АКАДЕМИЯ НАУК СССР

МИНЕРАЛОГИЧЕСКИЙ МУЗЕЙ им. А. Е. ФЕРСМАНА

Труды, вып. 14

1963 r.

Редактор д-р геол.-мин. наук Г. П. Барсанов

Л. Б. Шланн

К ВОПРОСУ О СЕРВАНТИТЕ

В 1947 г. при изучении гипергенных сурьмяных минералов некоторых месторождений Средней Азии (Кадамджай, Терексай, Касансай, Хайдаркан) автором был обнаружен минерал, который по химическому составу и оптическим свойствам оказался близким сервантиту (Sb₂O₄), но отличается от него присутствием воды.

Минерал этот, как водная разновидность сервантита, был назван гидросервантитом (Sb₂O₄nH₂O) (Шлаин, 1950). В Кадамджайском и Терексайском месторождениях он пользуется широким распростране-

нием.

По имеющимся данным, «собственпо сервантит» встречается крайне редко, и минералы типа сервантита в сурьмяных месторождениях представлены обычно гидросервантитом. Представляло интерес сравнение полученных рентгеновских данных для гидросервантита с данными для искусственного окисла Sb₂O₄, который по существу является искусственным аналогом сервантита.

Для окисла Sb₂O₄ Дильстрёмом (Dihlström, 1938) была установлена ромбическая сингония и определены параметры элементарной ячейки. Новая таблица межплоскостных расстояний для окисла Sb₂O₄ опублико-

вана Национальным бюро стандартов в Вашингтоне.

В табл. 1 приводятся межплоскостные расстояния гидросервантита, полученные в рентгеновской лаборатории ИГЕМ (аналитик М. Т. Янченко) и межплоскостные расстояния для окисла Sb₂O₄, заимствованные из циркуляра, выпускаемого Американским национальным бюро стандартов (1960)¹.

Сравнение межплоскостных расстояний гидросервантита с данными

для окисла Sb₂O₄ указывает на их большую близость.

На основании близости рентгеновских данных гидросервантита и искусственного окисла Sb₂O₄ ромбической сингонии можно считать, что имеется водный минерал типа сервантита, предположительно ромбической сингонии; формула этого минерала нуждается в уточнении.

Кроме гидросервантита, в сурьмяных месторождениях встречается близкий к нему по составу минерал стибиконит. В некоторых месторождениях [Джижикрут в Таджикской ССР (Новикова, 1952)] он является

самым распространенным гипергенным сурьмяным минералом.

¹ В более полной дебаеграмме имеются дополнительные линии слабой интенсивности, затрудняющие сравнение. Появление этих линий, видимо, связано с иными условиями съемки.

Таблица 1 Межплоскостные расстояния гидросервантита и сравнение их с данными для искусственного окисла Sb₂O₄

Гидросервантит * из месторождения Терексай, Ге-излучение		Sb ₂ O ₄ ** Мо-излу- чение		Sb ₂ O ₄ **		Гидросервантит * из месторождения Терексай, Ге-излучение		Sb ₂ O ₄ ** Мо-излу- чение		Sb₂O₄ ** Си-излучение		
		-		3	5,901					4	1,524	
_		_	_	9	4,455					1	1,509	
		1	3,50	3	3,604	3	1,490	15	1,48	12	1,487	
7	3,40	33	3,45	35	3,445	4	1,472	_		10	1,469	
2	3,24			100	3,073	8	1,433	12	1,43	9	1,431	
10	3,03	100	3,08	4	3,033	1	1,383	1	1,37	2	1,377	
9	2,94	23	2,94	44	2,942		_	_		$\overline{2}$	1,372	
				8	2,718	. 7	1,324	9	1,32	6	1,325	
7	2,65	17	2,66	23	2,651	8	1,256	8	1,25	4	1,255	
_		3	2,46	7	2,470	4	1,230	_		2	1,229	
7	2,41	7	2,39	17	2,404	l	_	_	1	2	1,210	
	 	1	2,22	10	2,235	3	1,203	5	1,20	1	1,201	
_		_		5	2,195	-	_	_	-	1	1,195	
_	_		_	3	2,162	_				1	1,178	
_	_		_	3	2,112	8	1,161	7	1,16	1	1,168	
2	2,06	_		2	2,062	_	_	_	<u> </u>	6	1,160	
_	<u></u>		_	2	2,026	_	_			2	1,119	
	_	2	1,99	5	1,998	_		_	I -	1	1,116	
3	1,973		<u> </u>	5	1,971	_			_	4	1,112	
_	-		_	4	1,917		_		_	2	1,109	
9	1,869	20	1,86	25	1,862	4	1,098	15	1,11	2	1,095	
4	1,800	_	_	6	1,801	10	1,060	8	1,06	4	1,059	
8	1,783	17	1,78	22	1,781	10	1,036	3	1,01	3	1,013	
6	1,725	27	1,72	19	1,723	l —	- 1	4	1,00	1	0,9982	
	_	_	_	10	1,697	-	_			1	0,9958	
5	1,686	3	1,68	5	1,679	-	-	_	_	2	0,9779	
6	1,639	7	1,63	11	1,636	-	_	_	-	1	0,9678	
_	-		_	4	1,607	l —	-	_	_	3	0,9350	
1	1,592	1	1,59	2	1,591		_	_	-	1	0,9330	
_	<u> </u>	_	_	2	1,557	<u> </u>	_	_	_	3	0,9310	
1	1,535	2	1,53	3	1,536	i						

