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Three-dimensional induction logging problems, 
Part 2: A finite-difference solution 

Gregory A. Newman* and David L. Alumbaught 

ABSTRACT 

A 3-D finite-difference solution is implemented for 
simulating induction log responses in the quasi-static 
limit that include the wellbore and bedding that exhibits 
transverse anisotropy. The finite-difference code uses a 
staggered grid to approximate a vector equation for the 
electric field. The resulting linear system of equations 
is solved to a predetermined error level using iterative 
Krylov subspace methods. To accelerate the solution at 
low induction numbers (LINs), a new preconditioner 
is developed. This new preconditioner splits the elec- 
tric field into curl-free and divergence-free projections, 
which allows for the construction of an approximate 
inverse operator. Test examples show up to an order 
of magnitude increase in speed compared to a simple 
Jacobi preconditioner. Comparisons with analytical and 
mode matching solutions demonstrate the accuracy of 
the algorithm. 

INTRODUCTION 

Modeling induction log responses that include the wellbore, 
invasion, and bedding anisotropy is a nontrivial calculation re- 
quiring the 3-D solution of Maxwells's equations. Such 3-D 
simulations using the spectral Lanczos decomposition method 
(SLDM) are reported by Druskin et  al. (1999) and van der 
Horst e t  al. (1999). A notable feature of the SLDM approach 
is its ability to  obtain multifrequency responses very efficiently. 
Here, we investigate the finite-difference approach for solving 
3-D induction logging problems. This method solves Maxwell's 
equations at a specific frequency by imposing a staggered grid 
on a second-order partial differential equation for the elec- 
tric field. The resulting system is solved in an iterative manner 
to  a given predetermined error level using Krylov subspace 
methods (see Newman and Alumbaugh, 1995; Alumbaugh 

et al., 1996). In our adaptation of the finite-difference scheme, 
we introduce a preconditioning technique that allows for a fur- 
ther acceleration in the calculations at  low induction numbers, 
considerations for properly meshing the wellbore and inva- 
sion zones, and modifications to  account for simple anisotropy 
in the vertical and horizontal bedding directions. This finite- 
difference solution is not intended to and cannot directly 
compete with the SLDM approach when multiple frequency 
responses are desired. For a single frequency, however, the 
method can be quite fast and is competitive with SLDM. 

THE FINITE-DIFFERENCE METHOD 

Isotropic formulation 

Assuming a time-harmonic dependence of e'"", where 
i =a, a vector equation for the electric field for isotropic 
media can be derived from Maxwell's equations in the quasi- 
static limit. Following Newman and Alumbaugh (l995), we 
have 

V x V x E  + iwwoa E = -iwpL,J. (1) 
In this equation, the electrical conductivity o is assumed to  be 
isotropic; treatment for conductive media exhibiting transverse 
anisotropy are given in Appendix A. Here the free-space mag- 
netic permeability and angular frequencies are denoted by po 
and W .  Specification of the source vector J depends on whether 
a total or scattered electric-field solution is desired. In well- 
logging applications, we prefer a scattered-field formulation 
because measurements are often made very near the source. In  
this situation, our experience has shown that a total-field solu- 
tion requires very fine meshing. This leads to  large demands on 
computational resources, and it is virtually impossible to obtain 
accurate in-phase responses after the direct-coupled field has 
been removed. In a scattered-field formulation, we would set 
E = E' in equation ( I )  and, following Newman and Alumbaugh 
(1995), would set 

h J = (a - ab)E , 
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3-D Finite-Difference Solution for Induction Logging 485 

where oh is the background conductivity of a uniform medium 
and Eh is the background electric field. For highly accurate re- 
sults in induction logging applications, we have found that spec- 
ification of the background medium should be based on the for- 
mation properties nearest the transmitter when it is isotropic. 
For anisotropic media, however, proper selection of the back- 
ground medium is still an open research question; this issue is 
explored further in Avdeev et  al. (2002). 

