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Calculation of dike trajectories from volcanic centers
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[1] Patterns of dike swarms around volcanic centers or above mantle plumes are interpreted by a
mechanical analysis of regional and dike-induced stresses, in which dike emplacement is controlled
and guided by the stress state. Comparisons of dike patterns with patterns of principal-stress trajectories
caused by a source and a regional stress system are commonly used to infer paleostresses. However,
dike trajectories are determined by a complex interaction between dike-induced stresses and the source/
regional stress system. We present numerical calculations based on a novel boundary-integral
formulation, which examines the simultaneous effects of regional stresses, magma pressure, and dike
injection on the local stress state around a continuously curving dike. Dike paths are calculated from the
condition that dikes propagate by mode I failure. Our results suggest that the magnitude of the regional

stresses would be 2—5 times higher than previous estimates based on principal-stress trajectory

analysis.

INDEX TERMS: 8010 Structural Geology: Fractures and faults; 8020 Structural Geology:

Mechanics; 8164 Tectonophysics: Stresses—crust and lithosphere; 8434 Volcanology: Magma
migration; KEYWORDS: Dike swarm, propagation, dike path, principal-stress trajectory, regional stress

1. Introduction

[2] For many years, simple explanations of the mechanics and
paths of dike intrusions have been developed from two basic
statements [Anderson, 1951, pp. 21-25]. First, dikes open as a
result of tensile loading exerted at the tip. Second, they select the
orientation of “least resistance” by opening along planes across
which the confining pressure is least. These statements established
a connection between dike geometries and the ambient stress field
[e.g., Stevens, 1911; Anderson, 1936, 1938; Odeé, 1957] and led to
the idea that dike paths simply trace trajectories perpendicular to
the minimum compressive principal stress of the ambient stress
field, i.e., the stress field present before dike propagation.

[3] This concept of principal-stress trajectories has been applied
to dike swarms, which form characteristic geometrical patterns
[e.g., Ode, 1957; Muller and Pollard, 1977; Baer and Reches,
1991; McKenzie et al., 1992; Koenig and Pollard, 1998]. These
patterns are observed on both Earth and Venus and are considered to
be the result of subhorizontal propagation in different directions
from a shallow source region (see Ernst et al. [1995] for a review).
Maps of such dike swarms often show a systematic change in
propagation direction with distance from a radial to a subparallel
geometry. If the equivalence of dike paths and principal-stress
trajectories is assumed, then the simple stress field due to a
pressurized hole in an otherwise unstressed elastic body produces
only a radial pattern. Thus the swarm patterns exhibiting a transition
from radial to subparallel propagation suggest that a regional stress
field existed in the crust at the time the dikes were injected. For
example, calculations considering the superposition of the stress
field due to a pressurized source and a biaxial regional stress field
showed that reasonable agreement in pattern could be obtained by
judicious choice of the relative magnitudes of the stresses [Baer and
Reches, 1991; McKenzie et al., 1992; Koenig and Pollard, 1998].
The transition from radial to subparallel geometry is located where
the regional stress field begins to dominate that due to the
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pressurized source. Since reasonable geometrical fits and estimates
of the remote shear stress can be obtained from such comparisons,
the method has been considered reliable.

[4] However, these analysis are open to serious theoretical
question because they ignore the fact that dikes radically alter
the surrounding stress field as they propagate. The actual state of
stress during propagation results from a complex interaction
between the dike and its environment, in which both externally
and internally generated stresses matter: the dike generates its own
stress field through the distribution of magma pressure, which is
related to the viscous pressure drop along its length; moreover, the
presence of the dike (as a new internal structure) induces large
changes in the local effects of the externally generated stresses.
McKenzie et al. [1992] note that it is surprising that principal-stress
trajectories give good agreement with observed patterns despite the
neglect of these problems. Here we show that the full calculation
gives at least as good qualitative agreement in pattern but sub-
stantially different estimates of the stresses.

