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(T 1ONAL 4S50 o Abstract
N % An extended Vendian-Cambrian island-arc system similar to the Izu-Bonin-Mariana type is described in the Gorny
Altai terrane at the margin of the Siberian continent.
“ A Three different tectonic stages in the terrane are recognized. {1} A set of ensimatic active margins including subducted

oceanic crust of the Paleo-Asian ocean, the Uimen-Lebed primitive island arc, oceanic islands and seamounts: the set of
rocks is assumed to be formed in the Vendian. (2) A more evolved island arc comprising calc-alkaline volcanics and
granites: a fore-arc trough in Middle-late Cambrian time was filled with disrupted products of pre-Middle Cambrian
accretionary wedges and island arcs. (3) Collision of the more evolved island arc with the Siberian continent: folding,
metamorphism and intrusion of granites occurred in late Cambrian-early Ordovician time.

In the late Paleozoic, the above-mentioned Caledonian accretion-collision structure of the Siberian continent was
broken by large-scale strike-slip faults into several segments. This resulted in the formation of a typical mosaic-block
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structure.
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Introduction

The available reconstructions of the Paleo-Asian ocean
or the equivalent ocean (Zonenshain et al., 1990; Sengor
etal., 1993; Didenko et al., 1994; Didenko, 1997; Scotese
and McKerrow, 1990; McKerrow et al., 1992) assumed
that, in Vendian time, it existed in between Siberia and
East Gondwana and could be up to 4000 km wide. The
western and southern margins of the Siberian continent
were bounded by an island arc system — Kuznetsk-Altai-
Khantaishirin. Remnants of island arcs have been found
in South Siberia and Mongolia (Fig. 1) and their ages are
believed to be Vendian-Cambrian by many investigators
of the Altai Mountains. Gorny Altai is a western
mountainous part of the Altai-Sayan area (ASA), which
is a Caledonian accretion-collisional complex of South
Siberia containing large fragments of Vendian-Cambrian
island arcs formed after the closing of the Paleo-Asian
ocean (Zonenshain et al., 1990; Berzin and Dobretsov,
1994; Dobretsov et al., 1995; Buslov et al., 1993, 2001).

* Deceased

The most comprehensive and advanced examination for
the Vendian-Cambrian island arcs in the Altai-Sayan region
is discussed by Buslov et al. (2001).

Buslov et al. (2001) proposed a newly defined terrane
classification and revealed that the Gorny Altai terrane
preserved a set of island arc systems in Vendian-Cambrian
time near the Paleo-Asian ocean/Siberian continent
border. In the present-day structural pattern of the Gorny
Altai terrane the fragments of Vendian-early Cambrian
ophiolites, island arcs and paleo-oceanic islands are
separated by late Paleozoic faults. Buslov et al. (2001)
also proposed late Carboniferous-early Permian
reactivated suture zones along the Kazakhstan and
Siberian continents (Fig. 2).

This paper presents more advanced results of the study
of structure, age, composition and fossils of island arc
units in the southeastern part (Kurai zone) of the Gorny
Altai terrane at the southern and central parts of the Kurai
Range. In spite of loose chronological constraints as
described later, Ar—-Ar dates and fossil data indicate that
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Outline of Geology in the Kurai Zone

The Kurai zone consists of well-preserved fragments
of the island arc system. They compose the following three
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Distribution of Caledonian accretion-
collision zones and Precambrian
microcontinents of the Gondwana and
Eurasia groups in the Altai-Sayan
region on the southern side of the
Siberian continent (Dobretsov et al.,
1995). IA = Island Arc system (Tuva-
Mongolian IA, Dzhida JA, Munisa IA).

units bounded by faults mainly from the west to the east,

i.e., (1) Middle-late Cambrian rocks (Anui-Chuya fore-
arc trough), (2) Kurai accretionary wedge and (3) Uimen-

Lebed island arc (Figs. 3, 4). They compose a nappe-

sheeted structure (Figs. 4, 5). The Kurai zone is bounded

by strike-slip faults dipping to the northeast on the
northern margin. The northern side is occupied by the
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Fig. 2. Suture zones along the Siberian and Kazakhstan continents reactivated in late Carboniferous—early Permian time (Buslov et al., 2001).

Altai-Mongolian terrane and the Teletsk terrane which
might be a fragmented Gondwana supercontinent (Buslov
et al., 2001). Since the palaeontological data have been
obtained only from rocks in the Anui-Chuya fore-arc
trough, we shall describe these rocks first.

Geology of Rock Units

Anui-Chuya fore-arc basin (Middle-Upper Cambrian)

In the Anui-Chuya basin, various kinds of boulders
derived from island arcs and accretionary wedges
including mid-oceanic ridge basalt (MORB) have been
found. The boulders were probably supplied from
the eastern units (accretionary wedge and arc) and
the tectonic setting, therefore, is fore-arc. The fore-arc
basin complex near Aktash Village (Figs. 6, 7), referred
to as the Chibit Formation hereinafter, has the following
structure and composition (Buslov et al., 1998).
Olistostromes and conglomerates occur among
rhythmically alternating sand- and siltstones,
compositionally and structurally proximal to the Gorny
Altai flysch in the inner Anui-Chuya basin. The sandstones
are green and gray, chiefly polymictic or, less often,
quartz-feldspathic; the clays are gray and lilac, clay or
clay-carbonaceous, with scattered green, purple, or red
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siliceous-argillaceous and siliceous interbeds. The bedding
is generally rhythmical, starting with sands and finishing
with siltstones, mudstones, or sometimes, siliceous facies.
Coarse-grained facies exist as lenses and interbeds of
olistostromes, conglomerates, or sandy gritstones, up to
hundreds of meters thick. All the terrigenous deposits,
together with basal conglomerate horizons, overlie the
accretionary complex (Buslov, 1992; Buslov et al., 1993).
Towards the basin axis (the western side), coarse-grained
facies are less important and, as a rule, are reduced to
random conglomerate lenses and isolated pebble beds.
The Anui-Chuya terrigenous clastics are degraded
fragments of different structures (metamorphic terrane,
accretionary complex, primitive island arc) similar to the
rocks of Uimen-Lebed arc origin and a more evolved island
arc partially preserved in the Kurai Zone. The olistostrome
and the Gorny Altai flysch complexes show intricate
relations with local lateral transitions and concordant or
discordant vertical interbedding. Thus, paleontological
studies of the olistostrome complex can help dating the
Gorny Altai Group in the Anui-Chuya Zone. The upper
limit of the Group is marked by its unconformable
boundary with the overlaying paleontologically
constrained Arenig (Lower Ordovician) Voskresenka
Formation in northwestern Gorny Altai (Petrunina et al.,
1984).
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We add below new results of paleontological and
stratigraphic studies of the olistostrome and silt-sandstone
formations in the Chibit-Aktash-Baratal area in the middle
course of the Chuya River.