When equation (1) is approximated with finite differences 
using a Yee (1966) staggered grid, symmetrically scaled, 
and Dirichlet boundary conditions applied (cf. Newman and 
Alumbaugh, 199.5; Alurnbaugh et al., 1996), a linear system 
results. where 

KE = S. ( 3 )  

The matrix K is complex symmetric and sparse with a maximum 
of 13 nonzero entries per row; S is a discrete and scaled repre- 
sentation of J.  This system can be solved efficiently a t  moderate 
to  high frequencies using the quasi-minimum residual method 
with simple Jacobi preconditioning. Solution treatment as fre- 
quencies approach the static limit are  discussed below. The 
quasi-minimum residual method belongs to  the class of Krylov 
subspace techniques that are highly efficient in iteratively solv- 
ing sparse linear systems to  a predetermined error level. [Refer 
to  Newman and Alumbaugh (1995) and Alumbaugh et  al. 
(1996) for details on how these solvers are implemented.] Once 
the electric field is determined from equation (3), the magnetic 
field is determined from Faraday's law by numerically approx- 
imating the curl of the electric field at the various nodal points 
and interpolating either the electric or  magnetic nodal values 
to  the point of interest. If the solution of equation (3) pro- 
duces scattered fields, then background electric and magnetic 
fields must be added to the interpolated fields to  yield the total 
fields. 

PRECONDITIONING 

It is well known that, when attempting to  solve equation (3), 
difficulties will be encountered as frequencies approach the 
static limit (Alumbaugh et  al., 1996; Smith, 1996). Similar diffi- 
culties are reported by Druskin et  al . ,  (1999) when equation (1) 
is solved with SLDM, which also uses finite-difference approx- 
imations. In this section, we show how these difficulties can be 
overcome with preconditioning. The preconditioner we intro- 
duce parallels the work of Druskin et al. (l999), who developed 
an SLDM method with Krylov subspaces generated from the 
inverse of the Maxwell operator. 

Following LaBrecque (1999) and Druskin et  al. (1999), we 
assume that the electric field can be decomposed into curl-free 
and divergence-free projections using the Helmholtz theorem, 
where 

E = \ E + V p  (4) 

and 

v . * = o .  ( 5 )  

Substituting equations (4) and ( 5 )  into equation (1). we find 
that 

where we use the vector identity 

v x v x *  = -v2* (7) 

since V x V x V q  = 0. The idea behind splitting the electric field 
into curl-free and divergence-free projections is to  deflate the 
null space of the curl-curl operator. When Krylov methods are 
applied directly toequation ( I ) ,  this null space is responsible for 
the poor convergence observed in the solution of equation (3) 
as the frequency approaches the static limit. It is also respon- 
sible for the spurious mode problem, where the gradient of a 
scalar potential can be added to  the electric field and still sat- 
isfy the discrete version of equation ( I )  when the frequency is 
sufficiently small. 

We now seek to  develop an approximate finite-difference 
solution to equation (6) at low frequencies. To this end we 
need to  estimate the relative sizes of the curl-curl and atten- 
uation operators in equation (1). Assuming a finite-difference 
approximation, where A is the characteristic grid size in the 
finite-difference mesh, the curl-curl operator is estimated to 
be roughly 1/A2; the attenuation operator is wp,~,,,,,. Here, 
amax is the maximum conductivity in the mesh. Thus, as fre- 
quency falls and the grid size is reduced, we observe the 
condition 

1 /A2 >> ~ ~ i i ~ m a x  (8) 

or 

(9) 

When the finite-difference grid is nonuniform, A should be re- 
placed by A,,lor, the maximum grid size used to  approximate 
equation (1). Note that the right-hand side of equation (9) is a 
dimensionless number and its square root is an induction num- 
ber, which is an invariant parameter for diffusive electromag- 
netic fields. When frequency falls, we increase the scale length 
and/or conductivity accordingly to  have the fields remain in- 
variant. Thus, the induction number appears to  be more impor- 
tant in determining when equation (9) holds than frequency 
alone. Also, even at moderate frequencies, equation (9) may 
still hold if the grid size needed for the problem is sufficiently 
small. This has direct implications for induction logging prob- 
lems which use small grid sizes. Now, if equation (9) is satisfied, 
we can decouple equation (6) such that 