[5] In the context of the mechanical interaction between
neighboring joints or en echelon fractures, it has long been
realized that crack-generated stresses change crack propagation
paths from those predicted from remote stresses. Various studies
have considered how the presence of one or more neighboring
cracks influences the stress field near another and hence the
propagation path [e.g., Pollard et al., 1982; Sempere and Mac-
donald, 1986; Olson and Pollard, 1989; Cruikshank et al., 1991;
Olson, 1993; Thomas and Pollard, 1993]. These analyses largely
focus on crack curvature as a crack-crack interaction effect
caused by the approach and overlap of echelon segments. Here
we apply similar considerations to the curvature of a single dike
in an ambient stress field and show that the curvature is strongly
influenced by the dike’s self-interaction. Though we illustrate our
analysis by application to radial dike swarms, we wish to
emphasize the underlying concepts since these will also deter-
mine dike paths in other settings.

[6] Calculation of the effects of a propagating crack in an
ambient stress field requires solution of an elastic problem in
which the crack geometry is generally not a simple straight line or
circular arc but an arbitrary continuously curving path. Several
straight cracks can be dealt with by reflection techniques [Pollard
et al., 1982] and small deflections from a straight path can be dealt
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using the analysis of Cotterell and Rice [1980] [Cruikshank et al.,
1991]. However, previous calculations of propagation along more
general curving trajectories [e.g., Olson and Pollard, 1989; Olson,
1993; Thomas and Pollard, 1993] have largely been based on the
boundary element method of Crouch and Starfield [1983]. This
method employs a simple discretization in which the dike shape is
approximated by elements consisting of straight-line segments and
the wall displacement on each element is taken to be constant.
Thus there are discontinuities in both the crack direction and the
wall displacement at the joins between the elements, and prop-
agation proceeds in a series of small kinks. We have reformulated
the problem in terms of a boundary integral equation and devel-
oped a smoother and much more accurate representation in which
the boundary elements are circular arcs and the boundary displace-
ment is piecewise linear (see Appendix A). This allows the dike
orientation and wall displacement to be continuous along the dike
length and the propagation direction to change continously.

[7] We start by discussing the principles determining dike paths.
We then illustrate our ideas by applying them to model patterns of
dike swarms from a volcanic center.

2. Criteria for a Dike Path

[8] In theoretical mechanics, crack propagation is usually ana-
lyzed in terms of three basic modes, which are distinguished by the
type of loading exerted at the crack tip: mode I, or opening mode,
refers to purely tensile loading of the crack tip; mode II, or sliding
mode, and mode I11, or tearing mode, refer to pure shear loading of the
crack tip, respectively, perpendicular to and parallel to the front. A
superposition of more than one type of loading is termed mixed-mode
propagation. In linear elastic fracture mechanics, these three modes
are associated with stress intensity factors, Ky, Kyj, and Kyy;, which are
defined by the form of the near-tip stress and displacement fields
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where r is the radial distance from the crack tip and f(0) and g(0)
are functions of angle 0 [Lawn, 1993, p. 26].

[9] If a crack tip is subject to mixed-mode loading, then its
incremental direction of propagation will make a nonzero angle, or
kink, with the tangent direction at the previous tip position
[Erdogan and Sih, 1963]. The kink angle is determined by the
requirement that the loading of the incremented tip is mode I
(equivalently, by the maximum circumferential stress criterion).
Moreover, it follows that if the subsequent propagation path curves
smoothly (without further kinks), then the tip loading must be such
that fracture proceeds in pure mode I [Cotterell and Rice, 1980],
and this determines the curvature. Thus smoothly curving dikes
propagate along the path for which the only nonzero stress
intensity factor is Kj. The stress intensity factors, and hence this
“mode I path,” are determined by the integrated effects of the
loading of the dike walls by both internal and remote stresses. The
loading can be resolved into normal and tangential components,

o, =P, — [sin2

2
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o, = —[(sin’a — cosa) o —cosa sina (o, — o),
where « is the angle between the tangent to the crack and the x axis;
Oy Oyy, and o, are the components of the background remote stress
field (with tension positive); P,, is the magmatic pressure, which
decreases along the dike due to the viscous resistance to flow which
determines the propagation rate [Lister, 1990; Lister and Kerr, 1991].