The terrigenous rocks of the Gorny Altai Group in the
southeastern margin of the Anui-Chuya basin overlie the
carbonaceous Baratal Formation with unconformity
(Buslov, 1992; Bondarenko, 1976; Buslov et al., 1993)

Anui-Chuya forearc trough:

olistostrome
Fig. 3. Geological sketch map of the Vendian-early

Cambrian island arc in Gorny, Salair and
Kuznetsk Alatau (Buslov et al., 2001).

(Fig. 6). The thickness of the basal coarse-clastic horizon,
which was examined north of Aktash village, changes
abruptly in the southwestern direction from 2 to 200 m
within a distance of 1 km. The basal horizon has an
extremely complicated structure. In its thickest part it is
represented by boulder-size conglomerates and breccias
that give way westward to a few irregularly striking
interbeds and lenses of breccias, conglomerates and
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Fig. 5. The section across the Kurai zone.

gritstones in a matrix of alternating polymictic sandstones
and siltstones. The coarse-grained facies lie upon the
uneven surface of the Baratal limestones. Immediately
below the surface, siliceous rocks rise among carbonates
as ~1 m high peaks formed by selective paleoweathering.
Rock fragments in the boulder conglomerates are, as a
rule, poorly rounded gray and black marbleized limestones
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and dolomites with siliceous concretions and interlayers,
or black, green and red jaspers. The basal horizon locally
includes small sand- and siltstone lenses, 2-3 cm thick
and up to 10 cm long, that can be syndepositional
xenoclasts. The boulder conglomerates and breccias are
overlain by alternated sandstones and shales with rare
coarse-grained lenses up to 1 m thick and 5 m long.
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Fig. 6. Geological sketch map of the Anui-Chuya fore-arc basin,
1--recent deposits; 2-8-Middle-late Cambrian basin slope facies:
2, 3-variegated formation: 2-rhythmically alternating
sandstones, siltstones and shales, 3-prevalently sandstone
members; 4-Chibit Formation; 5-olistostromes; 6-olistoplaques
of siliceous-carbonate deposits; 7-polymictic conglomerates;
8-interbeds of variegated jaspers; 9, 10-rocks of the late
Vendian—early Cambrian accretionary complex: 9-siliceous-
carbonate deposits of the Baratal Formation, 10-silicilites;
11-early Cambrian siltstones and sandstones of littoral facies
of oceanic islands; 12-subductional melange; 13-stratigraphic
boundaries; 14-faults: a-strike-slip faults, b-oblique thrusts,
c-hypothetic faults; 15-bedding direction; 16-sites for fossil
sampling; 17-Chuya motor-road.

In the source of the Menka River, the terrigenous
complex and the Baratal Formation have a non-coherent
contact. Near it, the Baratal limestones are cut with
fractures as deep as a few meters, filled in with limestone
clastics or polymictic sandstones. Above the contact,
sandstones contain poorly rounded fragments of
limestones and siliceous rocks of different sizes and
shapes, the basal horizon attaining a thickness of few tens
of meters. Further upward there is a 50 m thick layer of
interbedded sandstones and siltstones with <50 cm thin
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Fig. 7. Columnar sections of the Anui-Chuya basin along the Menka
River.

and 3-5 m long lenses of coarse-grained facies; it is
followed by the olistostrome complex traceable for over
8 km along its boundary with the Baratal Formation.

Examined in the upper course of the Menka River (right
side), the complex consists of the following strata
(described upsection) (see columnar sections in Fig. 7):

1. Gray carbonate-clayey and argillaceous siltstones
involving randomly scattered elongated lenses of Baratal
olistoliths and smaller clasts of limestones and silicilites
oriented along the member bedding. The apparent
thickness of the largest exposed olistolith attains 8 m, its
length exceeding 25 m.

2. A horizon of Baratal limestone olistoplaques attaining
a length of 750 m.

3.Gray and dark-green, poorly sorted polymictic
sandstones, gritstones and conglomerates with sporadic
inclusions of several centimeters long clasts of marbleized
limestones, dolomites, and silicilites of variable roundness.
The sandstones locally contain purple and red siliceous
interbeds, from which sponge spicules were extracted after
chemical treatment (locality B-8 in Fig. 6).

4. Sandstones proximal to those from member 2, locally
alternating with siltstones. Up to 50% of the member is
made up of olistostrome, breccia, and conglomerate lenses
a few meters thick and a few tens of meters long.
Coarse-grained facies involve marbleized or, sometimes,
oncolitic limestones, dolomites, and silicilites; more rarely,
micritic light-gray limestones of variable roundness, and

Gondwana Research, V. 5, No. 4, 2002
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well-rounded oval pebbles of tonalites and polymictic
gritstones. The micritic limestones contain archeocyates.
Archaeocyathus erbiensis Zhur., Tegerocyathus sp., which
are typical representatives of early Cambrian fauna and
indicate the Lower Cambrian Obruchev horizon (Volkov,
1966, Bondarenko, 1976), and Irinacyathus (?) cf. ratus
(Vologdin), typical of the Botomian and Toyonian Stages
of the upper half of the Lower Cambrian (Gusev and
Kiselev, 1988), were also found in other sections (near
Aktash village) among limestone clasts of olistostromes
and conglomerates. Fragments of some lenses display a
sort of zoning, the largest olistoliths being located in the
center, haloed by smaller clasts. The olistoliths, composed
mainly of Baratal limestones, are either flat with radiating
ends or oval bodies up to 20 m long.

5. Polymictic coarse-grained sandstones containing
sparse gravel clasts, olistoliths, and <50 cm thick and
3-5 m long lenses of breccias and conglomerates. The
member occurs in the immediate vicinity of the Chuya
road.

The olistostrome complex is overlain by a thick (at least
1 km) sequence of polymictic and quartz-feldspathic
sandstones and rhythmically-bedded silty sandstones
(silts) with siliceous, argillaceous and calc-argillaceous
mineralogy. The thickness of the sandstone beds is many
tens of meters, and the flysch layers are from a few
centimeters to a few meters thick. In places, the rhythms
start with polymictic gritstones. The base of the variegated
sequence locally involves carbonate-siliceous olistoliths
and conglomerate lenses and interbeds. Limestone clasts
in conglomerates and olistoliths at the bottom of the
variegated sequence contain trilobites and brachiopods
from the Middle Cambrian Mundybash horizon (Olenoides
sp., Kootenis ex. gr. elongata Resser, Kootenis ontoensis N.
Tchern., Kootoniella statkowskii (Schmidt.), Amgaspidella
cf. elongata N. Tchern., etc.) as well as brachiopods Nisusia
pospelovi Aks. and Kutorgina amzassica Aks. (Perfiliev et
al., 1994).

The lilac and red layers of siliceous rocks, which bear
sponge spicules, were sampled from the upper part of the
olistostrome complex and from the lower part of the silty
sandstone formation.