The boundary conditions required to solve equation (10) are 
a mixture of Dirichlet and Neumann types. Dirichlet condi- 
tions are applied to the tangential components of \k on the 
mesh boundaries, 9, = 0, and Neumann conditions on the nor- 
mal components, a*,,/iln = 0. These conditions enforce the re- 
quirement that V '9 = 0 on the mesh boundaries and in turn 
within the solution domain, since the divergence-free field is 
required to  satisfy the constraint equation 

vyv ' *) = 0. (11) 

Equation (1 1) follows by applying the divergence operator to 
equation (7). It is well known that when a function u satisfies 
Laplace's equation, V 2 u  = 0 ,  on some domain $2 with homo- 
geneous boundary conditions of u = 0 or  au/i)n = 0 prescribed 
along the boundary r, it is identically zero on that domain. Note 
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486 Newman and Alumbaugh 

that when applying the Neumann boundary condition, n would 
specify the direction of the outward normal at the boundary. 

The vector field Jr is not a complete solution to  Maxwell's 
equations since it does not satisfy the auxiliary divergence con- 
dition on the current density within the earth. To derive this 
condition. we take the divergence of equation ( I )  and substi- 
tute equation (4) to arrive at 

V . a ( V p )  = -V . a(*) - V . J. 

Dirichlet boundary conditions will be applied to  the discrete 
version of equation (12), where cp = 0 on the mesh boundaries. 
When the air-earth interface is present, however, we use the 
Neumann condition, &plan = 0, where n specifies the direction 
of the outward normal at that interface. This later boundary 
condition enforces the constraint that current cannot leak from 
the earth into the air. 

Thus, approximate solutions of equation (6) at very small in- 
duction numbers can be obtained by first solving equation ( 1  0), 
followed by equation (12). A solution to  these equations can 
be obtained efficiently using staggered finite-difference meth- 
ods with conjugate-gradient methods to iteratively solve the 
systems to predetermined error levels. 

Now if  it turns out that we cannot obtain a good approx- 
imate solution to equation (3) with a reasonable number of 
Krylov subspace iterations or if such an approximate solution 
cannot be easily computed, we consider modifying the origi- 
nal problem to obtain a faster solution. This is the idea behind 
preconditioning, where we specify a preconditioning matrix M 
and effectively solve the modified problem 

M-'KE = M-'S. (13) 

At  each step of the preconditioned algorithm, it is necessary 
to  compute the product of M-' with a vector, o r  equivalently 
to  solve a linear system with the coefficient matrix M: so M 
should be chosen such that this linear system is much easier to 
solve than the original problem. Moreover, the properties we 
desire in a preconditioner for non-Hermitian matrix iterations, 
including quasi-minimum residual and other related methods, 
are that the preconditioned matrix should somehow approx- 
imate the identity matrix (Greenbaum. 1997). It is therefore 
obvious that the approximate scheme discussed above could 
be very effective in preconditioning equation (3) at moderate 
to low induction numbers (LINs). I f  this idea is to be practical, 
however, we must find fast methods to  solve the approximate 
equations. A good preconditioner is not simply based on a rela- 
tively low-dimension Krylov subspace but on the time required 
to construct it. In  the implementation of the LIN precondi- 
tioner, we first convert equations (10) and (12) into discrete 
matrix equations via staggered finite differences. In the precon- 
ditioned quasi-minimum residual algorithm, at each iteration, 
we then substitute the residual, defined by r = KE - S, into the 
right-hand side of the discrete version of equation (10). Equa- 
tion (10) is then solved, followed by equation (12). Fast precon- 
ditioned conjugate gradient techniques employing incomplete 
Cholesky factorization have proven to be quite effective when 
solving these equations. Furthermore, we have determined that 
it is not necessary to  precisely solve these equations. Test ex- 
amples show that we only need to approximately solve these 
equations for a significant impact on reducing the time required 
for solving equation (3). 