[10] To illustrate the difference between a principal-stress path
and the mode I path, we begin with the very simple analytic example
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Figure 1. Initial extension and kink at angle A« of a preexisting
two-dimensional straight crack aligned with the x axis with
constant internal pressure P in the presence of constant far-field
stresses 0%y, Oy, and o3,

of a straight crack starting to extend in an ambient stress field of
uniform far-field stress. We suppose that the crack is initially aligned
with the x axis with constant internal pressure P, that the far-field
stresses are oy, Oy, and oy, and that o3, 7 0 so that the crack will
deviate from the x axis as it starts to propagate (Figure 1).

[11] To make a point, we define the principal-stress trajectories
in terms of the ambient far-field stresses and think of the initial
crack as the result of more recent propagation whose effects on the
preexisting stress are ignored. The principal-stress trajectories are
then straight lines at an angle A« to the x axis, where

20
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Thus the principal-stress approach predicts that the dike kinks and
then propagates in a straight line at this angle, which depends only
on the far-field stresses and not on the orientation or internal
pressure of the original crack.

[12] The mode I path can be calculated using results from
equation (31) of Cotterell and Rice [1980], who considered a
crack subjected to a combination of mode I and mode II loading at
the initial tip; if the local stress field at the incremented tip position
is required to be purely mode I (i.e., Kii' = 0) then the crack must
kink by an angle Aa, where

sin (Aa/2) + sin (3Aq/2) K3 5
cos (Aa/2) +3cos (3Aa/2) KD )

and K} and K] are the stress intensity factors at the tip of the
initial crack. Equation (5) depends explicitly on K and K}, since
it is the dominant =2 near-tip stress field (equation (2)) that
determines the path. For the initially straight crack with constant
far-field stresses, K = o0,v/wl and K} = o/wl [Lawn, 1993],
where o, = 0, — P and o, = oy, and [ is the crack half length.
Thus equation (5) can be rewritten as

sin (Aa) oy

3cos (Aa) — 1 = oy

(6)
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which coincides with the maximum-stress criterion of Erdogan
and Sih [1963]. It should be noted that after the initial kink the
crack propagates along a curved trajectory, since the extension of
the crack modifies the near-tip field and hence the direction of
propagation for the next increment. This curvature is in agreement
with observations in mechanical samples [Lawn, 1993].

[13] Comparison of equations (4) and (6) shows that the principal-
stress and mode I paths are significantly different for the straight-
forward reason that the principal-stress criterion is based entirely
on the orientation of the stresses that would be at the position of
the crack tip if there were no crack present. However, the
introduction of the crack as an internal surface free of shear stress
completely changes the stresses at the location of the tip from a
constant background stress to the singular stress concentration of
equation (2). An improved principal-stress prediction could be
obtained if the stress field around the initial crack were considered
part of the ambient stress field when calculating the trajectories for
the subsequent propagation. However, the method would still be
increasingly inaccurate as the crack propagates from its original
position and changes the stress field from the initial stress field
used to calculate the trajectories. In contrast, the mode I criterion
defines the crack path in terms of the actual stresses at the
propagating tip and is clearly much more physically reasonable.

3. Example: Propagation From a Volcanic Center

[14] In order to illustrate the geological significance of the differ-
ence between principal-stress predictions and mode I paths, we now
focus on the pattern of dike swarms radiating from a volcanic center.

3.1.

[15] Models of the stress field around a volcanic center have
previously been used to predict principal-stress trajectories and then
to infer the regional stress field from the observed dike paths. The
common parameterization of the stress field is based on the two-
dimensional problem of a pressurized circular hole, representing the
magmatic source, in an elastic body subject to a constant far-field
biaxial stress, representing the regional stresses (Figure 2). For a
hole of internal pressure P and a biaxial far-field stress composed of
an isotropic mean stress M and a differential stress 2.5 (with tension
again positive), the analytic solutions [Kirsch, 1898; Jaeger and
Cook, 1979] for the stresses in Cartesian coordinates are

Regional Stress Field

R\ 2
oxszfo[PJerZS](f) cos20
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where r = /x2 + 32, cosh = x/r, sind = y/r, and R is the radius of
the hole. The far-field stresses are oy, = M — S, oy, = M + 8§,
and oy, = 0; the terms involving P are just isotropic dilation from
a source with overpressure P + M (which take the simple form
6, = —(P + M)RIF)?, o9 = (P + M)R/F, 6,4 =0 in cylindrical
coordinates); the remaining terms involving S represent the
perturbation to the far-field stress due to the presence of the hole
and are required to satisfy the constant-pressure boundary
conditions o,. = —P and o,y = 0 on » = R. Koenig and Pollard
[1998] calculate their principal-stress trajectories from equation (7).