The greatest portion of sponge spicules sampled from
localities B-8 and 519 have very thick and strong
hexactinic thorns. They should be attributed to the species
Gjulanciella asimmetrica Fedorov, first described within
the Middle Cambrian Amgaian Stage (the lowermost of
the Amgaian trilobite zones is the Oryctocara regional
zone) of the Kuonamka Formation in the Siberian
Platform. An equivalent sponge spicule taxon was found
in jasperic interbeds in a Middle Cambrian greenstone
belt near Melbourne in eastern Australia. The siliceous
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rocks from locality 519 also contain rare fossils of sponge
spicules Disparella cf. fusiformis Fedorov. This taxon was
found among both Middle Cambrian (Kuonamka
Formation, Oryctocara zone) and Upper Cambrian
(Ogon’or Formation, the youngest Cambrian trilobitic
layers of Parabolinites levis) layers on the Siberian
Platform (Fedorov et al., 1987). It is noteworthy that the
Ogon’or formation spans as much as the upper and middle
Mayaian Stage of the Middle Cambrian and the whole
Upper Cambrian. Locality 519 is stratigraphically higher
than locality B-8 and, hence, must be younger. Thus, the
rocks from locality B-8 can be dated as Middle Cambrian,
and those from locality 519 as upper Middle to late
Cambrian. Taking into consideration the Amgaian (lower
Middle Cambrian) age of trilobite and brachiopod fossils
in carbonate pebbles (Perfiliev et al., 1994), the rocks in
locality B-8 can be considered as the uppermost Middle
Cambrian and those in locality 519 as the latest Middle
to Upper Cambrian. The paleontological constraints on
stratigraphy of jaspers from the Chibit olistostrome and
variegated silty sandstone formations provide a basis for
dating the two stratons.

It is interesting to note that Lower Cambrian
(Tommotian) archeocytes were found in limestone blocks
among olistostrome accretionary mélange in the western
Primorye region, and uncertain microfossils and sponge
spicules were extracted from siliceous olistoliths (Gusev
and Khalitova, 1988). The latter involve varieties with
their shapes proximal to the spicules representative of
Cjulanciella and Disparella genera.

Figure 6 shows cross-sections through the olistostrome
complex in southeastern Gorny Altai compiled by different
authors. The olistostrome horizons and lenses, and the
olistoplaques are unevenly distributed throughout the
sequence, which is in places more than 500 m thick. This
attests to intricate facies transitions on the Anui-Chuya
basin periphery. The lowermost strata of the olistostrome
complex involve clastic material (olistoliths and
olistoplaques or carbonate boulders and pebbles)
transported chiefly from the accretionary complex, as well
as rounded gabbroic and volcanic boulders and pebbles
and polymictic sandstones brought from the island arcs.
The coarse-grained clastics in the upper unit of the
olistostrome complex are of island arc, accretionary-wedge
and continental provenance. They are: polymictic
sandstones along with gabbro, volcanic, and
pyroxenite-like boulders and pebbles; basaltic clasts from
oceanic islands, as well as olistostromes, possibly,
serpentinites and amphibolites; and quartz-feldspathic
sandstones, fragments of potassic granites and
greenschists, apparently, from the Teletskoe metamorphic
complex, respectively.
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Petrographical studies for sandstones (Buslov, 1992;
Buslov et al., 1993; Gusev and Kiselev, 1988; Gusev and
Khalitova, 1988; Zybin, 1985) evidences sediment-
transportation from the pre-Middle Cambrian units. They
are most probably accretionary complex, the pre-Middle
Cambrian Uimen-Lebed’ primitive island arc, the
Cambrian island arc and the metamorphic rocks (probably
late Riphean Teletskoe complex). In this respect, the
section is arranged as follows: the late Cambrian silty
sandstone formation has a base composed of polymictic
sandstones from an eroded island arc and quartz-
feldspathic sandstones from its continental basement. The
uppermost strata of the Gorny Altai Group comprise
quartz-feldspathic sandstones, which attests to deep
erosion of the island arc, whereby its continental basement
became exposed, and the accretionary complex became
buried beneath the deposits filling the Anui-Chuya basin.

Kurai Accretionary Wedge (Pre-Middle
Cambrian): Structure and Composition

The Kurai accretionary wedge (Figs. 4, 5) is located
north and east of the Anui-Chuya basin described above.
It has been thoroughly studied in recent years. This part
of the Gorny Altai is well exposed and accessible. The
fragments of an early Caledonian accretion-collisional
zone is believed to have been well preserved there.
Boulders similar to the accretionary wedge origin are
found in the Middle-late Cambrian Anui-Chuya basin.
The terranes and their separating sutures are broken by
late Paleozoic transverse intra-continental strike-slip faults
and oblique thrusts as shown in figure 3.

The Kurai accretionary wedge is composed of the
tectonic sheets of the Baratal seamount of variable
composition and size, including oceanic sediments and
basaltic units and seamount rocks, Chagan-Uzun oceanic
ophiolites, and serpentinitic mélange with sheets and
minor blocks of eclogite, garnet amphibolite and
barroisite-actinolite schists, The barroisite-actinolite
schists often occur within the accretionary prism as
separate lenses. All the above-noted sheets and blocks
are associated with the pre-Middle Cambrian olistostrome.
In the Middle-late Paleozoic, the accretionary prism was
folded. Its structural elements dip in the direction opposite
to the late Paleozoic nappe-sheeted structure of the Kurai
range, i.e., to the SW.

The accretionary prism consists of the three units
divided into upper, intermediate and lower structural units
with SW-dipping structure (Fig. 5).

(1) The 15 km wide and 12 km thick upper structural
unit is composed of tectonic sheets dipping at 70~-80° to
the SW. The tectonic sheets and lenses consist of

paleoseamount siliceous-limestone and carbonate rocks,
olistostrome units (including olistoliths), and dark-gray
or black limestone. The Baratal seamount is composed of
two types of rocks: (a) Light-gray and gray rhythmically
layered brecciated limestones. In places, some layers
consist of gray cherts, siliceous shales, volcaniclastic rocks
and primary and secondary hyaloclastic rocks. Those
sediments were deposited close to active volcanoes,
possibly at the bottom of their sub-water slopes, because
they contain numerous fine fragments of clinopyroxene,
orthopyroxene and hornblende of igneous origin. (b) Reef
gray limestones and dolomites once composed tops of
oceanic islands. The dark-gray and black limestones are
different from paleoseamount carbonate rocks: they are
of massive texture and contain H,S with thin interbeds
and lenses of black siliceous rocks. The black limestones
contain the fragments of garnet, tourmaline, sillimanite,
staurolite and corundum from metamorphic rocks. The
dark-gray and black limestones may represent an exotic
block, which was transported into the subduction zone
together the crust of the Paleo-Asian ocean. There are no
appropriate rocks for isotope dating, but Uchio et al.
(2001) determined the 577+100 Ma age from the
basement limestones by Pb—Pb method.