Equation (9) provides only a rough measure on the effec- 
tiveness of the preconditioner. For a better measure we need 
to  estimate the largest and smallest nonzero values that the 
discrete curl-curl operator can assume. This naturally leads to  
estimating its eigenvalues, which is useful in determining when 
the preconditioner will be the most and the least effective. Con- 
sider equation (3) when w = 0. Using the maximum row sum, 
we find the largest eigenvalue of the discrete curl-curl operator 
satisfies 

.^ 

where Anlllr is the minimum grid size used in the mesh. The 
corresponding minimum nonzero eigenvalue is estimated in 
Appendix B. where 

with L,, , ,  as the largest dimension of the 3-D Cartesian mesh. 
Given the largest eigenvalue estimate, the inequality in equa- 
tion (9) is written as 

which provides an optimistic measure when the preconditioner 
will be most effective. In the worst case, however, which corre- 
sponds to the smallest nonzero eigenvalue, we have 

Unfortunately, equation (17) shows that reducing the grid size 
A does not solve equation (3) faster. It is well known that 
Krylov methods tend to  first resolve solution components re- 
lated to eigenvectors with the largest eigenvalues of the ma- 
trix K. As frequency falls or at small induction numbers, these 
eigenvalues correspond closely to  those of the curl-curl opera- 
tor. I f  only the larger eigenvalues are needed to  produce an ac- 
curate solution to  the problem, then the inequality in equation 
(16) would provide a good measure of the effectiveness of the 
preconditioner. On the other hand, if eigenvectors correspond- 
ing to the smaller eigenvalues are necessary to  capture the so- 
lution, then equation (17) would provide a better measure. 

Mesh considerations 

To simulate induction log responses with the finite-difference 
scheme, we need to approximate the cylindrical borehole, in- 
cluding any invasion zones. using a Cartesian grid. I n  induc- 
tion logging simulations, this approximation yields satisfactory 
results if the borehole/invasion-zone diameter is small com- 
pared to the wavelengths excited in the media. This is almost 
always the case, given the frequencies typically used in log- 
ging applications are 4 0  MHz and the electrical conductivity 
of drilling mud and rocks are <20 S/m (Hohmann and Ward, 
1988). Figure 1 shows how the Cartesian grid is imposed upon 
the problem where the borehole deviates 45 from the verti- 
cal. In horizontal cross-section the borehole appears elliptical 
in shape, and the conductivity of the cells that intersect the 
borehole boundary are assigned by averaging the conductivity 
of the drilling mud and formation according to that proportion 
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3-D Finite-Difference Solution for Induction Logging 487 

of the cell volume intersecting the different media. In vertical 
cross-section, the grid results in a staircasing of the borehole. 
Nevertheless. we have determined through numerical experi- 
ments, as demonstrated below, that the Cartesian grid works 
quite well and can produce simulation results accurate to within 
a few percent. provided the cell size over the borehole volume 
does not exceed a few centimeters. Finally. it is only necessary 
to  impose the grid on half of the problem because of symmetry; 
note that the tangential electric fields vanish along the symme- 
try plane ( y  = 0) when coaxial magnetic sources are deployed. 
It is also possible to use symmetry when the source is off axis of 
the borehole. The requirements are that the source be located 

Conductivity 
Scale 
Slm 

-0.14 x(m) 0.14 

FIG. 1. Finite-difference discretization of a cylindrical bore- 
hole deviating 45 using a Cartesian grid (top). The mesh in 
the vertical cross-section (bottom). The mesh in the horizontal 
cross-section is for half of the borehole and surrounding forma- 
tion. A semiellipse in the lower panel indicates the true shape 
of the borehole in the horizontal cross-scction. The grayscale 
to  the right provides the range of conductivities used in the 
mesh. 

on the symmetry plane with a magnetic moment parallel to the 
plane o f  symmetry. 

