
heat flow heterogeneity exceeded the average heat flow, we found
dynamo action eventually ceased. Loss of dynamo action through
this mechanism would seem to place an upper limit on the amount
of heat flow heterogeneity on the core–mantle boundary. However,
the effect of heterogeneous heat flow is probably stronger in our
models than for the geodynamo. In the core, convection is driven in
part by compositional buoyancy derived from crystallization of the
inner core, which is not as strongly affected by the boundary heat
flow heterogeneity.

We find stable dynamos when the boundary heterogeneity param-
eter is in the range −1 < q∗ < 1. To interpret this condition in terms
of heat flow on the core–mantle boundary, it is necessary to correct
for the effects of compressibility in the core. In our models the fluid
is incompressible, so the adiabatic thermal gradient is zero, and there
is no difference between the total heat flow and the superadiabatic
contribution to the heat flow. In contrast, thermal convection in the
core is compressible and is driven by the superadiabatic part of the
heat flow. Therefore, qo in our models represents the average su-
peradiabatic core heat flow, and the non-uniform heat flow q ′(θ, φ)
in our models represents the deviations of core–mantle boundary
heat flow from the average superadiabatic core heat flow.

Most studies of the energetics of the core indicate that the heat
conducted down the core adiabat is comparable to the total core
heat flow (Lister & Buffett 1995; Labrosse et al. 1997). Sumita
& Olson (1999) have pointed out how this condition can lead to
an unusual situation in the core, in which the heterogeneity pa-
rameter q∗ can be appreciably large on the core–mantle boundary,
even though the absolute heat flow variations q ′ are relatively small.
If the total core–mantle boundary heat flow nearly equals the con-
duction down the core adiabat, then the average superadiabatic heat
flow qo is nearly zero there, and according to eq. (1), non-uniform
core–mantle boundary heat flow q ′ results in a large value of the
heterogeneity parameter q∗. In this situation the influences of rather
small non-uniformities in the actual heat flow on the core–mantle
boundary are magnified, producing the relatively large effects on
geodynamo we find in our models.

Intermediate amounts of boundary heterogeneity produce a time-
averaged magnetic field consisting of an axisymmetric part similar
to the field produced with uniform heating, plus an anomalous part
directly attributable to the boundary heterogeneity. The amplitude
of the anomalous part of the field is proportional to the amplitude
of the boundary heat flow heterogeneity. From calculations with
single harmonic boundary heating patterns we obtain the following
empirical relationship between the anomalous magnetic field and the
boundary heat flow pattern: boundary heating at spherical harmonic
degree l and order m produces an anomalous field at degree l + 1
and order m. Dynamo models with hemispherical differences in
boundary heat flow produce departures from GAD with quadrupole
field components in the time-averaged magnetic field. A model with
elevated heat flow in the northern hemisphere results in positive
values of the quadrupole ratio G20 � +0.07, larger than the average
palaeomagnetic field for 0–5 Ma.

High-density patches of magnetic flux are found in the time-
averaged magnetic field in cases with non-axi–symmetric bound-

ary heat flow. The patches are formed by the combined action
of the axisymmetric tangent cylinder downwelling plus the non-
axisymmetric upwellings and downwellings, and are located slightly
equatorward from the inner-core tangent cylinder (which is near
±69◦ on the core–mantle boundary). The location of the patches
is controlled by the pattern of upwellings and downwellings in
the tangent cylinder region. Because downwellings concentrate and
upwellings disperse magnetic flux, the high-intensity flux patches
are most closely related to the non-axisymmetric downwellings (al-
though not necessarily coincident with them). Equally importantly,
the high-intensity flux patches are located away from upwellings.
The flux patches are the result of a balance between field line stretch-
ing in downwellings and upwellings, and magnetic diffusion. The
high-intensity flux patches in our calculations do not occur precisely
at the longitudes of either the maximum or the minimum boundary
heat flow. Instead the flux patches are shifted westward relative to
the boundary heat flow pattern. The amount of westward phase shift
depends on the azimuthal wavenumber m, and appears to decrease
with decreasing Ekman number. Our calculations do not provide
enough information to determine its sensitivity to other factors such
as the magnetic field strength.

A dynamo model with a boundary heat flow pattern proportional
to the lower-mantle seismic tomography model of Masters et al.
(1996) truncated at harmonic degree l = 4 produces time-averaged
magnetic field structures suggestive of the historical average geo-
magnetic field on the core–mantle boundary. Tomographic boundary
heat flow produces a single high-intensity flux patch in the south-
ern hemisphere and an unequal pair of high-intensity flux patches
in the northern hemisphere in the time-averaged magnetic field.
This model also produces a quadrupole Gauss ratio with the same
sign as the time-averaged palaeomagnetic field (although smaller in
magnitude), and a pattern of circulation in the southern hemisphere
that is similar to the circulation pattern inferred from the historical
geomagnetic secular variation.
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