In the base of the upper structural unit there is a 3 km
thick package of sheets composed of carbonate and
polymictic olistostrome, siliceous rocks and unevenly
metamorphosed volcanogenic-sedimentary rocks. Large
olistoliths of up to tens of meters are found in the
polymictic olistostrome as blocky segments with
subordinate amount of tectonized matrix. The olistoliths
are basalts, volcaniclastics, siliceous rocks and various
limestones. Besides the sand-clay calcareous matrix, the
olistostrome sequence includes sand-shale horizons
containing well-rounded pebbles of marble-like limestone,
dolomite, amygdaloidal-andesitic basalt and diabase
porphyrites which could have been transported into the
sedimentation basin from an island arc.

The sheets of siliceous rocks may reach many hundreds
meters in thickness. They are composed of gray and dark-
gray massive or rhythmically layered rocks. The thickness
of a rhythm can reach 5 em. Angular-clastic rocks,
cemented by silica-rich material are found at the base of
the rhythmic sequence. The clastic rocks are overlain by
fine-grained gritstones and bedded cherts.

(2) The intermediate structural unit — the Arydzhan
package of sheets, consists of four subunits, i.e.,
(a) basaltic series (oceanic island basalts - OIB and
MORB), (b) volcanogenic-sedimentary sequence,
(c) olistostrome and (d) metamorphic rocks (Gusev, 1991;
Buslov et al., 1993). In places, the volcanic, volcanogenic-
sedimentary rocks and olistostrome compose EW-trending
folded sheets of variable size.
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(a) The basaltic sequence is dominated by dark-gray
and gray-green pillow-lavas and variolitic lavas, and also
includes minor amounts of amygdaloidal sub-alkaline
basalts, diabase and gabbro-diabase dykes and sills
(Table 1). The lavas are metamorphosed to the low-
temperature greenschist facies. The magmatic rocks are
associated with sparse interlayers and lenses of dark-gray
and gray clastic limestone, dolomite, black and gray
siliceous rocks and rare sandstone. (b) The volcanogenic-
sedimentary sequence is mainly composed of dark-gray
or reddish reef limestones of layered and massive fabric
interbedded with green-gray chlorite-bearing shales and
volacaniclastic sandstones. (¢) Clastic composition of
olistostromes is variable. The olistostromes were formed
in two stages: the entrance of the seamount into the trench
and the collapse of the frontal part of the Baratal terrane
during its subduction. There are two main types of
olistostrome: siliceous-limestone-basaltic and polymictic.
Gritstones and breccias compose the matrix of the first
type olistostrome. There are fragments of gray, light-gray
and black cherts and red jasper and smaller amounts of
basalt, carbonate, and thin-layered carbonate shales. The
gritstones and breccias are cemented by siliceous and
carbonate-siliceous rocks and shales and contain olistoliths
of mainly siliceous composition with minor basalts and
carbonates. The siliceous olistoliths are composed of black

and gray chert and red jasper. They are of flat or angular
shape, up to several tens of meters thick and hundreds of
meters long. Their clastic material could result from
disintegration of a silica-rich volcanogenic-sedimentary
sequence. Such a sequence could form in a seamount-
bottom environment. The polymictic olistostrome consists
of sandstone, clay, clay-marl and andesitic tuff matrix and
clastics of variable size. Olistoliths comprise siliceous
rocks, limestone, dolomite and basalt. (d) Metamorphic
rocks are greenschist, amphibolite, and garnet
amphibolite. The metamorphic sequence contains two
sheets of crystalline schists (garnet amphibolite and
amphibolite) dipping westward at a 70° angle which
ranges in thickness from 50 to 250 m by strike. Ota et al.
(2000} established four progressive metamorphic zones,
although amphibolites show the traces of diaphthoresis
and mélange processes. Fresh garnet amphibolite contains
zoned garnet with poikilitic quartz, amphibole, and
titanite. The amphibolites and garnet amiphibolites possess
chemical characteristics of normal-type mid-oceanic ridge
basalt (N-MORB) (Tables 2, 3; Fig. 8).

(3) The 3 km thick lower structural unit — the Chagan-
Uzun sheeted-mélange zone underlying the upper and
intermediate units. There are two types of sections:
(a) South of Kurai village, the Chuya left bank, the zone
is composed of polymictic and serpentinitic mélanges. The

Table. 3. REE and RE in magmatic and metamorphic rocks of the Baratal terrane {NAA).

1 2 3 4 5 6 7 8 9 10 11

Sample 92-T-4 92-T-2 965A Ch-912 Ch-916 Ch-917 Ch-919 B-902 B-904 B-905 B-907

La 2.5 2.8 4 3.2 5.3 3.9 3.3 1.2 5.3 5.5 4.5

Ce 6 6 13 10 18.5 15.6 8.5 3.5 13.5 15.8 9.2

Nd 8 6.2 13 7 12.6 13 9 39 10.9 13.8 9

Sm 2.4 2.2 4.9 3.4 5.5 4.6 3.6 1.1 3.6 3.9 3.6

Eu 1.15 1.1 1.9 1.3 2 1.5 1.6 0.46 1.73 1.14 1.25

Gd 3.8 3 3.2 2.1 55 5.2 3.7

Tb 0.65 0.58 1.4 0.88 1.35 1.25 0.9 0.3 0.9 0.94 0.7
Dy 3.6 5 7.5 5.8 6.7 6 5.6

Tm 0.3 0.7 0.72 0.4

Yb 2.5 2.7 5.6 4 7.5 5.4 4.7 1.6 4.2 4.3 3.6

Lu 0.48 0.42 0.88 0.62 1.2 0.9 0.9 0.3 0.68 0.63 0.48

Sc 30 36 45 52 62 57 57 49 56 55 49

Hf 1.3 1.6 5.3 3 5.2 3.5 2.5 0.3 0.7 0.47 0.7

Ta 0.1 0.12 0.3 0.2 .35 0.3 0.15 0.04 0.19 0.17 0.11

Th 0.15 0.2 1.7 0.4 0.9 0 0.75 29 3.7 2.4

Fe 7 10 11.5 10

Cr 190 135 110 90

Co 35 42 48 41

Ni 3.3 1.24 2 1.54

Zr 13 108 11 89

Nb 1.8 5 5 5

Y 9.5 29 26 24

Rb 9 4 6 12.1

Sr 250 328 137 153

Ba 220 110 120 206

Note: Chondrite normalizing values: La=0.31, Ce=0.808, Nd=0.60, Sm=0.195, Eu=0.0735, Gd=0.259, Tb=0.0474, Yb=0.209, Dy=0.322,
Tm=0.0324, Yb=209, Lu=0.0322, 1-2-oceanic pillow-lavas (Taldy-Tyurgun), 3-5-eclogites and Ga-amphibolites after oceanic basalts, 6-7-metamorphic

sole, 8-11-garnet amphibolites and barroisite-actinolite schists.
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Al - within-plate alkaline basalts, All - within-plate
alkaline basalts and within-plate tholeiites, B - E-type
MORB, C - within-plate tholeiites and volcanic-arc
basalts, D - N-type MORB and voicanic-arc basalts
(Meschede, 1986).