DEMONSTRATION OF THE FINITE-DIFFERENCE 
SOLUTION 

Effectiveness of the LIN preconditioner 

We now demonstrate through a self-consistency check the 
ability of the finite-differencc solution to simulate deviated 
borehole responses and demonstrate the effectiveness of the 
LIN preconditioner. Consider a 45 deviated borehole as 
shown in Figure 2a, where the mud resistivity is 0.05 ohm-m 
and the formation is 50 ohm-m. The radius of the wellbore is 
10 cm, where the transmitter-receiver offsets range from 0.2 
to  4 m (offsets beyond 2 m arc not shown in Figure 2a). The 
transmitter is a magnetic dipole, coaxial with the borehole. and 
the receivers sample the coaxial magnetic field at 160 kHz. 
The mesh consists of 134832 grid points that sample 337376 
electric-field unknowns on a domain that is 16 x 6 x 16 m in 
the x, y ,  and z coordinate directions. Figure 2b illustrates the 
convergence rate of the finite-diffcrencc solution when sim- 
ple Jacobi preconditioning is used, where the solution time is 
1672 s for an IBM RS-6000 590 workstation. When the prob- 
lem is solved using the LIN preconditioner. the solution time 
is 187 s-nearly an order of magnitude faster. To verify the 
finite-difference responses for this model, we compare the re- 
sponses in Figure 2c to the mode matching solution of Chew 
et al. (1984). Excellent agreement is observed over the com- 
plete range of  offsets. In these comparisons. we have not 
removed the direct-coupled field in the real (in-phase) re- 
sponses; hence, the real values of the field are greater than 
the quadrature values. Finite-difference responses. where the 
direct-coupled field has been removed, are presented below 
and in the companion modeling paper (Avdeev et al., 2002). 
where excellent results are also reported. 

Table 1 shows the effectiveness of the LIN preconditioner 
over three decades o f  frequency. As expected, the precondi- 
tioner is most effective at lower frequencies. For the highest 
frequency, 5 MHz, the preconditioner can actually fail to con- 
verge and may also result in  much slower solution times than a 
solution that uses simple Jacobi preconditioning. In this exam- 
ple, the upper bound given by equation (16) provides a good 
measure of when to use the LIN precondioner. provided the 
right-hand side of equation (16) is at least two orders o f  mag- 
nitude smaller than its left-hand side. The lower bound expres- 
sion [equation (17)]. on  the other hand, is too pessimistic. 

Table 1. LIN preconditioner effectiveness over three decades of frequency. The model from which the table is constructed is 
shown in Figure 2. The squared residual norm, llKE - SII*/IISII*, terminates the solution iteration process and is based on a threshold 
value of 1.0e-08. When a simulation could not achieve this threshold, the solution iteration was terminated at 30 quasi-minimum 
residual iterations. Values based on the right sides of equations (16) and (17) are also included in the table and help estimate when 
the preconditioner will be effective before the quasi-minimum residual solution is attempted. 

Frequency Solution time (s) Iterations Squared residual norm Equation (16) Equation (17) 

10 kHz 
40 kHz 
80 kHz 
160 kHz 
320 kHz 
640 kHz 
1 MHz 
5 MHz 

148 
185 
I84 
I87 
191 
229 
316 

1251 

3 
4 
4 
4 
4 
5 
7 

30 

2e-09 
5e-I 1 

1 .5e- 10 
1.8e- 10 
8.9e- I 0  
4.2e-09 
7.7e-09 
1.4e-07 

3.0e-04 
1 .2~-03  
2.4e-03 
4.8e-03 
9.6e-03 
1.9e-02 
3.0e-02 
1 Se-01 

20.5 
82 

164 
328 
656 

1312 
2050 

1 0  250 
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488 Newrnan and Alumbaugh 

Additional examples demonstrating the LlN preconditioner 
on more complex induction models can be found in Avdeev 
et  al. (2001, Table 2). The examples show the LIN precondi- 
tioner can be very effective for frequencies as high as 160 kHz 
and can produce a solution up to about five times faster than a 
solution using Jacobi preconditioning. 

CONCLUSIONS 

A finite-difference solution has been developed for simulat- 
ing 3-D induction logging responses. Important features of the 

solution include a novel preconditioner that can significantly 
reduce computation times at low induction numbers and fre- 
quencies and the incorporation of transverse anisotropy into 
the solution. Furthermore, measures have been derived to  in- 
dicate when the preconditioner will be effective. The solution 
is quite general and is capable of simulating borehole effects 
as well. In the companion paper of Avdeev et  al. (2002), we 
compare this solution to  an iterative integral equation solution 
for 3-D induction logging problems in deviated boreholes with 
anisotropic bedding. 