ETG 10 -3
M S
N A

— — g
Figure 2. (top) Circular hole of radius R and internal pressure P

in an elastic body subject to a biaxial stress at infinity split into an
isotropic mean stress field M and a deviatoric stress field of
magnitude S. (bottom) Circular hole of overpressure AP in an
elastic body subject to a deviatoric remote stress of magnitude S.

[16] In simplified versions of equation (7) [Odé, 1957; Muller
and Pollard, 1977; Baer and Reches, 1991; McKenzie et al., 1992]
the stresses are approximated by

R
O ~ —S — AP (7 c0s20, (8a)
2
Oy =S+ AP (7) c0s20, (8b)
R\ 2
Oy = —AP (;) sin26), (8c)

as discussed below.

[17] In moving from equation (7) to equation (8), two simpli-
fications are made. First, addition of a uniform isotropic stress does
not affect the principal-stress trajectories, and so the uniform far-
field mean stress M can be subtracted from o, and o,,. It is
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important then to remember both that the stresses o;; in equation (8)
denote the deviations from the mean compression and not the true
stresses of equation (7) and that the source pressure AP is the
source overpressure P + M and not the actual source pressure P.
Koenig and Pollard [1998] criticize McKenzie et al. [1992] for
setting the remote mean stress equal to zero by using (8) and thus
ignoring the effect of mean stress on trajectories. In fact, there is no
problem here provided the pressure P in McKenzie et al. [1992] is
understood to be the overpressure relative to the mean stress and
not the actual pressure (the paper does not explicitly define P).

Thus equation (7) can be rewritten as
Aoy AP R\’ R\* _/R\*
il S {— — 2} (;) c0s20 — |3 (7) -2 (;) cos40,

S S
(9a)
Ao, 2 4 2
2% _ 1+ {E 2} (—) cos20 + |3 (5) -2 (§> ]00549,
S N r r
(9b)

Aacy, AP (R\? . R\* _/R\?| .
s - 77(;) sin20 — |:3 (;) 72<;> sin40), (9¢)

showing that the problem only depends on R and the relative
magnitudes of the remote stress S and the overpressure AP; here S
is taken to be positive by choice of the x and y axes, and AP is
assumed to be positive since we are interested in radial near-field
trajectories. (Negative AP produces circumferential propagation
and ring dikes.)

[18] The second simplification rests on an implicit assumption
that S < AP. If this is the case, then the stresses due to the hole
overpressure AP are dominant in the near field (» &~ R) and the near-
field perturbation to the ambient differential stress caused by the
presence of the hole (i.e., terms in equation (7) proportional to S(R/r)"
cos(n8) with m, n =2 or 4) can be neglected to reduce equation (9) to
equation (8). The dominant stresses due to the hole overpressure
produce radial propagation in the near field. These stresses
decrease with radial distance and are equal to the ambient biaxial
stress at radius 7%, where r* = R(AP/S)"?. It is thus to be
expected that the dike swarm will curve toward a subparallel
geometry at this sort of radius. The assumption that S < AP could
be justified either from observations that the dike swarm curves on a
longer length scale than the source dimensions (for example, on
Venus [Grosfils and Head, 1994]) or from modeling the swarm
pattern and checking, a posteriori, that the best fit gives S < AP, It
seems to be a reasonable approximation in previous studies of
volcanic centers [Odé, 1957; Muller and Pollard, 1977; Baer and
Reches, 1991; McKenzie et al., 1992] but would not be appropriate
in tectonically active regions, like Iceland, where there are relatively
large differential stresses and dike swarms are closely subparallel.

[19] For simplicity, we will also restrict our attention to cases
in which the stress field can be approximated by equation (8) and
note, for example, that the principal-stress trajectories are not
much affected by the approximation even for values of S/AP as
large as 0.5 (Figure 3). The field examples described in section 5
have S/AP < 0.25.

3.2.