Fig. 8. Geochemistry of rocks: (A) - the MnO-TiO,-P,0, discrimination
diagram of Baratal basalts and Chagan-Uzun basic rocks.
The fields are MORB, OlIT-ocean-isiand/seamount tholeiite,
OlA-ocean-island/seamount alkali basalt, CAB-island arc calc-
alkaline basalt, [AT—-island arc tholeiite, Bon-boninite.
(B)- the Zr/4-2Nb-Y diagram for Baratal basalts.

polymictic mélange includes up to several meters long
blocks of serpentinized pyroxene-olivine porphyrite,
diaphthorized garnet amphibolites with relic eclogite, and
amphibolites and matrix consisting of serpentinite schists
and mylonites after metamorphic rocks and basalts. The
serpentinitic mélange consists of foliated serpentinite
incorporating blocks of massive serpentinite and light-
gray cryptocrystalline rodingite. The serpentinite bodies,

Gondwana Research, V. 5, No. 4, 2002

up to several meters long, extend over a distance of many
kilometers parallel to the NS-trending Arydzhan sheeted
zone. (b) Near Chagan-Uzun village, the Chuya left bank,
the intermediate structural unit and a sheeted-mélange
zone consist of (S—N, downsection):

Intermediate structural unit

1. The siliceous-carbonate nappe of Baratal seamouint
is exposed as several deformed steptoes. Its visible
thickness reaches first hundreds of meters. In their basis
there is a tectonic mélange consisting of greenschist
matrix, fine fragments and blocks of limestones and cherts.

2. A sheet of metabasalts of some tens to hundreds of
meters thick composed of schists, boudins and lenses.

3. A several meters thick olistostrome is composed of
the rocks, which underwent cataclasis and are interbedded
with siliceous-carbonate gritstones, siliceous shales and
marl shales. The fragments are poor-graded dolomites,
limestones and cherts up to several centimeters in
diameter.

Sheeted-mélange zone

4. The upper sheet of Chagan-Uzun ophioliote massif
is made up of ultrabasics: fresh peridotites in the upper
horizon and massive serpentinites in the lower horizon.
The sheets of serpentinitic mélange up to 100 m thick,
contain the inclusions of massive serpentinites, eclogite-
garnet amphibolites and minor greenschists. The largest
bodies are composed of garnet amphibolites containing
eclogite relicts. The lenses and interlayers of cherts are
found in metamorphic rocks. The eclogite have undergone
high-pressure greenschist diaphthoresis, which is regularly
exhibited at the marginal parts of bodies. The samples, a
series of rocks from greenschist diaphthorites (with relics
of garnet) to garnet amphibolites (with relics of eclogite),
were selected with a 10-15 m interval at the upper
metamorphic sheet of the section along the route (south
to north). Bulk chemistry and trace element
concentrations for these samples are cited in tables 1-3.

5. The lower sheet of Chagan-Uzun massif is composed
of massive and schistose serpentinites which contain the
boudins and deformed dykes of gabbro and gabbro-
diabases. The outside zones of these bodies are made up
of rodingites. Below, there are rocks with geochemical
characteristics of oceanic island basalts (Buslov et al.,
1993). At the contact we can clearly see the metamorphic
sole of the Chagan-Uzun massif composed of garnet-free
amphibolites. Its thickness reaches some hundreds of
meters. Far from the contact, the amphibolites gradually
pass into the well-known basaltic porphyrites.

The eclogitic rocks from the sheeted-mélange zone are
of special interest. Eclogite-amphibolite and garnet
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amphibolite bodies are found in the mélange of the third
zone. Up to 4-5 m wide and 10 m long eclogite-
ampbhibolite bodies consist of eclogite bands alternating
with garnet amphibolites, which are also composed of
their apical parts and up to several centimeters thick
transverse narrow zones. In several bodies eclogites have
been preserved as small lenses in garnet amphibolite. Up
to 30 m wide and 200 m long garnet amphibolite bodies
underwent the greenschist diaphthoresis developing along
the marginal parts of the sheets.

The main rock-forming minerals in eclogitic rocks are
Ca-almandine, omphacite and amphiboles of the
glaucophane group (Buslov and Watanabe, 1996). Well-
faced Ca-almandine is 0.1 to 0.3 ¢cm in diameter with fine
vortex-arranged inclusions of glaucophane, winchite,
titanite and apatite. The garnet grains are cemented by
isometric omphacite grains up to 0.1 cm in diameter,
which locally compose narrow bands. Some of garnet and
omphacite crystals are rimmed by Ca-Na amphiboles of
the winchite-barroisite group. Zonal amphibole grains are
0.2-0.3 cm long. Glaucophane is rimmed by barroisite
and actinolite, or winchite is rimmed by actinolite/
barroisite (Table 4). The relationship between eclogite
and garnet amphibolite, however, must be examined in
detail. Under the microscope, we discriminate at least two

kinds of garnet amphibolites with and without
clinopyroxene as shown in figure 9. Clinopyroxene in the
amphibolite is always rimmed by dark and fine-grained
materials, suggesting partial breakdown of clinopyroxene
(Fig. 9a, b). Amphibole is barroisite in some cases, but
often heterogeneous (zoned amphibole). The protolith
may have been barroisite/glaucophane eclogite. Garnet
is finely fractured, but exhibits progressive zoning pattern
represented by increasing MgO (1.55-2.21%) and
decreasing MnO (1.67-0.40%). Although a marginal part
of the garnet does not exhibit distinct decomposition by
retrogressive metamorphism, the inner part of the garnet
(high Ca garnet) is broken down into fine-grained mineral
assemblages composed mainly of epidote. Retrograde
recrystallization shown by zoned amphibole or veining is
always observed.

Garnet amphibolite without clinopyroxene is texturally
different from eclogitic garnet amphibole in typical cases.
Garnet with spiral or concentric inclusions exhibits nice
euhedral morphology (Fig. 9¢, d) and amphibole is
homogenous. Our preliminary K-Ar dating for eclogitic
garnet amphibolite (Fig. 9a, b) yielded early Cambrian
age, but the influence of retrograde metamorphism was
obvious. Therefore, we obtain Ar-Ar geochronological
dates (the analyzed amphibole specimens 124-3, 124-4,

Table 4. Microprobe analyses of Ca--Na amphiboles from Chagan Uzun metamorphics. C: Core, R: Rim. Preliminary K-Ar dating for amphibole of
965a , which includes heterogeneous amphibole result from retrogressive metamorphism, is 535 Ma. As shown in figurel0, Ar-Ar data
indicate influence of later thermal episodes. Sample 124-b, however, contains homogeneous barroisite and has a plateau age 635 Ma.