Стибиконит — минерал кубической сингонии со структурой пирохлора и формулой (Sb³+, Ca) $_y$ Sb $_{2-x}^{5+}$ (O,OH,H $_2$ O) $_{6-7}$, где y близок к 1, а x колеблется от 0 до 1 (Vitaliano, Mason, 1952); от гидросервантита он отличается более низким показателем преломления (у стибиконита — обычно не более $1,77,\,\,{\rm y}\,\,$ гидросервантита — $2,09-2,16),\,$ а также рентгеновскими данными.

Сравненение межплоскостных расстояний гидросервантита и стибиконита и его искусственого аналога Sb₃O₆OH (табл. 2) показывает, что на дебаеграммах стибиконита и искусственного соединения Sb₃O₆OH от-

^{*} Аналитик М. Т. Янченко. ** По данным циркуляра, выпускаемого Американским национальным бюро стандартов (1960).

Таблица 2 Межплоскостные расстояния гидросервантита, стибиконита и его искусственного аналога — Sb₃O₆OH

Гидросерван- тит *, Fе-из- лучение		Стибиконит, no Vitaliano, Mason, 1952; Cu-излучение		Sb ₃ O ₆ OH, Dihl- ström, West- gren, 1937; Cr-излучение		Гидросерван- тит, Fе-излуче- ние		Стибиконит, по Vitaliano, Mason, 1952; Си-излучение		Sb ₃ O ₆ OH, Dihl- ström, West- gren, 1937; Сг-излучение	
I	d	I	d	I	d	I	d	I	d	I	d
7	3,40	90	5,93	1000	-	8	1,256	20	1,28	6	1,287
2	3,24		_	_	_	4	1,230		_	_	
10	3,03	70	3,09	6	3,096	4	1,203			_	_
9	2,94	100	2,96	10	2,998	8	1,161	40	1,18	4	1,188
7	2,65	40	2,57	8	2,570	4	1,098	_	_	10	1,180
7	2,41	10	2,36	2	2,357	10	1,060	40	1,15	_	_
2	2,06		_	2	2,102	10	1,036	10	1,13		
3	1,973	30	1,98	6	1,981			10	1,08		_
9	1,869		_			_	_	20	1,05	_	
4	1,800	80	1,81	8	1,819	_	_	20	0,987	_	_
8	1,783	_		_	_	_		10	0,908		—
6	1,725	30	1,74	6	1,740		_	10	0,897	_	_
5	1,686	_	_	_	_	_	_	30	0,868		-
6	1,639	_		_			_	20	0,855		_
1	1,592	20	1,57	4	1,569	<u> </u>	_	10	0,847	_	_
1	1,535	60	1,55	8	1,551	_		10	0,824		_
3	1,490	30	1,48	6	1,487	_		20	0,811		-
4	1,472	_	_		_	-	_	10	0,785	_	_
8	1,433	30	1,44	6	1,441		_	20	0,783	_	_
1	1,383			_	_	_	_	20	0,774		_
7	1,324	30	1,34	6	1,340						

^{*} Аналитик М. Т. Янченко.

сутствует ряд интенсивных линий, которые имеются на дебаеграммах гидросервантита и искусственного окисла $Sb_{\circ}O_{4}$ (1.869—9, 1.783—8, 1.686—6, 1,639—6). Из этого следует, что минерал типа сервантита является самостоятельным минеральным видом и не тождествен стибикониту (Vitaliano, Mason, 1952) 1.

ЛИТЕРАТУРА

Н о в и к о в а Т. Н. Окисные минералы сурьмы Джижикрутского ртутно-сурьмяного месторождения. Известия отд. естествен. наук, 2, 1952.

Шлаин Л. Б. Гидроромент некоторых месторождений Союза. — Записки Всес. мипер. об-ва, вып. 1, 1950. Circulars Am. National Burean of Standards, 10, № 8, 1960.

Dihlström K., Westgren A. Überden Baudes sogenannten Antimontetroxyds und der damit isomorphen Verbindung BiTa₂O₆F.—Zeitschr. für anorg. und allgem.

Chemie, 235, 1937.

D i h l s t r ö m K. Über den Bau des wahren Antimontetroxyds und des damit isomorphen Stibiotantalits SbTaO₄ — Zeitschr. für anorg. und allgem. Chemie, 239, 1938. Vitaliano C. I., Mason B. Stibiconite and cervantite.— Amer. Miner., 37, № 11-12, 1952.

¹ После сдачи статьи в печать вышла работа N. Gründer, U. Pätzold, U. Strunz (N. Jahrb. Min., 1962, Н. 5), в которой также указывается, что сервантит является самостоятельным минеральным видом.