[20] The simplified stresses in equation (8) can conveniently be
made dimensionless by defining

Nondimensionalization
g=0/S (10)
F=r/r¥, (11)

where the length scale r* = R(AP/S)"? is the radius at which the
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Some principal-stress trajectories calculated for the
exact stress field (equation (7)) (dashed lines) and approximate
stress field (equation (8)) (solid lines). Four trajectories are
shown for each case corresponding to initial angles 35° and 75°
and S/AP = 0.02 and 0.5.

Figure 3.

hole and biaxial stress fields have equal magnitude. The
dimensionless stress field is then given by

1
G = —1 — = cos26, (12a)

r

_ 1
Gy =1+ ;—2c0s26, (12b)
Oy = f;—zsin26 (12¢)

in 7 > R, where 7 = Rir* = (S/AP)" is the dimensionless hole
diameter. Alternatively, R* can be thought of as the ratio of the
regional differential stress to the source overpressure. This is the
only parameter in the dimensionless problem, and we are interested
in R 1 (e, R < r¥).

3.3. Chamber Conditions

[21] The stress field in equation (12) is that appropriate for
propagation from a pressurized source, or magma chamber, of
dimensionless radius R. Though it would be possible to extend
our calculations to include the chamber wall as an internal
boundary with constant-pressure boundary conditions, it is
simpler, and consistent with the approximations already made
for R < 1 (ie, § < AP), to model the chamber by making
the following approximations for 7 < R. We assume an initial
state in which there is a straight dike of length R at an angle o to the
x axis and extending from the origin to 7 = R (Figure 4). We assume
further that in 7 < R the dike has a constant internal magmatic
overpressure AP,, = 1/R* and there is a constant stress field

- 1
Op = —1 — Ecosﬂ)7 (13a)
~ 1
Gy =1 +1§c0s29, (13b)
Gy = — s 26 13
Gy = — =5 sin20. (13¢)
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Figure 4. Curved dike path of length 5§ = /. The propagation
direction is defined by the tangent angle o with the x axis. The dike
originates from a preexisting straight dike of length R at an angle
Qg to the x axis.

We are concerned with dike curvature on length scales much
greater than R and the details of these approximations make little
difference.

3.4. Magmatic Pressure Distribution

[22] When a dike propagates away from a source the magmatic
overpressure decreases along the dike due to the dominant viscous
resistance to flow [Lister and Kerr, 1991]. The detailed shape of
the pressure profile in 7 > R thus depends on the dike width and
requires simultaneous solution of the equations of viscous flow and
elastic deformation [e.g., Spence and Turcotte, 1985; Lister, 1990;
Rubin, 1993a, 1993b]. For simplicity, we consider the end-member
cases of constant magma overpressure (AP,, = 1/R* in 7> R) and a

r
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crack with no overpressure outside the chamber (AP,, =0 in 7 > R)
and also the simple parameterization

. 1/4
- 1 (/-5 -
AP,(3) == {7_;} in7 > R, (14)

where [ is the dimensionless length of the crack and § is the
dimensionless arc length along it; this parameterization approx-
imates the shape of the pressure profile found in previous studies.

[23] We note that the initial dike configuration is subjected to a
combination of mode I and mode II loading and thus kinks as it
starts to propagate. Thereafter, the dike can curve smoothly along a
mode I path.

3.5. Calculation of Mode I Propagation Paths

[24] We have argued that dikes follow a curving path which is
determined by the condition that the tip loading is pure mode I, i.c.,
that Kj; = 0 at every stage of propagation. In order to evaluate this
path numerically, we use a stepwise method in which the dike path
is considered to be a sequence of curved segments, which join
smoothly to give a continuous variation of the propagation direc-
tion. At each propagation step the dike is extended from the
previous tip by one segment. We calculate the value of Kj; for
trial additional segments and then choose the curvature of the
additional segment so that Kj; = 0 at the new dike tip. This tip
condition can be expressed in terms of the tangential displacement
of the dike walls using equation (2), and the wall displacements
can in turn be found from the stress conditions of equation (3) on
the dike walls using a boundary-integral formulation, as described
in Appendix A. The value of K] is always positive.