124-3a 124-3b 124-4

No. R1 C R2 R1 C R2 R1 C R2

Sio, 48.67 55.36 50.53 45.38 44.72 47.04 49.01 55.76 49.88
TiO, 0.32 0.07 0.18 0.83 0.73 0.38 0.22 0.02 0.23
Cr,O, 0.12 0.29 0.04 0.31 0.77 0.21 0.03 0.02 0.02
ALDO, 10.44 10.88 9.35 13.23 13.1 11.3 10.19 9.12 9.00
FeO 14.76 12.65 14.43 15.26 15.24 14.38 14.22 13.84 14.75
MnO 0.01 0.01 0.03 0.02 0.019 0.01 0.02 0.10 0.02
MgO 11.03 9.05 9.94 9.81 9.57 10.70 10.83 9.66 11.34
CaO 7.75 2.05 7.14 8.4 8.41 8.08 7.34 3.50 7.92
Na,0 3.94 6.03 3.60 4.18 4.21 3.91 4.06 5.18 3.56
K,0 0.27 0.06 0.20 0.23 0.22 0.38 0.25 0.05 0.25
Total 97.31 96.44 95.44 97.65 96.99 96.38 96.16 97.25 96.97
Si 7.30 7.86 7.64 6.88 6.84 7.16 7.40 7.97 7.5
Ti 0.04 0.01 0.02 0.09 0.08 0.04 0.02 0.00 0.03
Cr 0.01 0.03 0.00 0.04 0.09 0.03 0.00 0.00 0.00
Al 1.85 1.82 1.67 2.36 2.36 2.03 1.81 1.54 1.59
Fed+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe?* 1.85 1.50 1.82 1.93 1.95 1.83 1.79 1.65 1.85
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
Mg 2.47 1.92 2.24 2.22 2.18 2.43 2.44 2.06 2.54
Ca 1.25 0.31 1.16 1.36 1.38 1.32 1.19 0.54 1.28
Na 1.15 1.66 1.05 1.23 1.25 1.15 1.19 1.43 1.04
K 0.05 0.01 0.04 0.05 0.04 0.07 0.05 0.01 0.05
Ca/K 50.26 57.26 60.91 62.43 65.60 37.31 51.67 114.36 54.86
Sum 15.96 15.13 15.64 16.16 16.19 16.06 15.89 15.21 15.88
Mg# 0.57 0.56 0.55 0.53 0.53 0.57 0.58 0.55 0.58

Barroisite Glaucoph Winchite Barroisite Barroisite Barroisite Barroisite Winchite Barroisite
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Fig. 10. Ar-Ar results for Chagan-Uzun eclogites (amphibole). Compare
amphibole compositions in table 4. Ca/K ratios are 50.3-60.1
in B-124-3a, 37.3-65.6 in B-134-3b and 51.7-114.4 in
B-124-4, The age for B-124-4 is meaningless.

and 124-5 of 627, 635 Ma (samples 124-3a and 124-3b),
and 562 Ma (sample 124-4) (Fig. 10). All three indicate
low temperature Ar loss which is consistent with a younger
K-Ar age (early Cambrian). Although the plateau age is
ca. 635 Ma, it may give an older age than real exhumation
age due to correction for sample of very low K contents.
Our preliminary study of garnet amphibolite from separate
blocks without eclogitic facies indicates Ordovician K-Ar
ages (ca. 470 Ma, ca. 480 Ma, Buslov and Watanabe,
1996), but the significance is still open to question. As
far as the Ordovician rocks occur in the marginal part of
the garnet amphibolite, their ages may reflect either a
retrogressive stage, or formation of garnet amphibolite.
The K-Ar phengite age of greenschists (garnet-phengite-
chlorite-quartz-albite-titanite-calcite-opaque mineral,
Akiyama, 1994) along the southern margin of the mélange
unit is 567 Ma (Table 5). The greenschists contain garnets,
but no biotite, indicating high-pressure metamorphism.
Garnet (0.5 mm in diameter) in the schist shows a distinct
retrogressive metamorphic episode. From the core to the
margin MgO and MnO contents range from 1.19 to 0.62%
and 1.61 to 8.97%, respectively. Taking into account the
low closure temperature of mica, the age of 567 Ma may
represent a later exhumation stage of high-pressure
metamorphic rocks. Thus, we conclude that exhumation
of eclogite with high-pressure greenschists occurred in
Vendian. Later high-pressure metamorphism in
Ordovician is uncertain. However, due to the presence of
Ordovician high-pressure rocks in the Chara belt (see
Fig. 1), we do not deny a possibility of Ordovicain
metamorphism in the Chagan-Uzun massif during the
collision stage.

Boudinated and deformed gabbro, gabbro-diabase, and
diabase dykes cut the lower sheet and are compositionally
close to the calc-alkaline island arc series of probably early
to Middle Cambrian age. They record the formation of
the Gorny Altai more evolved island arc. The metamorphic
sole in the base of Chagan-Uzun ophiolites is composed
of garnet-free amphibolites. A preliminary K-Ar amphibole
age is 523 Ma (Buslov and Watanabe, 1996).

PT estimations for rock assemblages of the upper sheet,
including eclogites, are 13-14 kbar and 620-700°C, i.e.,
they formed at a depth of 50-60 km, whereas meta-gabbro,
rodingites and gamet-free amphibolites of the lower sheet,
at 2-3 kbar (6-8 km depth) (Buslov and Watanabe, 1996).
We suggest that the upper sheet with eclogites is an

Table 5. K-Ar age for micaceous fraction and chemical composition of mica of Chagan-Uzun metamorphic rock (greenschist) (Akiyama, 1994). HCI was
not used for sample separation for a possible damage of low-temperature phengite. Low K may depend on the mixture of phengite and chlorite.

Sample No. 93062213 Rock type Greenschist

Mineral Mesh size K (wt.%) Rad. Argon40 K-Ar age (Ma) Non Rad Ar (%)
(10%ccSTP/g)

Phengite+Chl 150-200 2.67+0.05 6914.5+71.13 567.3x11.0 3
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assemblage of subducted rocks, and amphibolites at the
bottom of the lower sheet formed later - during the
incorporation of hot ophiolites into the accretionary wedge
or during their thrusting over oceanic floor basalts, like it
was proposed for Oman ophiolites and other similar cases
(Nicolas, 1989). The metamorphic rocks are cut by island
arc gabbro-diabase dykes.
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Fig. 11. (a) A photo of the contact zone between the carbonate top of
an oceanic island and the lower sedimentary-volcanogenic unit.
{(b) A photo of outcropped pillow lavas. {¢) A photo of carbonate
clastic island-slope facies.
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The Baratal paleoseamount is composed of laterally
changing sedimentary facies of oceanic islands and their
underlying basalts. We can reconstruct the upper oceanic
island top units of predominantly carbonate composition
and the lower sedimentary-volcanogenic units, as well as
a lot of siliceous-limestone and clastic island-slope facies
(Figs. 11a, b, ¢). The sheets of paleoseamount assemblages
alternate with olistostrome sheets and lenses/fragments
of an exotic terrane consisting of dark-gray-black
sulphured-hydrogen limestones.