m 

le-l Jacobi preconditioner (1672 sec 

leO i\ 
- - le-3 
1 F le-4 
Lu r - le-5 

le-6 

6- a le-7 

le-8 

1 e-9 

le-10 

cn - 

L 

Q) 

1 10 100 1000 
Iteration count 

1 e2 

lel 

E leO 
h 

= le-1 
N 

1 e-2 

1 e-3 

1 e-4 
(c) 

0 1 2 3 4 

Spacing, m 

FIG. 2. Comparison and self-constancy check of the finite-difference solution for a 45 deviated borehole within a uniform back- 
ground medium of 50 ohm-m. (a)  The borehole diameter is 20 cm, and mud resistivity is 0.05 ohm-m. The transmitter-receivers span 
offsets ranging from 0.2 to 4 m. (b) The convergence rate of the finite-difference solution for Jacobi and LIN preconditioning at 
160 kHz along with the required computation times. (c) Finite-difference responses (solid-lines) compared to the mode-matching 
solution (small circles) of Chew et al. (1984). 
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APPENDIX A 
SOLUTION TREATMENT FOR TRANSVERSE ANISOTROPIC MEDIA 

The electromagnetic staggered finite-difference method for 
transverse anisotropic conductive media is a simple extension 
of the scattered-field version of equation ( I ) ,  where 

VxVxEs(r )  + iwp,c(r)E'(r) 

= -iwp0(c(r) - ab(r))Eb(r). (A-1) 

Here Es(r) is the scattered electric field, a,,(r) is the background 
electrical conductivity, and Eb(r) is the electric field of the back- 
ground medium. In our case ub(r) is assumed to  be an isotropic 
whole space (i.e.. cb(r) =a""); thus, Eb(r) can be calculated 
analytically. 

The fundamental difference between this expression and 
that given in equation ( I )  and in Newman and Alumbaugh 
(1995) is that a ( r )  is now a 3 x 3 tensor that represents thc 
anisotropic conductivity. In the most general case this tensor 
is full. However, in the case of transverse anisotropy only the 
main diagonal is nonzero, i.e., 

where a.r,r(r) is the electrical conductivity in the P direction, 
(Tl,y(r) is the electrical conductivity in the j~ direction, and czz(r) 
is the electrical conductivity in the 2 direction. 

Combining equation (A-2) with (A-1) and expanding the 
curl operations yields the following three coupled expressions 
for the scattered electric fields: 

aE;(r) aEl(r) a aEi(r) aEi(r) ) - z( aZ - -) - 
a? ax 

+ iwpoayy(r)E~~,(r) = -iwpg(ayvv(r) - a"'")Et(r), 

(A-4) 

and 

a aE;(r) aE!(r) a aE:(r) aE.;,(r) 
ax a z  a Z  

- 

- ) - G( ay - -) ( 
+ iwpoazz(r)E~(r) = -iwp"(a22(r) - aU',')EP(r). 

(A-5) 
Each equation contains a different component of the con- 
ductivity tensor, and the equations are not cross-coupled 
in terms of the directional conductivities. When expressions 
(A-3)-( A-5) are expanded numerically using the staggered 
finite-difference operator of Yee ( l966), the terms containing 
the variable electrical conductivity are confined to  the main 
diagonal of the sparse stiffness matrix and to  the source vec- 
tor. Thus, the cquations defining the problem are identical in 
structure to  those given in Newman and Alumbaugh (1995, Ap- 
pendix A), which results in a stiffness matrix that is complex 
symmetric. This system of equations can therefore be solved 
using the same methods as the isotropic solution. [See Newman 
and Alumbaugh (1995) for details on how this is done.] 

As an additional note, in transverse anisotropic media we of- 
ten assume that the electrical conductivity is constant parallel 
to the bedding. Thus, if the bedding is assumed to be horizontal, 
the conductivity tensor can be further simplified to  read 
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490 Newman and Alumbaugh 

Here, uh(r) represents the electrical conductivity in the 
horizontal direction, i.e., parallel to the bedding, and a,(r) is 
the conductivity perpendicular to the beds. 