[25] Our calculations are for propagation of a single dike,
though we present multiple trajectories in each plot to show the
paths of dikes initiated at different angles. If many dikes are
actually injected in a swarm, then it might be expected that the
stresses induced by the early intrusions would affect the trajectories
for later events. This could, in principle, be modeled if the temporal

Figure 5. Dimensionless mode I dike paths (solid lines) and principal-stress trajectories (dashed lines) for
R*=S/AP=0.1. Mode I paths for a crack with (a) no internal overpressure and (b) constant internal magma pressure

AP, = /R,
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order of the sequence of intrusions were known, together with the
initial angle, volume, and propagation distance of each dike.
However, the good agreement in pattern between the observed
swarms and the multiple trajectories for a single dike suggests that
the crustal stresses around each dike might relax sufficiently after
intrusion not to affect subsequent intrusions.

4. Results

[26] In section 2 we showed analytically that the direction of
extension of a straight crack in a regional stress field is predicted
quite differently by principal-stress and mode I criteria. The same
principle also applies to dike propagation from a volcanic center,
but the mode I path can no longer be found analytically and
numerical calculation is required. We explore the difference from
principal-stress trajectories and the effects of the pressure distribu-
tion in the dike and of the parameter R.

[27] Figure 5 shows clearly that mode I dike paths, which are
based on the actual near-tip stress fields, are significantly different
from the principal-stress trajectories for the same regional stress
field (equation (12)) with a given value of R. Even for a dike in
which there is no magma overpressure on the dike walls in 7 > R
and the tip loading is due entirely to the applied regional stress and
the chamber pressure, the mode I path propagates further in a radial
direction before curving to be subparallel to the remote extension
(Figure 5a). The effect is very much more marked for a dike loaded
with uniform magma overpressure AP,, (Figure 5b), for which the
curvature toward subparallel orientation occurs on a much longer
scale than in the corresponding principal-stress trajectory.

[28] The dependence of the mode I dike paths on the distribu-
tion of magma overpressure is shown in Figure 6. Dikes with either
uniform internal overpressure or with the simple parameterization
in equation (14) of a viscous pressure drop propagate radially for
much greater distances than the corresponding unpressurized
cracks. The reason is simply that transmission of a magmatic
overpressure from the source toward the dike tip provides a large

Figure 6. Dimensionless mode I dike paths for R* = 0.25 with
three magmatic pressure distributions (see section 3.4): no
magmatic overpressure outside the chamber (dashed lines), constant
magmatic pressure (solid lines), and the simple parameterization in
equation (14) of the viscous pressure drop (dotted lines).
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Figure 7. Dimensionless mode I dike paths for R* = 0.1 (solid
lines) and R*> = 0.5 (dashed lines), both with the simple
parameterization (equation (14)) of the viscous pressure drop.

tensile loading ahead of the tip; only a small curvature is then
required to convert some of this tensile loading to sufficient shear
loading to counterbalance the regional shear loading and maintain
mode I propagation. For the same reason, uniformly loaded dikes
tend to propagate with less curvature than those with a viscous
pressure drop. The difference, however, is relatively small, sug-
gesting that the parameterization in equation (14) is probably
sufficient to get reasonable results without having to model the
full details of the viscous flow in a curved dike of variable width.

[29] While mode I paths curve much less than principal-stress
trajectories for a given stress field, it should not be thought that
large curvatures are not possible with mode I paths. Figure 7
shows the effects of varying R for the most realistic pressure
distribution in equation (14). An increase in R produces mode I
paths that curve more rapidly toward the principal direction of
minimum compression since this corresponds to an increase in
the remote differential stress relative to the overpressure in the
source and propagating dike. Calculations with even larger values
of R = (S/AP)"? should use a dimensionless version of the full
stress field equation (7) rather than equation (12).

5. Application

[30] Studies of principal-stress trajectories were motivated by
the idea that the remote differential stress could be estimated from
fits between the principal-stress trajectories and the observed dike
patterns. In practice, estimates of S are derived using the dimen-
sionless parameter R from

S =R* AP, (15)
where R is determined by the best fit between calculated trajectories
and observed dike patterns and AP is estimated by other means.
Larger curvatures correspond to larger values of R and hence larger
values of S for given AP. Since mode I paths curve less than
principal-stress trajectories for a given R, the best fit mode I path
will have a larger value of R and hence give a larger value of S.
[31] For example, Muller and Pollard [1977] used the principal-
stress trajectory approach on the West Peak intrusion, Colorado, to
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Figure 8. Observed pattern of dike segments at the Spanish Peaks region, Colorado, giving a reasonable fit with
principal-stress trajectories (dashed lines) for R = 0.22 [Muller and Pollard, 1977]. Mode I dike paths (solid lines)
with this value of R and the viscous pressure drop are quite different.