The bulk compositions of the Baratal volcanogenic and
metamorphic rocks and Chagan-Uzun ophiolites are cited
in tables 1 and 2. The major element chemistry of basalts
shows that they all belong to the high-Fe tholeiitic basaltic
series, the Fe/Mg ratio ranging from 1.47 to 4.06. In the
TiO-10MnO-10P,0, discrimination diagram (Fig. 8a), the
compositional points of Chagan-Uzun island arc dykes,
basalt-derived amphibolites and eclogites and Baratal
pillow-lavas, oceanic crust basalts and basalt-derived
metamorphic schists form a single area in the fields of
MORB and island arc tholeiites. Rare-earth and trace
element chemistry of Baratal rocks (Table 3) also indicates
their close relation to oceanic ophiolites. The rocks are
rather poor in LREE and their La/Yb ratio ranges from
0.7 to 1.28 indicating a weak enrichment in HREE
(Table 3). In the Zr/4-2Nb-Y discrimination diagram
(Fig. 8b) the points are mainly in the fields of N-type
MORB/volcanic-arc basalts and within-plate alkaline
basalts and tholeiites (Rollinson, 1993). The multi-
component patterns of basalt-derived metamorphics of
the Baratal terrane are close to those of N-MORB and
support the idea that mainly mid-oceanic ridge ophiolites
have been subducted and metamorphosed (Fig. 12).

Multi-component diagram of Baratal metamorphics
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Fig. 12. Trace element concentrations in Baratal basaltic rocks
normalized to the composition of the primordial mantle. The
normalizing values and average N-type MORB and OIB
concentrations are taken from Rollinson {1993).
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In general, according to the structural position, rock
assemblages, and major and trace element chemistry of
the Baratal terrane can be regarded a seamount with a
fragment of the oceanic crust at the base. In the earliest
Cambrian, the Baratal terrane and the adjacent segments
of the oceanic lithosphere (Chagan-Uzun ophiolites) were
involved into the subduction and a part of rocks
underwent a low- to high-grade metamorphism. In the
latest early Cambrian, the Baratal terrane blocked the
subduction zone and collided with the Kurai fragment of
the Uimen-Lebed primitive island arc. The collision
resulted in the generation of reverse flows in the
accretionary wedge and rapid exhumation of the
metamorphosed oceanic crust rocks — Chagan-Uzun
ophiolites, eclogites and garnet amphibolites. Major and
trace element chemistry of high-pressure metamorphic
rocks is similar to MORB and OIB (Fig. 8).

Uimen-Lebed Island Arc

Its upper part (northern side) consists of Devonian
epidote-amphibolite - amphibolite facies metamorphics,
although the protoliths are estimated to be Precambrian.
The metamorphic rocks are regarded as the Kurai
metamorphic complex. The Kurai complex represents a
tectonic nappe which is solely is composed of serpentinite
schists and mélanges. Beneath this structural group there
is a package of tectonic sheets comprising island arc
ophiolite units: (1) a layered gabbro-pyroxenite complex,
(2) sheeted-dyke complex, (3) dyke-sill complex,
(4) volcanogenic unit. Besides, the nappe-sheeted
structure includes calc-terrigenous rocks, black shales and
turbidites. This terrigenous unit covers the ophiolitic unit
and replaces it toward the marginal sea.

The primitive island arc units occur alternately with
pre-late Cambrian more evolved island arc units, which
consists of andesite, calc graywacke and volcanogenic
turbidites. The gabbro-pyroxenite unit is found in two 1
km thick, gigantic tectonic sheets composed of
serpentinite, wherlite, cumulative clinopyroxenite and
layered gabbro. The layered unit is intruded by quartz
diorite and plagiogranite dykes. The sheeted dyke and
dyke-sill units are associated with volcanogenic-
terrigenous rocks, such as diabase, gabbro-diabase,
gabbro, and boninite series rocks. According to the
previous geochemical studies, the volcanogenic
assemblages include oceanic island and MORB tholeiites,
MORB and island arc calc-alkaline volcanics and boninites
(Table 6; Figs. 8, 12, 13) (Buslov et al., 1993; Simonov et
al., 1994; Buslov et al., 1998). The chemistry of Uimen-
Lebed boninites is close to the boninites of Tonga arc,
Mariana arc, West Sayan and Khan-Taishirin in SiO,, TiO,,
ALO,, and MgO (Table 6). In the MnO-TiO,-P,0, diagram

the Uimen-Lebed boninites and gabbro/basalts form a
single trend (Fig. 12) . The main difference between
Uimen-Lebed and western Pacific boninite is the composition
of clinopyroxene (Simonov et al., 1994). The Uimen-Lebed
boninites contains up to 1.5 cm long clinopyroxene
phenocrysts, which are, along with other primary minerals,
replaced by chlorite, epidote, actinolite, and clinozoisite
(Buslov et al., 1997). Fresh grains of clinopyroxene, olivine
and chromite are very rare. No orthopyroxene phenocrysts
have been found yet. Microprobe analysis of clinopyroxene
showed that it is represented by endiopside. Cr-spinel is
compositionally close to that from the western Pacific
boninites (Simonov et al., 1994).

The boninite-bearing ophiolites, which are assigned to
be Vendian-Cambrian, are found in many sheets displaced
along strike-slip faults in the present-day mosaic structure
of Gorny Altai. Figure 1 shows the geographical and
structural position of ophiolites in the Gorny Altai, West
Sayan, East Sayan and western Mongolia. Taking into
consideration the superimposed strike-slip deformations
we can conclude that boninite-bearing ophiolites and
marginal-sea units were structurally located between
Vendian-early Cambrian accretionary units and late
Riphean rock units.

Island arc ophiolites have a typical set of rocks specified
by sheeted dyke complex. They provide evidence for the
spreading of the oceanic crust under the subduction zone
at the initial stages of ensimatic island arc evolution.
Usually, well-preserved sections of island arc ophiolites

Uimen-Labed bonkiles

§
i
%
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Fig. 13. The MnO-TiO,-P,0, discrimination diagram of Altai-Sayan-
Mongolian boninites and associated basic rocks (the fields see

in figure 8).
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have a thick sedimentary cover (black shale and carbonate
turbidites) with a large amount of clastic material. On
the contrary, oceanic ophiolites are poorly preserved and
exposed, and their fragments are frequently mélanged and
incorporated into accretionary wedges.

Boninite series rocks compose variable volcanic and
subvolcanic bodies. However, the majority of boninite
localities are in sheeted dyke units (“dyke-in-dyke”
complexes). Boninites were formed at the last stage of
the development of sheeted dyke units.

Our studies of the Gorny Altai ophiolites showed that
tectonic events with the participation of boninite magma
started with the spreading, which is recorded by the
formation of “dyke-in-dyke” units, and lead to the formation
of volcanic complexes intruded by variably-oriented dykes
and sills. Moreover, boninites serve as a connecting link
between spreading and volcanism: they are the last to
form in the zones of spreading and the first in dyke-sill
complexes, where boninites are preserved as screens.