To verify the finite-differences solution to simulate responses 
arising from anisotropic media, we consider a whole-space mo- 
del with vertical and transverse resistivities of 1 and 4 ohm-m 
(Figure A-la). The point magneticdipole transmitter and recei- 

vers are deviated 45" from the vertical. Because of the deviation 
in the transmitter, electric currents are induced to flow in both 
the transverse and vertical directions, exciting a magnetic-field 
response sensitive to the vertical and transverse resistivities of 
the medium. Figure A-lb compares the finite-difference results 
(in-phase and quadrature responses) to those produced using 
a I-D fast Hankel transform. The comparison is excellent. 

\, ' 
Tool axis 

I &-phase: FD' 1 
1D 0 

quadrature: FD + 
1D + leO I 

h 

0.2 0.4 0.6 0.8 1 1.2 1.4 

Spacing, m 

FIG. A-1. Comparison of the finite-difference results (crosses 
and vertical dash symbols) with those produced from a 1-D 
fast Hankel transform solution (solid lines) for a transversely 
anisotropic whole-space model at (a) 160 kHz. (b) Real 
(in-phase) and quadrature comparisons. The direct-coupled 
field has been removed from the real responses. 
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3-D Finite-Difference Solution for Induction Logging 

APPENDIX B 
SMALLEST NONZERO EIGENVALUE ANALYSIS 

491 

To estimate the smallest nonzero eigenvalue of the matrix 
K in equation (3) when w=O,  we first consider the curlkurl  
operator in the continuous case. Thus, 

v x v x v  = hv, (B-1) 

where v and h are the corresponding eigenvector and eigen- 
value pairs. If we apply the divergence operator to  equa- 
tion (B-l), we immediately see that 

0 = hV . v. 

Since we are interested in the case where h # 0, we conclude 
that 

(B-2) 

v . v = o .  03-31 

Thus, the eigenvalue problem can be simplified to 

-v2v = hv, 03-41 

where we seek solutions to  this problem under the constraint 
that v is divergence free. When we consider the discrete case, 
we need to  impose boundary conditions on v, where its tan- 
gential components vanish on the boundaries of the modeling 
grid. Specifically, 

n . v  = 0, (B-5) 

where n is the unit outward normal. We also require that the 
normal derivatives of v vanish on the boundaries. These bound- 
ary conditions are required to  ensure that v is divergence free. 
Candidate eigenfunctions that satisfy these boundary condi- 
tion requirements are 

u, = A cos(ax) sin(j3y) sin(bz), 

uy = B sin(ax) cos(j3y) sin(6z), 
(B-6) 

and 

u2 = C sin(ax) sin(j3y) cos(Sz), 

where u = n/L,, ,3 = i r / L y ,  and S = n/L,, and where L r ,  L,, and 
L, are the dimensions of the modeling domain in the x, y ,  and 
z directions. The coefficients A ,  B ,  and C are not arbitrary in 
equation (B-6) because V . v = 0. Thus, once two components 
of v are specified, the final component must be selected such 
that v is divergence free. For example, if A = f i S  and B =as, 
then C = -2crB. 

If we consider the discrete version of equation (B-4) on a 
mesh with uniform grid size A ,  we can show with equation 
(B-6) that 

4 nn A 
A =  - ( s i n 2 ( e ) + s i n 2 ( z ) + s i n 2 ( Z L ) ) .  A2 

The range on the indices I ,  m, and n range as follows: 1 = 
0,1,  . . . ,  N , ; m = O , l ,  . . . ,  N,, ;andn=0,1  , . . . ,  N,,whereL,= 
AN,, L,,=AN, and L,=AN,. To estimate the smallest 
nonzero value of h, we set L, ,  L?,, and L ,  to  the largest di- 
mension of the modeling domain, Lmax. If we select I ,  m, or n 
to be zero and the others to  be one (we arbitrarily set 1 =0, 
m = 1, and n = 1) and employ a small argument expression for 
the sine function (sin(x) = x when x -+ 0), we find an estimate 
of the smallest nonzero eigenvalue to  be 

2x2 

‘ma, 
hmin = 2. (B-8) 

Note that we cannot set two of the indices to  be zero in equa- 
tion (B-7) because this would result in a zero eigenvector, which 
is a trivial solution to the eigenvalue problem. 
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