argue that the regional stress difference was <0.05 times the
driving pressure (i.e., R = 0.22). This value of R gives a poor
match between the mode I dike paths and observed dike trajecto-
ries (Figure 8). However, a very good match is obtained with the
mode I paths for R = 0.5 (Figure 9). This result implies that the

remote stress S has an upper bound of 25 MPa rather than the
previous estimate of 5 MPa.

[32] A second example is furnished by Koenig and Pollard
[1998] study of a dike swarm on Venus. While they achieved a
reasonably good fit between principal-stress trajectories and the

105°07 30" 10500 52730 4% 10£*37°30°

37ac't

B
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Sildsp
3745

Figure 9. Mode I dike paths with the viscous pressure drop and R = 0.5, giving very good agreement with the
observed dike pattern at the Spanish Peaks region, Colorado.
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Figure 10. Mode I dike paths with the viscous pressure drop,
giving good agreement for R = 0.47 with the observed dike
pattern in the Venusian swarm studied by Koenig and Pollard
[1998].

observed dike pattern for R = 0.33, our mode I calculations give
at least as good a fit with R = 0.47 (Figure 10). Therefore the
estimate of S for a given magmatic overpressure from mode I
dike paths is about double the estimate from principal-stress
trajectories.

[33] These two examples show that both principal-stress trajec-
tories and mode I paths can provide a good qualitative fit with the
dike pattern. However, the inferred values of S/AP are quite
different. Since the mode I path is based on the actual near-tip
stress field, we consider it to be more reliable. More generally, we
affirm that the use of dike paths as paleostress indicators is a
powerful tool, but we emphasize the need to abandon the principal-
stress approach.

6. Conclusion

[34] We have developed a description for dike propagation
which is based on a well-defined and physically based criterion
for the determination of the dike path, namely, that of mode I
fracture. This criterion is well established for models of interacting
fractures, but it is not commonly used for dike paths in a spatially
varying ambient stress field. A simple numerical scheme allows
calculation of dike paths with any prescribed loading. In particular,
our results show that the magnitudes of regional differential
stresses around volcanic centers are 2—5 times greater than
previous estimates based on principal-stress trajectories. The gen-
eral principle is that prediction of a dike trajectory requires
calculation of the stress field near the dike tip as it propagates
and cannot be directly inferred from the principal-stress directions
prior to propagation.

[35] This work could be extended in a number of directions.
For small driving pressures relative to the differential stress the
full stress field (equation (7)) should be used, and walls of the
magma chamber should be included as a free boundary in the
boundary-integral formulation. Considerations of the circumfer-
ential stress in the chamber walls could then address the limited
angular range occupied by many dike swarms. Second, it would
be interesting to consider models of multiple intrusion in which

MERIAUX AND LISTER: DIKE TRAJECTORIES FROM VOLCANIC CENTERS

the stress field from early emplaced dikes influence the paths of
those emplaced later in the swarm. Finally, it should be noted that
the lateral intrusion of dikes is not really a simple two-dimen-
sional problem but may require some consideration of the vertical
structure [e.g., Rubin and Pollard, 1987; Lister, 1990; Bolchover
and Lister, 1999]. A fully three-dimensional calculation incorpo-
rating the vertical structure of the crust and allowing for prop-
agation of all points around the perimeter of the dike plane would
be a substantial undertaking. However, the principle that prop-
agation is determined by the stress field at the dike tip during
propagation will still hold.