Geochemical investigation of major and trace element
concentrations showed that volcanics in association with
boninite series in the Kurai Range have characteristics of
island arc tholeiites and calc-alkaline series (Simonov et
al., 1994; Buslov et al., 1998). The REE patterns are
depleted in LREE with respect to MREE and HREE.

Vendian-Cambrian boninites are clearly depleted in
REE, and mostly in LREE, compared to tholeiites and calc-
alkaline volcanics. This possibly indicates the more
primitive character of old boninite magmas in the active
margin of the Paleo-Asian ocean compared to the present
boninite melts in the Pacific ocean (Simonov et al., 1994).

Thus, REE and major element geochemistry of Vendian-
Cambrian rocks of the Kurai Range indicate several
volcanic series from more evolved MORB through
boninites and island arc tholeiites to calc-alkaline series.
This reflects a successive evolution of the primitive island
arc and then more evolved island arc formed over the
oceanic crust of the Paleo-Asian ocean.

Three Stages of Island Arc Evolution

Judging from the biostratigraphical and sedimentological
data documented in the Anui-Chuya fore-arc trough, it is
obvious that in the Middle-late Cambrian, the pre-existed
island arc crust and accretionary wedges had been
subjected to erosion. One of the Ar-Ar dating results show
the episode of Vendian exhumation of eclogite. It may be
concluded that the metamorphic boulders found in the
Anui-Chuya trough are of pre-Vendian rocks.

Three stages of the evolution of the Siberian continent
island arc margin may be discriminated. During the
Vendian subduction stage (1) an ensimatic active margin

formed close to the Siberian continent. In Vendian time,
the subduction of the oceanic crust of the Paleo-Asian
ocean resulted in the formation of the Uimen-Lebed
primitive island arc. Oceanic islands and seamounts
migrated towards the subduction zone and collided with
the island arc. It caused the closure of the subduction
zone and initiation of reverse flows in the accretionary
wedge. Metaperidotites of the Chagan-Uzun massif and
eclogite-bearing serpentinitic mélange were exhumed
along the slope of the island arc. The oceanic islands and
seamounts were incorporated in the accretionary wedge
and the subduction zone jumped oceanwards.

The Cambrian arc (2) resulted in the formation of a
more evolved island arc composed of calc-alkaline
volcanics and granites. A fore-arc trough formed in
Middle-late Cambrian time and was filled with disrupted
products of Vendian-Middle Cambrian accretionary
wedges and island arcs.

The Tremadoc collision (3) of the more evolved island
arc with the Siberian continent is documented by
Tremadoc folding, metamorphism and intrusion of
granites (Viadimirov et al., 1997). The time span between
primitive island arc and mature arc which is demonstrated
by activity of calc-alkaline rocks are only a few millions
of years in the case of Izu-Bonin island (Taylor, 1992)
and the stage (1) and (2) may be partly overlapped.

In the late Paleozoic, the Caledonian accretion-collision
structure of the Siberian continent was broken by large-
scale strike-slip faults into several segments. This resulted
in the formation of a typical mosaic-blocky structure.

The whole set of paleo-oceanic island units, olistostromes,
ophiolites and high-pressure units that has been found in
the Kurai zone, allows a reconstruction of paleogeodynamic
processes in the early stages of the formation of ASA folded
zones. The mode of evolution was similar to that of the
western Pacific active margin (Buslov et al., 1993;
Watanabe et al., 1993; Buslov and Watanabe, 1996).

Summary

The early Caledonian accretion-collision zones of Gorny
Altai are composed of the rock units, which formed within
an island arc system or were incorporated in it during the
subduction of the Paleo-Asian ocean crust under the
Siberian continent. They are accretionary wedge, fore-
arc trough, primitive and more evolved island arc and
back-arc basin units. The accretionary wedges are
characterized by a sheeted structure and consist of
ophiolites from the basement of an island arc and the
rocks of a deformed oceanic crust (the Paleo-Asian oceanic
plate). We propose a general scenario implying that
oceanic islands submerged into the subduction zone
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together with the plate and, later, they were incorporated
into an accretionary wedge. During the subduction, the
oceanic islands - the largest ones were upto 4 km in height
~ collided with an island arc resulting in the reverse
currents in the accretionary wedge and their related
exhumation of high-pressure rocks (blueschists, eclogites,
etc.). In response to the paleoseamount/island arc
collision, the subduction zone jumped oceanwards. The
fragments of paleoseamounts in the accretionary wedge
are as a rule, cemented by olistostromes consisting of
broken seamount and island arc units. A new volcanic arc
formed over the accretionary wedge. Fore-arc basins were
filled with pelagic sediments and turbidites up to 6-8 km
thick. The turbidites are mainly composed of the fragments
and debris of island arc and accretionary units.

Temporal and lateral polarity of magmatic rocks is
typical of volcanic arcs: tholeiite-boninite series of the
early stage (Vendian-the earliest early Cambrian), which
are similar to the Bonin islands, Mariana arc, and Tonga
arc, and tholeiite-calc-alkaline and, to a lesser degree, calc-
alkaline arc volcanic series of the later stage. Laterally,
various volcanic units are recognized within large fragments
of more evolved island arcs ranging in composition from
tholeiitic (high-Mg andesite and basalt) in frontal parts,
through calc-alkaline in central parts to shoshonitic in
back-arc areas (Buslov et al., 1993; Simonov et al., 1994).

Thus, Vendian-Cambrian units in the Gorny Altai are
those of (1) Vendian seamounts formed over within-plate
hot spots of the Paleo-Asian ocean including N-MORB and
E-MORB lavas, (2) the fragments of the Vendian primitive
boninite-tholeiitic island arc and (3) the Cambrian more
evolved island arc with a fore-arc basin.

There, we can reconstruct the collisional processes
occurring in a subduction zone due to the collision of
large seamounts with an island arc. The evolution of early
Caledonian accretion-collisional processes can be
exemplified by the Kurai zone in Gorny Altai. The
fragments of a Vendian island arc, Vendian—early Cambrian
accretionary wedge and Cambrian fore-arc basin have
been preserved in this territory. Cambrian more evolved
island arc units are found only as rare intrusive bodies and
dykes. The Cambrian more evolved island arc units (Buslov
et al., 1993) are well exposed northward, in Central Gorny
Altai, Salair, and Kuznetsk Alatau (Buslov et al., 2001).

The correlation of structural, lithological, geochemical
and biostratirgaphic data shows that an extended island arc
system of the present western Pacific type existed at the
margin of the southwestern Siberian continent in Vendian-
Cambrian time. Further detailed lithological, paleomagnetic
and geochemical investigations would permit the learning
of the specific features of the geodynamic evolution
of the Paleo-Asian ocean and the reconstruction of its
boundaries and paleogeographic position.
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