Appendix A: Numerical Method
Al. Boundary-Integral Formulation

[36] The two-dimensional (2-D) problem of a curved crack with
prescribed wall stresses is a standard boundary value problem in
linear elasticity [e.g., Crouch and Starfield, 1983; Muskhelishvili,
1963; Tanaka et al., 1994; Mogilevskaya, 1997], which can be
expressed as an integral equation in a variety of forms [Chen,
1993]. In one of these, the “dislocation density method,” the
problem is written in the form

[ron(Se-(282)
(s / )/0s /(x)
which expresses the known stresses at vector position x on the
crack as an integral over the crack contour C of the derivatives of
the unknown components /,(s) and 4,(s) of the wall displacement.
The kernel K(x, s) is a 2 x 2 matrix, the integration variable s is the

arc length along the crack, and s is the corresponding vector
position. The additional constraint

J- G )= (o)

represents the condition that the crack is closed at both ends. The
linear system of equations (A1) and (A2) is sufficient to determine
unique solutions for 4, and &, from the distributions of o, and o,
along the crack.

[37] The wall displacement / has square-root singularities at the
crack tips corresponding to the singularity in the displacement field
(equation (2)) as » — 0. We treat these singularities explicitly by
writing

(A1)

(A2)

Oh D
- _Dis) 7 (A3)
Os s(l—s)

where / is the length of the crack, and we have dropped the

subscripts x and y for convenience. The new function D(s) has no
singularities and is much easier to treat numerically.

A.2. Discretization

[38] In order to solve equations (A1) and (A2) for D(s) numeri-
cally, both the dike geometry and the function D(s) are discretized
along the dike contour C. The dike geometry is represented by
elements consisting of circular arcs which are chosen to join
smoothly at node points. (Two of the three parameters needed to
define each additional circular arc are determined by matching the
end-point location and tangent direction of the previous arc,
leaving the third parameter, the curvature of the arc, to be
determined by the mode I criterion.) The function D(s) is repre-
sented by D(s) = Y _;D; fi(s), where the D; are the values of D(s) at
node point j and the f;(s) are piecewise hnear basis functions. We
evaluate equation (A1) at the midpoints x; of the elements. These
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Figure Al. Relative error € = |[Kpum — Kexact/Kexace In the
numerically determined stress intensities K; and Kj; at the tips of
a circular arc crack of angle 2« subject to uniform far-field
tension for o = 45° (thin lines) and o = 90° (thick lines) as a
function of the number of boundary elements N. The present
scheme (solid lines) is much more accurate than that of Crouch
and Starfield [1983] as described by Thomas and Pollard [1993]
(dashed lines).

representations reduce the problem to a linear system of algebraic
equations

ZD, / \/ﬁgs_)s)K(xk,s)ds = oy (A4)
fits) o
Yol gt W

for the unknown displacements D; in terms of the known midpoint
stresses 0 = o(Xy).

A.3. Numerical Procedure

[39] The numerical code has three main parts. The first part
consists of calculations of the integrals of the basis functions in
equations (A4) and (AS) for a given geometry C. This requires
careful treatment of the singularity at the pole of the Cauchy-type
kernel K, using singularity removal techniques [ZTanaka et al.,
1994; Pozrikidis, 1992]. The second part constructs and inverts the
matrix representing the linear system of equations to obtain the
solution for D with this geometry and loading. In the third part,
these two subroutines are nested within a root-finding algorithm
which finds the curvature of the next circular arc to be added as the
crack propagates from the condition that the tangential component
D, = 0 at the new tip; this corresponds to ensuring that Kj; = 0.

A.4. Verification and Accuracy

[40] The numerical scheme was tested by comparison with the
exact solution for a crack forming a circular arc subtending an
angle 2« under uniform far-field tension [Muskhelishvili, 1963, p.
524]. The displacements and stress intensities obtained numerically
agreed with the exact solution to within ~1.7% for N = 10
elements and within ~0.1% for N = 40 elements. In fact, the
numerical error in the present scheme is proportional to N 2. Direct
implementation of the Crouch and Starfield [1983] scheme gives
errors in displacement /4 proportional to N~'2 and overestimates
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the stress intensities by ~25% even if N — oco. The correction
factor 0.806 used by Thomas and Pollard [1993] (0.798 is actually
better) removes this leading-order error but still leaves numerical
errors that are much greater than the present scheme (Figure Al).
Thus fewer elements are needed in the present scheme for the same
accuracy, or much greater accuracy can be achieved for the same N.

[41] Acknowledgments. We are very grateful to Richard Ernst, Jon
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helped us improve the manuscript in many ways. This research has been
supported by an EU Marie Curie Fellowship.
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